Seagrass Epiphytes at a Glance

Total Page:16

File Type:pdf, Size:1020Kb

Seagrass Epiphytes at a Glance 1 SEA-GRASS EPIPHYTES (“HANGERS-ON”) AT A GLANCE BACKGROUND Sea-grasses are grass-like, aquatic, flowering plants, 4. with true leaves, stems and roots. They grow in sand and mud (sedimentary aquatic environments, or soft “bottoms”) trapping sediment, their horizontal stems helping to prevent mobile substrates from 4. washing away during storms. Algae require harder, stable surfaces on which to 2. grow – they attach to rock (hard “bottoms”), shells, port structures such as jetty piles or even ships hulls. In addition, some algae and also some animal colonies either preferentially or incidentally grow permanently attached to already-established algae or sea-grasses, a “lifestyle” or niche called epiphytism. The series of pictures below is designed to introduce you to some sea-grass epiphytes of southern Australian seas. Certainly not all of them, as there may be as many as 117 algal species according to 1. one worker.1. Also, small, mobile animals that graze microscopic films of living organisms that grow on sea-grasses, are not included. Below, you will find pictures of only the commonest and more easily observable epiphytes, posted as a series of panels containing similar-looking organisms. To locate the sea-grasses that act as substrates for them, go to Pictured Keys.....-Major Groups - sea grasses, on this Website FACTS ABOUT SEA-GRASS EPIPHYTES • 1.most attach to the surface of sea-grasses and do not use them for nutrition (however, for parasites and intimate 3. anatomical connections, see Algal intimates, on this website) • 1.in some sea-grass meadows, epiphytes may be only 25% of the total weighable material (the biomass) but perform more algal epiphytes on a pressed than 60% of the photosynthesis (the productivity) • 2.sea-grasses host similar epiphytes specimen of the sea-grass Amphibolis • some epiphytes prefer shallow water communities, others the antarctica at the State Herbarium of plant tips, some the jointed parts of the stem South Australia. • 3.epiphytes harbor a diverse community of cryptic crustaceans and molluscs that are food for economically important fish - on stems species as well as being themselves fish food 1. coralline, jointed Red alga • 4.unfortunately, epiphytes may grow so densely, particularly 2. “fluffy” Red alga if plant nutrients are released into coastal waters from sewage outfalls, they smother their host sea-grasses. For example, 3. narrow-branched Red alga some 4,000 - 5,000 ha of sea-grass meadows have been lost - on leaves along metropolitan Adelaide S.A. coastline as a consequence 4. white, scaly, coralline Red alga of over-supply (eutrophication) of nutrients • because they are small and inconspicuous, many epiphytes may be undescribed – these are called cryptic species Wiry Sea nymph, Amphibolis in 2m of water, Cape Jervis SA. Twisted leaves arise from upright Broad-leaved Tape-grass, Posidonia in sand at stems. Horizontal runners have collected sediment Sea-grass meadows at Encounter Bay SA, about 1m 20m depth, the “Hotspot” West Coast SA. The forming a bank about 400 mm tall. The warty deep: horizontal stem or runner connecting the two tufts brown alga Scaberia is growing attached to pebbles broad-leaved Tape-grass, Posidonia at left, of leaves is buried beneath the coarse sand in an eroded part of the bank at right narrow-leaved Eel grass, Heterozostera on the right The panels below illustrate only Some useful terms epiphytes large enough to be discerned in forked ! (dichot- the field, that is, larger than about 10 mm omous) in total length. For some of the smaller, flat- bladed and inconspicuous epiphytes usually filamentous flat-branching needing magnification, see Groups at a glance: marine plant crusts, stains, scums foliose and scales and also Turf and fouling algae. I-III on this Website. encrusting saccate pinnate/ in 2 rows Baldock, R N (2020). Seagrass epiphytes at a glance. 