Commutative Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Commutative Algebra commutative algebra Lectures delivered by Jacob Lurie Notes by Akhil Mathew Fall 2010, Harvard Last updated 12/1/2010 Contents Lecture 1 9/1 x1 Unique factorization 6 x2 Basic definitions 6 x3 Rings of holomorphic functions 7 Lecture 2 9/3 x1 R-modules 9 x2 Ideals 11 Lecture 3 9/8 x1 Localization 13 Lecture 4 9/10 x1 SpecR and the Zariski topology 17 Lecture 5 [Section] 9/12 x1 The ideal class group 21 x2 Dedekind domains 21 Lecture 6 9/13 x1 A basis for the Zariski topology 24 x2 Localization is exact 27 Lecture 7 9/15 x1 Hom and the tensor product 28 x2 Exactness 31 x3 Projective modules 32 Lecture 8 9/17 x1 Right-exactness of the tensor product 33 x2 Flatness 34 Lecture 9 [Section] 9/19 x1 Discrete valuation rings 36 1 Lecture 10 9/20 x1 The adjoint property 41 x2 Tensor products of algebras 42 x3 Integrality 43 Lecture 11 9/22 x1 Integrality, continued 44 x2 Integral closure 46 Lecture 12 9/24 x1 Valuation rings 48 x2 General remarks 50 Lecture 13 [Section] 9/26 x1 Nakayama's lemma 52 x2 Complexes 52 x3 Fitting ideals 54 x4 Examples 55 Lecture 14 9/27 x1 Valuation rings, continued 57 x2 Some useful tools 57 x3 Back to the goal 59 Lecture 15 9/29 x1 Noetherian rings and modules 62 x2 The basis theorem 64 Lecture 16 10/1 x1 More on noetherian rings 66 x2 Associated primes 67 x3 The case of one associated prime 70 Lecture 17 10/4 x1 A loose end 71 x2 Primary modules 71 x3 Primary decomposition 73 Lecture 18 10/6 x1 Unique factorization 76 x2 A ring-theoretic criterion 77 x3 Locally factorial domains 78 x4 The Picard group 78 Lecture 19 10/8 x1 Cartier divisors 81 x2 Weil divisors and Cartier divisors 82 Lecture 20 10/13 x1 Recap and a loose end 85 x2 Further remarks on Weil(R) and Cart(R) 86 x3 Discrete valuation rings and Dedekind rings 86 Lecture 21 10/15 x1 Artinian rings 89 x2 Reducedness 91 Lecture 22 10/18 x1 A loose end 94 x2 Total rings of fractions 95 x3 The image of M ! S−1M 96 x4 Serre's criterion 97 Lecture 23 10/20 x1 The Hilbert Nullstellensatz 99 x2 The normalization lemma 100 x3 Back to the Nullstellensatz 102 x4 Another version 103 Lecture 24 10/22 x1 Motivation 104 x2 Definition 104 x3 Properties of completions 105 Lecture 25 10/25 x1 Completions and flatness 109 x2 The Krull intersection theorem 110 x3 Hensel's lemma 111 Lecture 26 10/27 x1 Some definitions 113 x2 Introduction to dimension theory 114 Lecture 27 10/29 x1 Hilbert polynomials 117 x2 Back to dimension theory 119 Lecture 28 11/1 x1 Recap 121 x2 The dimension of an affine ring 122 x3 Dimension in general 123 x4 A topological characterization 123 Lecture 29 11/3 x1 Recap 125 x2 Another notion of dimension 126 x3 Yet another definition 127 Lecture 30 11/5 x1 Consequences of the notion of dimension 129 x2 Further remarks 130 x3 Change of rings 130 Lecture 31 11/8 x1 Regular local rings 133 x2 A bunch of examples 133 x3 Regular local rings look alike 134 x4 Regular local rings are domains 136 Lecture 32 11/10 x1 Regularity and algebraic geometry 136 x2 Derivations and K¨ahler differentials 138 x3 Relative differentials 139 x4 Examples 140 Lecture 33 11/12 x1 Formal properties of K¨ahlerdifferentials 140 x2 K¨ahlerdifferentials for fields 142 Lecture 34 11/15 x1 Continuation of field theory 145 x2 Regularity, smoothness, and K¨ahler differ- entials 146 Lecture 35 11/17 x1 Basic definitions in homological algebra 149 x2 Ext functors 150 x3 Injective modules 152 Lecture 36 11/19 x1 Depth 153 x2 Cohen-Macaulayness 156 Lecture 37 11/22 x1 Reduced rings 157 x2 Serre's criterion again 158 x3 Projective dimension 159 x4 Minimal projective resolutions 160 Lecture 38 11/24 x1 The Auslander-Buchsbaum formula 162 Lecture 39 11/29 x1 The projective dimension for noetherian local rings 165 x2 Global dimension and regularity 166 Lecture 40 12/1 x1 Applications of Serre's criterion 168 x2 Factoriality 169 Introduction Jacob Lurie taught a course (Math 221) on commutative algebra at Harvard in Fall 2010. These are my \live-TEXed" notes from the course. Conventions are as follows: Each lecture gets its own \chapter," and appears in the table of contents with the date. Some lectures are marked \section," which