cancers Article Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines Edina Karai 1,2 , Kornélia Szebényi 1,3,Tímea Windt 1 ,Sára Fehér 2, Eszter Szendi 2, Valéria Dékay 2,Péter Vajdovich 2, Gergely Szakács 1,3,* and András Füredi 1,3,* 1 Institute of Enzymology, Research Centre of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary;
[email protected] (E.K.);
[email protected] (K.S.);
[email protected] (T.W.) 2 Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István utca 2, H-1078 Budapest, Hungary;
[email protected] (S.F.);
[email protected] (E.S.);
[email protected] (V.D.);
[email protected] (P.V.) 3 Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria * Correspondence:
[email protected] (G.S.);
[email protected] (A.F.) Received: 1 April 2020; Accepted: 24 April 2020; Published: 29 April 2020 Abstract: Background: Treatment of malignancies is still a major challenge in human and canine cancer, mostly due to the emergence of multidrug resistance (MDR). One of the main contributors of MDR is the overexpression P-glycoprotein (Pgp), which recognizes and extrudes various chemotherapeutics from cancer cells. Methods: To study mechanisms underlying the development of drug resistance, we established an in vitro treatment protocol to rapidly induce Pgp-mediated MDR in cancer cells. Based on a clinical observation showing that a 33-day-long, unplanned drug holiday can reverse the MDR phenotype of a canine diffuse large B-cell lymphoma patient, our aim was to use the established assay to prevent the emergence of drug resistance in the early stages of treatment.