26 pp. Algae Revealed. Adelaide: State Herbarium of South Australia flora.sa.gov.au/algae_revealed 2 SCALE, MICROSCOPE VIEWS, NAMES AND FOLLOW-UP SEARCHES The coin used as a scale is 24 mm or almost 1” across. Unless acknowledged otherwise, all images have been made by the author and come from pressed specimens or the extensive slide collection of the algal unit, State Herbarium of S Australia, collections generated by the late Professor Womersley and his workers over some 60 years. Images with dark backgrounds have been taken using phase contrast or interference microscopy to highlight transparent structures. Other images may be stained dark blue. Scientific names follow those found in Womersley, H B S. (1984 - 1988). The Marine Benthic Flora of southern Australia Parts I- III as it continues to provide the most comprehensive and accessible account. Recent name changes can be found in https://algaebase.org/ The many references for following up identifications made in the Panels below can be found in the Website http://www.flora.sa.gov.au/algae_revealed/index.shtml Adelaide: State Herbarium of South Australia, 2009 – 2020. ACKNOWLEDGEMENT Thanks to Carolyn Ricci of the State Herbarium of South Australia who gave helpful advice as to the format and content of this publication, gathered some of the specimens together and also edited the material. plants or SEARCH animals permanently STRATEGY attached to sea-grasses generally colourless, grey or generally coloured unless transparent, feathery, in thin bleached white from lines, with patterned scales exposure to the sun or coral-like or in shells brown, some slimy & worm- generally not brown, ANIMALS like, flat or narrow-branched but dark or bright go to panel #A, pages 3-5 BROWN ALGAE green, pink, dark red go to panel #B, pages 6-11 generally bright or dark green, lettuce-like or thread-like A4 B5 GREEN ALGAE & BLUE- A1 BRYOZOANS plants GREEN ALGAE A2 A3 SPONGES pages 4, 5 worm-like go to panel #G, pages 12, 13 page 3 HYDROIDS SPIRORBIDS pink or red, fluffy, or thread- pages 3, 4 page 4 like, or narrow-branched, or B1 B4 lettuce-like; or limey and G2 plants hollow, plants crunchy hollow G3 balloon-shaped filamentous RED ALGAE page 12 foliose page 6 pages 10, 11 G1 B2 B3 go to panel #R, pages 14-26 page 13 filamentous plants flat- plants tufted, page 12 branched wiry R1 pages 7, 8 page 9 filamentous G4 R2 R5 blue-green pages 14-18 coralline narrow- algae pages 25, 26 branched page 13 pages 19-21 R3 R4 ribbon & broad- bead-like bladed pages 24 pages 22, 23 LITERATURE 1. Borowitzka M.A. and Lethbridge R.C. (1989) Seagrass epiphytes. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Seagrasses: With Special Reference to the Australasian Region, pp 458–499. Elsevier/North Holland, Amsterdam 2. Johnson J. E. (1973) A study of the algal epiphytes on the seagrass Posidonia australis Hook. f. in two areas along the southern Australian coast. MS 3. Bloomfield, A.L. & Gillanders, B.M. (2005) Fish and invertebrate assemblages in seagrass, mangrove, saltmarsh, and nonvegetated habitats. Estuaries 28, 63–77.10.1007 4. Westphalen, G et al (2005) A review of seagrass loss on the Adelaide metropolitan coastline. Adelaide coastal waters study. Technical Report Number 2. EPA, Adelaide 5. common name suggested by Edgar, G J (2008). Australian marine life. Th e plants and animals of temperate waters. Sydney, New Holland 6. Gowlett-Holmes, K (2008). A field guide to the marine invertebrates of South Australia. Sandy Bay, Tasmania. Notomares 7. Womersley, H B S & Baldock R N (2003). The Encounter 2002 expedition to the Isles of St Francis, South Australia: marine benthic algae. Trans R Soc SA (2003) 127 (2) 141:151 8. Harvey, A et al (2005). Coralline algae of central New Zealand. An identification guide to common “crustose” species. NIWA Information Series No. 57 9. Bock, P E (1982) Chapter 9. in Shepherd S A & Thomas I M. Marine Invertebrates of Southern Australia Part I. Adelaide, Government Printer. See also The Bryozoa Home Page www.bryoza.net 10. Shepherd, S A & I M Thomas (Eds) (1982). Marine invertebrates of southern Australia. Part I. Adelaide, Government Printer Baldock, R N (2020). Seagrass epiphytes at a glance. 26 pp. Algae Revealed. Adelaide: State Herbarium of South Australia flora.sa.gov.au/algae_revealed 3 PANEL A: ANIMALS A1: SPONGES 6,10. irregular masses on sea-grass stems, often punctured with visible but tiny pores, and with a rough texture due to the needle- like internal skeleton RRight: one of many possible sponges that grow on sea-grass stems Far right, above: magnified view, tiny pores visible Far right, below: sponge skeleton of spicules, in this example, made of limey material that dissolves in acid Other sponges have spicules made of glassy material that is not acid soluble A2: HYDROIDS 10. minute hydra-like individuals (polyps) living in cups in small or large, flexible colonies A2.1: pinnate colonies, polyps on opposite sides of flexible branches pinnate/ in 2 rows hyd hyd Stereotheca elongata hyd hyd 1. many hyd Elongate seagrass hydroid hyd on the sea-grass Amphibolis