means that they were taken at a recitation session. The recitation sessions were taught by Jerry Wang. These notes were typeset using LATEX 2.0. I used vim to take the notes. I ran the Perl script latexmk in the background to keep the PDF output automatically updated throughout class. The article class was used for the notes as a whole. The LATEX package xymatrix was used to generate diagrams. Of course, these notes are not a faithful representation of the course, either in the mathematics itself or in the quotes, jokes, and philosophical musings; in particular, the errors are my fault. By the same token, any virtues in the notes are to be credited to the lecturer and not the scribe. Please email corrections to [email protected]. Lecture 1 Notes on commutative algebra Lecture 1 9/1 x1 Unique factorization Fermat's last theorem states that the equation xn + yn = zn has no nontrivial solutions in the integers. There is a long history, and there are many fake proofs. Factor this expression for n odd. Let ζ be a primitive nth root of unity; then we find (x + y)(x + ζy)(x + ζ2y) ::: (x + ζn−1y) = zn: We are tempted to ask how the product decomposition interacts with the power de- composition. The caveat is that though z is an integer, and x + y 2 Z, the others actually live in Z[ζ]. The problem is the ring Z[ζ]. While this is a legitmate ring, and we can talk about primes and things like that, and try to factor into primes, things go wrong. Over Z, factorization is unique up to permuting the factors. Over Z[ζ], you can still get a decomposition into irreducible factors, but in gneeral it is not unique. The ring does not always have unique factorization. In order to think about the failure of unique factorization, Dedekind introduced the theory of ideal numbers, nowp called ideals. Let us look at a failurep of unique factorization. Consider Z[ −5], i.e. complex numbers that look like a + −5b; a; b 2 Z. We can write p p 6 = 2 × 3 = (1 + −5)(1 − −5); you can convince yourself that these are two fundamentally different factorizations, even though all these are irreducible. So 6 admits a nonunique factorization into irreducibles. Dedekind was trying to get to the bottom of what was going on. Let us look at the problem. Ideally, if you have a prime factor of 6, and a decomposition 6 = ab, then that prime factor must divide a or b. This is not true, however.p There is a new idea. Imaginep an ideal number x such that x divides 2, 1 + −5. It doesn't live in the ring Z[ −5]; it can't, because theyp have no common factor. Yet we can talk aboutp divisibility. We know that 2 and 1 + −5 are divisible by x. For instance, 2 + 1 + −5 should be divisible by x. We're going to identify x with the set of all numbers divisible by x. This led to the introduction of an ideal. x2 Basic definitions 1.1 Definition. A commutative ring is a set R with an addition map R × R ! R and a multiplication map R × R ! R that satisfy all the usual identities. For instance, it should form a group under addition. E.g. x + y = y + x, and there are zeros and additive inverses. Actually, I will not write out all the properties. We do not review the definition of a subring, though Lurie did in the class. 6 Lecture 1 Notes on commutative algebra 1.2 Definition. Let R be a ring. An ideal in R is a subset I ⊂ R (\the set of all elements divisible by something, not necessarily in R") satisfying 1. 0 2 I 2. x; y 2 I implies x + y 2 I 3. x 2 I; y 2 R, then xy 2 I. 1.3 Example. If R is a ring, x 2 R, then the set of things divisible by x (i.e. xR) is an ideal. This is denoted (x). It is in fact the smallest ideal containing x. You can do some of the same things with ideals as you can do with numbers. 1.4 Definition. If I;J are ideals in a ring R, the product IJ is defined as the smallest ideal containing xy for all x 2 I; y 2 J. More explicitly, this is the set of all expressions X xiyi for xi 2 I; yi 2 J. 1.5 Example. We have (x)(y) = (xy). p p 1.6 Example. Let R = Z[ −5]. Is there a common factor of 2 and 1 + −5? No, we said. But the \common factor" is the ideal p (2; 1 + −5) generated by both of them. This is not trivial (1); this is easy to check (exercise?). However, it is also not principal.
