Lymphoma Cells I-Binding Factor 1/Blimp-1 Transcription in PU.1

Total Page:16

File Type:pdf, Size:1020Kb

Lymphoma Cells I-Binding Factor 1/Blimp-1 Transcription in PU.1 PU.1 Regulates Positive Regulatory Domain I-Binding Factor 1/Blimp-1 Transcription in Lymphoma Cells This information is current as Shruti Desai, Sophia C. E. Bolick, Michelle Maurin and of September 27, 2021. Kenneth L. Wright J Immunol 2009; 183:5778-5787; Prepublished online 14 October 2009; doi: 10.4049/jimmunol.0901120 http://www.jimmunol.org/content/183/9/5778 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2009/10/13/jimmunol.090112 Material 0.DC1 http://www.jimmunol.org/ References This article cites 48 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/183/9/5778.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology PU.1 Regulates Positive Regulatory Domain I-Binding Factor 1/Blimp-1 Transcription in Lymphoma Cells1 Shruti Desai,2*† Sophia C. E. Bolick,2,3*§ Michelle Maurin,* and Kenneth L. Wright4*†‡§ The human positive regulatory domain I-binding factor 1 (PRDI-BF1) and its murine homolog Blimp-1 promote differentiation of mature B cells into Ab-secreting plasma cells. In contrast, ectopic expression of PRDI-BF1 in lymphoma cells can lead to inhibition of proliferation or apoptosis. However, little is currently known about the regulation of PRDM1, the gene encoding PRDI-BF1. This report establishes that in lymphoma cells stimulation through the BCR rapidly induces endogenous PRDM1 at the level of transcription with minor changes in mRNA stability. The induced PRDM1-encoded protein localizes to its target genes in vivo and suppresses their expression. In vivo genomic footprinting of the PRDM1 promoter in unstimulated lymphoma and myeloma cells reveals multiple common in vivo occupied elements throughout the promoter. Further functional and structural analysis of the promoter reveals that the promoter is preloaded and poised for activation in the B cell lines. The transcription Downloaded from factor PU.1 is shown to be required for the BCR-induced expression of PRDM1 in lymphoma cells and in PU.1-positive myeloma cells. Activation of PRDM1 is associated with loss of the corepressor transducin-like enhancer of split 4 from the PU.1 complex. These findings indicate that PRDM1 is poised for activation in lymphoma cells and therefore may be a potential therapeutic target to inhibit lymphoma cell proliferation and survival. The Journal of Immunology, 2009, 183: 5778–5787. he positive regulatory domain I-binding factor-1 (PRDI- Anti-IgM cross-linking of the BCR has been reported in multi- http://www.jimmunol.org/ BF1),5 encoded by the PRDM1 gene, was originally ple studies to induce apoptosis in lymphoma cells (10–14). This T found to specifically bind the IFN-␤ promoter and sup- response has been correlated with decreased levels of c-myc (6). press IFN-␤ transcription following viral induction (1). Blimp-1, Inducing PRDI-BF1/Blimp-1 expression in lymphoma cells with the murine homolog of PRDI-BF1, was originally described by histone deacetylase inhibitors also decreased expression of the Turner et al. (2) as a transcription factor that could induce the downstream targets c-myc and BSAP (15). More specifically, in- differentiation of B cells. PRDI-BF1/Blimp-1 has since been found troduction of PRDI-BF1/Blimp-1 into lymphoma cells can induce to be required for the differentiation of a B cell to a plasma cell (3). apoptosis, suggesting PRDI-BF1 may be an important mediator of During the differentiation of mature B cells to plasma cells, PRDI- the anti-IgM-mediated apoptotic response (16, 17). However, no BF1 represses multiple genes involved in maintaining the B cell direct link between expression of PRDI-BF1/Blimp-1- and anti- by guest on September 27, 2021 phenotype and in maintaining cellular proliferation, such as CIITA IgM-mediated BCR activation has been described. (4, 5), c-myc (6), and B cell lineage-specific activator protein Recently, PRDM1 expression has been detected in a subset of (BSAP; Ref. 7). Microarray studies have outlined the PRDI-BF1 diffuse large B cell lymphomas (18–20). However, inactivating repression profile and led to the identification of two additional mutations in the PRDM1 coding sequence were described, indi- direct targets, Spi-B and Id3 (8). Additionally, expression of the cating a potential tumor suppressor role for this gene (19, 20). PRDM1 gene