griffithii pinnate hyd gon hyd • cups holding feeding polyps colonies (hydrothecae, hyd) occur on both on the sea- sides of the “stem” bearing them, grass stem about 5 teeth at the rims, their bases sunken into the “stem” • large reproductive cups (gonotheca, gon) have prominent “horns” A2.2: colonies creeping on sea- grass (also algal) hyd surfaces, polyps on one hyd side of branches on stalks rh ho gon nem st hyd Campanularia sp • host (ho) • creeping runner (hydrorhiza, rh) • cups holding feeding polyps (hydrothecae, hyd) ho • large reproductive cup (gonotheca, gon) • chain containing minute stinging individuals (nematothecae, nem) Panel A continued next page • stalk (st) with wavy margins diagnostic of the genus 1.One study places the following Bryozoans (not illustrated above) as common on sea-grass stems:- Adeonellopsis portmarina,, Pyripora polita Baldock, R N (2020).
Recommended publications
  • Halophila Ovalis, Ruppia Megacarpa and Posidonia Coriacea
    Edith Cowan University Research Online Theses : Honours Theses 1998 The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea Melissa Grace Henry Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Botany Commons, and the Marine Biology Commons Recommended Citation Henry, M. G. (1998). The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea. https://ro.ecu.edu.au/theses_hons/742 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/742 THE IN VITRO PROPAGATION OF SEAGRASSES: HALOPHILA OVALIS, RUPPIA MEGACARPA AND POSIDONIA CORIACEA MELISSA GRACE HENRY THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF B.SC. (BIOLOGICAL SCIENCE) HONOURS SCHOOL OF NATURAL SCIENCES EDITH COW AN UNIVERSITY JUNE 1998 ABSTRACT Seagrass communities are of high ecological and economic significance. They provide a nursery area for commercial and recreational juvenile fish and crustacea. Seagrasses also play an important role in influencing the structure and function of many estuarine and nearshore marine environments. Unfortunately, the decline of seagrasses, as a result of human impact, has increased in recent years. This decline has become a major problem throughout the world. Current methods used to restore degraded seagrass beds are limited, the most promising being transplanting material from healthy donor beds. This approach is expensive because it is labor intensive and damages the donor bed. Consequently, large scale transplanting programmes are not considered to be feasible. An alternative to using donor material may be found in the propagation of seagrasses.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Population Genetic Structure and Phylogeography of Invasive Aquatic Weed, Elodea Canadensis (Hydrocharitaceae) and Comparative Analyses with E
    Population genetic structure and phylogeography of invasive aquatic weed, Elodea canadensis (Hydrocharitaceae) and comparative analyses with E. nuttallii Tea Huotari Department of Agricultural Sciences Faculty of Agriculture and Forestry University of Helsinki Finland academic dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in Auditorium 1041, Biocenter 2 (Viikinkaari 5, Helsinki), on October 5th, 2012, at 12 noon. helsinki 2012 Supervised by: Dr Helena Korpelainen Department of Agricultural Sciences University of Helsinki, Finland Dr Elina Leskinen Department of Environmental Sciences University of Helsinki, Finland Reviewed by: Dr Jouni Aspi Department of Biology University of Oulu, Finland Dr Alain Vanderpoorten Department of Life Sciences University of Liége, Belgium Examined by: Prof. Katri Kärkkäinen The Finnish Forest Research Institute Oulu, Finland Custos: Prof. Teemu Teeri Department of Agricultural Sciences University of Helsinki, Finland © Wiley (Chapter I) © Springer (Chapter II) © Elsevier (Chapter III) © Authors (Chapter IV) © Hanne Huotari (Layout) isbn 978-952-10-8258-0 (paperback) isbn 978-952-10-8259-7 (pdf) Yliopistopaino Helsinki, Finland 2012 Äidille List of original publications this thesis is based on the following publications and a manuscript, which are referred to in the text by their Roman numerals: I Huotari, T., Korpelainen, H. and Kostamo, K. 2010. Development of microsatellite markers for the clonal water weed Elodea canadensis (Hydrocharitaceae) using inter-simple sequence repeat (ISSR) primers. – Molecular Ecology Resources 10: 576–579. II Huotari, T., Korpelainen, H., Leskinen, E. and Kostamo, K. 2011. Population genetics of invasive water weed Elodea canadensis in Finnish waterways.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Contemporary Reliance on Bicarbonate Acquisition Predicts Increased Growth of Seagrass Amphibolis Antarctica in a High-CO2 World