Recommended publications
  • Solutions of Some Exercises
    Solutions of Some Exercises 1.3. n ∈ Let Specmax(R) and consider the homomorphism ϕ: R[x] → R/n,f→ f(0) + n. m ∩m n n ∈ The kernel of ϕ is a maximal ideal of R[x], and R = ,so Specrab(R). 2.5. (a)ThatS generates A means that for every element f ∈ A there exist finitely many elements f1,...,fm ∈ S and a polynomial F ∈ K[T1,...,Tm]inm indeterminates such that f = F (f1,...,fm). Let n P1,P2 ∈ K be points with f(P1) = f(P2). Then F (f1(P1),...,fm(P1)) = F (f1(P2),...,fn(P2)), so fi(P1) = fi(P2) for at least one i. This yields part (a). (b) Consider the polynomial ring B := K[x1,...,xn,y1,...,yn]in2n inde- terminates. Polynomials from B define functions Kn × Kn → K.For f ∈ K[x1,...,xn], define Δf := f(x1,...,xn) − f(y1,...,yn) ∈ B. n So for P1,P2 ∈ K we have Δf(P1,P2)=f(P1) − f(P2). Consider the ideal | ∈ ⊆ I := (Δf f A)B B. G. Kemper, A Course in Commutative Algebra, Graduate Texts 217 in Mathematics 256, DOI 10.1007/978-3-642-03545-6, c Springer-Verlag Berlin Heidelberg 2011 218 Solutions of exercises for Chapter 5 By Hilbert’s basis theorem (Corollary 2.13), B is Noetherian, so by Theorem 2.9 there exist f1,...,fm ∈ A such that I =(Δf1,...,Δfm)B . We claim that S := {f1,...,fm} is A-separating. For showing this, take n two points P1 and P2 in K and assume that there exists f ∈ A with f(P1) = f(P2).
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Integral Closures of Ideals and Rings Irena Swanson
    Integral closures of ideals and rings Irena Swanson ICTP, Trieste School on Local Rings and Local Study of Algebraic Varieties 31 May–4 June 2010 I assume some background from Atiyah–MacDonald [2] (especially the parts on Noetherian rings, primary decomposition of ideals, ring spectra, Hilbert’s Basis Theorem, completions). In the first lecture I will present the basics of integral closure with very few proofs; the proofs can be found either in Atiyah–MacDonald [2] or in Huneke–Swanson [13]. Much of the rest of the material can be found in Huneke–Swanson [13], but the lectures contain also more recent material. Table of contents: Section 1: Integral closure of rings and ideals 1 Section 2: Integral closure of rings 8 Section 3: Valuation rings, Krull rings, and Rees valuations 13 Section 4: Rees algebras and integral closure 19 Section 5: Computation of integral closure 24 Bibliography 28 1 Integral closure of rings and ideals (How it arises, monomial ideals and algebras) Integral closure of a ring in an overring is a generalization of the notion of the algebraic closure of a field in an overfield: Definition 1.1 Let R be a ring and S an R-algebra containing R. An element x S is ∈ said to be integral over R if there exists an integer n and elements r1,...,rn in R such that n n 1 x + r1x − + + rn 1x + rn =0. ··· − This equation is called an equation of integral dependence of x over R (of degree n). The set of all elements of S that are integral over R is called the integral closure of R in S.
    [Show full text]
  • A Brief History of Ring Theory
    A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1.