has recently been linked to cellular stress and the Similarly, proliferating myeloma cells and myeloma cell lines unfolded protein response in B cells (9). abundantly express the truncated PRDI-BF1 isoform, PRDI-BF1␤, which has impaired function (21). Additionally, Borson et al. (22) demonstrated PRDM1 expression in B cells isolated from my- *H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; †Cancer Biology Ph.D. Program, ‡Department of Oncologic Sciences, and §Department of eloma patients, whereas normal donors lack expression. The mu- Molecular Medicine, University of South Florida, Tampa, FL 33612 tation status of PRDM1 in these myeloma-derived B cells is as yet Received for publication April 7, 2009. Accepted for publication September 3, 2009. unknown. Together, these findings indicate that PRDI-BF1/ The costs of publication of this article were defrayed in part by the payment of page Blimp-1 may be important to the pathology of various hemopoietic charges. This article must therefore be hereby marked advertisement in accordance malignancies, including lymphoma. with 18 U.S.C. Section 1734 solely to indicate this fact. Very little is known as to the regulation of PRDM1 expression. 1 This work was supported by National Institutes of Health Grants CA114504 and PRDM1 CA080990. Our data now demonstrate that is regulated primarily at the level of transcription both in myeloma cells and in lymphoma 2 These authors contributed equally to the work presented in this report. cells stimulated by cross-linking of the BCR. BCR stimulation 3 Current address: National Institute of Environmental Health Sciences, Laboratory of Molecular Carcinogenesis, 111 TW Alexander Drive, Room C310, Research Triangle leads to rapid increases in newly transcribed PRDM1 RNA levels, Park, NC 27709. whereas mRNA stability is unchanged. Using promoter deletion 4 Address correspondence and reprint requests to Dr. Kenneth L. Wright, H. Lee constructs, we demonstrate several regions of activation in the Moffitt Cancer Center, 12902 Magnolia Drive, MRC-4 East, Tampa, FL 33612. PRDM1 promoter in both lymphoma and myeloma cells. In vivo E-mail address: ken.wright@moffitt.org genomic footprinting demonstrates multiple protein-DNA interac- 5 Abbreviations used in this paper: PRDI-BF1, positive regulatory domain I-binding factor 1; BSAP, B cell lineage-specific activator protein; FWD, forward; REV, re- tions in both lymphoma and myeloma cells. Further analysis of verse; siRNA, small interfering RNA; ChIP, chromatin immunoprecipitation; UTR, these interactions reveals PU.1 binding is functionally important untranslated region; TLE4, transducin-like enhancer of split 4; CBP, CREB-binding for promoter activity in stimulated lymphoma cells. These findings protein; BCL6, B cell lymphoma 6. demonstrate the PRDM1 promoter is poised for rapid activation in Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 lymphoma cells, which suggests that inducing PRDM1 expression www.jimmunol.org/cgi/doi/10.4049/jimmunol.0901120 The Journal of Immunology 5779 in lymphoma cells may be a viable target to inhibit lymphoma Transfections and luciferase assays progression. Cells were transfected by electroporation using the Gene Pulser II (Bio- Rad). Cells (1 ϫ 107) were pulsed with 250 V at a capacitance of 1070 ␮F. Materials and Methods Transfections for luciferase assays were done with 10 ␮g of luciferase reporter construct and 50 ng of the internal control plasmid pRL-TK. Fire- Cell lines and reagents fly luciferase activity was normalized to Renilla luciferase activity in all The CA46 EBV-negative Burkitt’s lymphoma and RPMI8226 multiple experiments. For small interfering RNA (siRNA) knockdown experiments myeloma cell lines were maintained in RPMI (Invitrogen) supplemented in CA46, cells were transfected with 3 ␮g of control nontargeting siRNA with 10% FBS (HyClone), and 1% penicillin/streptomycin (Invitrogen). or PU.1 siRNA (Dharmacon) for 24 h. Live cells were separated using a Goat anti-human IgM Ab (Southern Biotechnology) was used at 10 ␮g/ml. Ficoll gradient and treated with 10 ␮g of anti-IgM for 24 h. For siRNA Actinomycin D (Sigma-Aldrich) was used at 10 ␮g/ml. knockdown experiments in RPMI8226, cells were transfected with 2 ␮gof control nontargeting siRNA or PU.1 siRNA (Dharmacon) for 48 h. B cell isolation Dimethyl sulfate in vivo footprinting
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • A PAX5-OCT4-PRDM1 Developmental Switch Specifies Human Primordial Germ Cells