    Volume 2 • 2014 10.1093/conphys/cou052 Research article Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world Owen W. Burnell1*, Sean D. Connell1, Andrew D. Irving2, Jennifer R. Watling1 and Bayden D. Russell1 1School of Earth & Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia 2School of Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4702, Australia *Corresponding author: School of Earth & Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia. Tel: +61 8 8313 6125. Email: [email protected] − Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 . Currently, many marine − primary producers use HCO3 for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to − HCO3 pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also main- tained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica − was significantly reduced by AZ and TRIS, indicating utilization of HCO3 -uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth con- ditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • IAN Symbol Library Catalog
    Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake
    [Show full text]
  • Nowhere Else on Earth
    Nowhere Else on Earth: Tasmania’s Marine Natural Values Environment Tasmania is a not-for-profit conservation council dedicated to the protection, conservation and rehabilitation of Tasmania’s natural environment. Australia’s youngest conservation council, Environment Tasmania was established in 2006 and is a peak body representing over 20 Tasmanian environment groups. Prepared for Environment Tasmania by Dr Karen Parsons of Aquenal Pty Ltd. Report citation: Parsons, K. E. (2011) Nowhere Else on Earth: Tasmania’s Marine Natural Values. Report for Environment Tasmania. Aquenal, Tasmania. ISBN: 978-0-646-56647-4 Graphic Design: onetonnegraphic www.onetonnegraphic.com.au Online: Visit the Environment Tasmania website at: www.et.org.au or Ocean Planet online at www.oceanplanet.org.au Partners: With thanks to the The Wilderness Society Inc for their financial support through the WildCountry Small Grants Program, and to NRM North and NRM South. Front Cover: Gorgonian fan with diver (Photograph: © Geoff Rollins). 2 Waterfall Bay cave (Photograph: © Jon Bryan). Acknowledgements The following people are thanked for their assistance The majority of the photographs in the report were with the compilation of this report: Neville Barrett of the generously provided by Graham Edgar, while the following Institute for Marine and Antarctic Studies (IMAS) at the additional contributors are also acknowledged: Neville University of Tasmania for providing information on key Barrett, Jane Elek, Sue Wragge, Chris Black, Jon Bryan, features of Tasmania’s marine
    [Show full text]
  • Plastid Phylogenomic Analyses Resolve Tofieldiaceae As the Root of the Early Diverging Monocot Order Alismatales
    GBE Plastid Phylogenomic Analyses Resolve Tofieldiaceae as the Root of the Early Diverging Monocot Order Alismatales Yang Luo1,2,3,y, Peng-Fei Ma1,2,y, Hong-Tao Li2, Jun-Bo Yang2, Hong Wang1,2,*, and De-Zhu Li1,2,* 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China 2Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China 3Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; [email protected]. Accepted: December 23, 2015 Data deposition: The genomes sequences have been deposited at GenBank under the accession numbers KT89950–KT89952. Abstract The predominantly aquatic order Alismatales, which includes approximately 4,500 species within Araceae, Tofieldiaceae, and the core alismatid families, is a key group in investigating the origin and early diversification of monocots. Despite their importance, phylogenetic ambiguity regarding the root of the Alismatales tree precludes answering questions about the early evolution of the order. Here, we sequenced the first complete plastid genomes from three key families in this order: Potamogeton perfoliatus (Potamogetonaceae), Sagittaria lichuanensis (Alismataceae), and Tofieldia thibetica (Tofieldiaceae). Each family possesses the typical quadripartite structure, with plastid genome sizes of 156,226, 179,007, and 155,512 bp, respectively. Among them, the plastid genome of S. lichuanensis is the largest in monocots and the second largest in angiosperms. Like other sequenced Alismatales plastid genomes, all three families generally encode the same 113 genes with similar structure and arrangement.