    [Show full text]
  • Finiteness and Homological Conditions in Commutative Group Rings
    XXXX, 1–15 © De Gruyter YYYY Finiteness and Homological Conditions in Commutative Group Rings Sarah Glaz and Ryan Schwarz Abstract. This article surveys the known results for several related families of ring properties in the context of commutative group rings. These properties include finiteness conditions, homological conditions, and conditions that connect these two families. We briefly survey the classical results, highlight the recent progress, and point out open problems and possible future directions of investigation in these areas. Keywords. Group rings, Noetherian rings, coherent rings, finite conductor rings, weak global dimension, von Neumann regular rings, semihereditary rings, Prüfer conditions, zero divisors, PP rings, PF rings. AMS classification. 13B99, 13D05, 13E99, 13F05. In memory of James Brewer with respect and affection 1 Introduction Let R be a commutative ring with identity and let G be an abelian group written multi- plicatively. The group ring RG is the free R module on the elements of G with multi- P plication induced by G. An element x in RG has a unique expression: x = g2G xgg, where xg 2 R and all but finitely many xg are zero. With addition, multiplication, and scalar multiplication by elements of R defined analogously to the standard polynomial operations, RG becomes a commutative R algebra. Properties of the group ring RG, particularly in conjunction with questions of de- scent and ascent of these properties between R and RG, have been of interest for at least 70 years. In his book Commutative Semigroup Rings [14], Gilmer traces the be- ginning of a systematic interest in the nature of RG, for general rings R and groups G, to Higman’s article [28] published in 1940.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
    CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e.
    [Show full text]
  • NOTES in COMMUTATIVE ALGEBRA: PART 1 1. Results/Definitions Of
    NOTES IN COMMUTATIVE ALGEBRA: PART 1 KELLER VANDEBOGERT 1. Results/Definitions of Ring Theory It is in this section that a collection of standard results and definitions in commutative ring theory will be presented. For the rest of this paper, any ring R will be assumed commutative with identity. We shall also use "=" and "∼=" (isomorphism) interchangeably, where the context should make the meaning clear. 1.1. The Basics. Definition 1.1. A maximal ideal is any proper ideal that is not con- tained in any strictly larger proper ideal. The set of maximal ideals of a ring R is denoted m-Spec(R). Definition 1.2. A prime ideal p is such that for any a, b 2 R, ab 2 p implies that a or b 2 p. The set of prime ideals of R is denoted Spec(R). p Definition 1.3. The radical of an ideal I, denoted I, is the set of a 2 R such that an 2 I for some positive integer n. Definition 1.4. A primary ideal p is an ideal such that if ab 2 p and a2 = p, then bn 2 p for some positive integer n. In particular, any maximal ideal is prime, and the radical of a pri- mary ideal is prime. Date: September 3, 2017. 1 2 KELLER VANDEBOGERT Definition 1.5. The notation (R; m; k) shall denote the local ring R which has unique maximal ideal m and residue field k := R=m. Example 1.6. Consider the set of smooth functions on a manifold M.
    [Show full text]
  • Wheels — on Division by Zero Jesper Carlstr¨Om
    ISSN: 1401-5617 Wheels | On Division by Zero Jesper Carlstr¨om Research Reports in Mathematics Number 11, 2001 Department of Mathematics Stockholm University Electronic versions of this document are available at http://www.matematik.su.se/reports/2001/11 Date of publication: September 10, 2001 2000 Mathematics Subject Classification: Primary 16Y99, Secondary 13B30, 13P99, 03F65, 08A70. Keywords: fractions, quotients, localization. Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden Electronic addresses: http://www.matematik.su.se [email protected] Wheels | On Division by Zero Jesper Carlstr¨om Department of Mathematics Stockholm University http://www.matematik.su.se/~jesper/ Filosofie licentiatavhandling Abstract We show how to extend any commutative ring (or semiring) so that di- vision by any element, including 0, is in a sense possible. The resulting structure is what is called a wheel. Wheels are similar to rings, but 0x = 0 does not hold in general; the subset fx j 0x = 0g of any wheel is a com- mutative ring (or semiring) and any commutative ring (or semiring) with identity can be described as such a subset of a wheel. The main goal of this paper is to show that the given axioms for wheels are natural and to clarify how valid identities for wheels relate to valid identities for commutative rings and semirings. Contents 1 Introduction 3 1.1 Why invent the wheel? . 3 1.2 A sketch . 4 2 Involution-monoids 7 2.1 Definitions and examples . 8 2.2 The construction of involution-monoids from commutative monoids 9 2.3 Insertion of the parent monoid .