    [Show full text]
  • The Genetic Diversity of Two Contrasting Seagrass Species Using Microsatellite Analysis
    The genetic diversity of two contrasting seagrass species using microsatellite analysis Gina Bernadette Digiantonio Cedar Rapids, Iowa B.S. Biology, Drake University, 2014 A Thesis presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Master of Science Department of Environmental Sciences University of Virginia May 2017 i Abstract: The goal of this thesis was to examine the genetic diversity of two diverse seagrass species, Amphibolis antarctica and Halodule wrightii, using microsatellite markers. Microsatellite primers previously did not exist for Amphibolis antarctica and were developed as described in the first chapter. From 48 primer candidates, 14 polymorphic loci were arranged into a 3-panel multiplex. The microsatellite primers successfully amplified and distinguished multi-locus genotypes of samples from two test populations. Genotypic richness varied between populations at 0.26 and 0.85, and an FST = 0.318 indicated population differentiation has occurred. Contrary to previous study, genetic diversity was observed in A. antarctica meadows. Further studies will be able to use these primers for more extensive analysis of the dispersal and recruitment mechanisms, evolutionary history, and connectivity of A. antarctica. The second chapter utilized microsatellite primers in a genetic population study for edge-of-range populations of the tropical/subtropical seagrass Halodule wrightii. Sampling occurred at 15 sites representing the Florida gulf coast, Florida Bay, Indian River Lagoon, North Carolina, and Bermuda. Eleven microsatellites were amplified and allelic diversity, genotypic richness, population differentiation, gene flow, principal components analysis, and k-means population clustering analyses were performed. Diploid, triploid, and tetraploid genotypes were observed. Aneuploidy from somatic mutation may be a way for edge-of-range populations to achieve genetic diversity without sexual reproduction, as sites were highly clonal (R = 0.00 – 0.20).
    [Show full text]
  • The Responses of Amphibolis Griffithii to Reduced Light Availability Kathryn
    The responses of Amphibolis griffithii to reduced light availability A report on the outcomes of the SRFME Collaborative Research Project: Ecophysiology of benthic primary producers Final Report to SRFME / WAMSI and Geraldton Port Authority Kathryn McMahon and Paul Lavery Centre for Marine Ecosystems Research Edith Cowan University Report No. 2008-01 This report has been prepared to summarise the findings and management implications of the SRFME Collaborative Research Project: Ecophysiology of benthic primary producers. No portion of this material may be reproduced or communicated without the permission of ECU, unless the reproduction or communication is authorised by law. ECU 2008. The responses of Amphibolis griffithii to reduced light availability Final Report on the SRFME Collaborative Research Project: Ecophysiology of benthic primary producers. Kathryn McMahon and Paul Lavery Centre for Marine Ecosystems Research Edith Cowan University 100 Joondalup Dr, Joondalup, WA Australia Cite as: McMahon, K. and Lavery, P.S. (2007). The responses of Amphibolis griffithii to reduced light availability. Final Report on the Strategic Research Fund for the Marine Environment (SRFME) Collaborative Research Project: Ecophysiology of benthic primary producers. 148 p. Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia. iii iv ii. Table of Contents i. Preface..................................................................................................................................................................
    [Show full text]