    [Show full text]
  • Commutative Algebra with a View Toward Algebraic Geometry, by David Eisenbud, Graduate Texts in Math., Vol
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number 3, July 1996 Commutative algebra with a view toward algebraic geometry, by David Eisenbud, Graduate Texts in Math., vol. 150, Springer-Verlag, Berlin and New York, 1995, xvi+785 pp., $69.50, ISBN 0-387-94268-8 In the title of a story [To] written in 1886, Tolstoy asks, “How Much Land Does a Man Need?” and answers the question: just enough to be buried in. One may ask equally well, “How much algebra does an algebraic geometer—man or woman—need?” and prospective algebraic geometers have been known to worry that Tolstoy’s answer remains accurate. Authors of textbooks have at times given vastly different answers, albeit with a general tendency over time to be monotonely increasing in what they expect will be useful. In crudely quantitative terms, one has at one extreme the elegant minimalist introduction of Atiyah and Macdonald [AM] at 128 pages, then Nagata [Na] at 234 pages, Matsumura [Ma] at 316 pages, Zariski and Samuel [ZS] at 743 pages, and the present work at 785 pages. I suspect that most of my fellow algebraic geometers, as a practical matter, would answer my question by saying, “Enough to read Hartshorne.” Hartshorne’s Algebraic geometry [Ha], appearing in 1977, rapidly became the central text from which recent generations of algebraic geometers have learned the essential tools of their subject in the aftermath of the “French revolution” inspired by the work of Grothendieck and Serre (Principles of algebraic geometry by Griffiths and Har- ris [GH] plays a comparable role on the geometric side for the infusion of com- plex analytic techniques entering algebraic geometry at about the same period).
    [Show full text]
  • NOTES on CHARACTERISTIC P COMMUTATIVE ALGEBRA MARCH 3RD, 2017
    NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA MARCH 3RD, 2017 KARL SCHWEDE Proposition 0.1. Suppose that R ⊆ S is an inclusion of Noetherian domains such that S ∼= R ⊕ M as R-modules. Then if S is strongly F -regular, so is R. e Proof. Choose 0 6= c 2 R. Since S is strongly F -regular, there exists a φ : F∗ S −! S such e ∼ that φ(F∗ c) = 1. Let ρ : S −! R be such that ρ(1S) = 1R (this exists since S = R ⊕ M). e e φ ρ e Then the composition F∗ R ⊂ F∗ S −! S −! R sends F∗ c to 1 which proves that R is strongly F -regular. Remark 0.2. The above is an open problem in characteristic zero for KLT singularities. Corollary 0.3. A direct summand of a regular ring in characteristic p > 0 is Cohen- Macaulay. The above is obvious if we are taking a finite local inclusion of local rings of the same dimension. It is not so obvious otherwise (indeed, it has perhaps only recently been discovered how to show that direct summands of regular rings in mixed characteristic are Cohen-Macaulay). Proposition 0.4. If R is an F -finite ring such that Rm is strongly F -regular for each maximal m 2 Spec R, then R is strongly F -regular. Proof. Obviously strongly F -regular rings are F -split (take c = 1) and so R is F -split. By e post composing with Frobenius splittings, if we have a map φ : F∗ R −! R which sends e F∗ c 7! 1, then we can replace e by a larger e.
    [Show full text]
  • Rings of Differential Operators and Étale Homomorphisms G´Isli Másson
    Rings of differential operators and ´etale homomorphisms by G´ısli M´asson B.S., University of Iceland (1985) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1991 c Massachusetts Institute of Technology 1991 Signature of Author .................................................. Department of Mathematics May 2, 1991 Certified by .......................................................... Michael Artin Professor of Mathematics Thesis Supervisor Accepted by .......................................................... Sigurdur Helgason Chairman, Departmental Graduate Committee Department of Mathematics Rings of differential operators and ´etale homomorphisms by G´ısli M´asson Submitted to the Department of Mathematics on May 2, 1991, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Rings of differential operators over rings of krull dimension 1 were studied by Musson, Smith and Stafford, and Muhasky. In particular it was proved that if k is a field of characteristic zero, and A is a finitely generated reduced k-algebra, then (i) D(A), the ring of differential operators on A, has a minimal essential twosided ideal J , (ii) A contains a minimal essential left D(A)-submodule, J,and (iii) the algebras C(A):=A/J and H(A):=D(A)/J are finite dimensional vector spaces over k. In this case the algebras C(A)andH(A) were studied by Brown and Smith. We use ´etale homomorphisms to obtain similar results in a somewhat more general setting. While an example of Bernstein, Gelfand and Gelfand shows that the statements above do not hold for all reduced finitely generated k-algebras of higher krull dimension, we present sufficient conditions on commutative, noetherian and reduced rings so that analogues of the ideal J and module J can be constructed, and for which statements similar to (i) and (ii) hold.
    [Show full text]