    A PAX5-OCT4-PRDM1 Developmental Switch Specifies Human Primordial Germ Cells Fang Fang1,2, Benjamin Angulo1,2, Ninuo Xia1,2, Meena Sukhwani3, Zhengyuan Wang4, Charles C Carey5, Aurélien Mazurie5, Jun Cui1,2, Royce Wilkinson5, Blake Wiedenheft5, Naoko Irie6, M. Azim Surani6, Kyle E Orwig3, Renee A Reijo Pera1,2 1Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA 2Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA 3Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine; Magee Women’s Research Institute, Pittsburgh, PA, 15213, USA 4Genomic Medicine Division, Hematology Branch, NHLBI/NIH, MD 20850, USA 5Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA. 6Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK. Correspondence should be addressed to F.F. (e-mail: [email protected]) 1 Abstract Dysregulation of genetic pathways during human germ cell development leads to infertility. Here, we analyzed bona fide human primordial germ cells (hPGCs) to probe the developmental genetics of human germ cell specification and differentiation. We examined distribution of OCT4 occupancy in hPGCs relative to human embryonic stem cells (hESCs). We demonstrate that development, from pluripotent stem cells to germ cells, is driven by switching partners with OCT4 from SOX2 to PAX5 and PRDM1. Gain- and loss-of-function studies revealed that PAX5 encodes a critical regulator of hPGC development. Moreover, analysis of epistasis indicates that PAX5 acts upstream of OCT4 and PRDM1. The PAX5-OCT4-PRDM1 proteins form a core transcriptional network that activates germline and represses somatic programs during human germ cell differentiation.
    [Show full text]
  • Cytoplasmic Mineralocorticoid Receptor Expression Predicts
    ANTICANCER RESEARCH 39 : 5879-5890 (2019) doi:10.21873/anticanres.13792 Cytoplasmic Mineralocorticoid Receptor Expression Predicts Dismal Local Relapse-free Survival in Non-triple-negative Breast Cancer ANNIINA JÄÄSKELÄINEN 1,2 , ARJA JUKKOLA 3, KIRSI-MARIA HAAPASAARI 2, PÄIVI AUVINEN 4, YLERMI SOINI 2,5 and PEETER KARIHTALA 1 1Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; 2Department of Pathology, Medical Research Center, Oulu University Hospital, Oulu, Finland; 3Department of Oncology, Tampere University Hospital, Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland; 4Department of Oncology and Cancer Center, Kuopio University Hospital, and Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; 5Department of Pathology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland Abstract. Background/Aim: The aim of the study was to predictor of local recurrence in non-metastatic breast cancer investigate the prognostic role of androgen receptor (AR), patients with non-TNBC tumour phenotype. mineralocorticoid receptor (MR) and glucocorticoid receptor β ( GR β) expression in HER-2 negative breast cancer The expression of oestrogen (ER) and progesterone receptors patients. Materials and Methods: The study population (PR) and amplification of human epidermal growth factor (n=152) was enriched with triple-negative breast cancers receptor 2 (HER2) are important prognostic and predictive (TNBC) (n=96; 63.2%). The median follow-up time was 100 factors in breast cancer (1). Moreover, androgen receptor months. AR, MR and GR β immunocytochemical staining was (AR), mineralocorticoid receptor (MR) and glucocorticoid compared with that of epithelial-mesenchymal transition receptor β ( GR β) belong to the nuclear receptor superfamily (EMT) markers (vimentin, SIP1, ZEB1).
    [Show full text]
  • Recombinant PRDM1 Protein
    Recombinant PRDM1 protein Catalog No: 81277, 81977 Quantity: 20, 1000 µg Expressed In: Baculovirus Concentration: 0.4 µg/µl Source: Human Buffer Contents: Recombinant PRDM1 protein is supplied in 25 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 10% glycerol, 0.04% Triton X-100, 0.5 mM TCEP. Background: PRDM1 (PR/SET Domain 1), also called as Beta-Interferon Gene Positive-Regulatory Domain I Binding Factor, or BLIMP1, is a transcription factor that acts as a repressor of beta-interferon gene expression. It mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. PRDM1 plays a role in the development, retention and long-term establishment of adaptive and innate tissue- resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection (By similarity). Protein Details: Recombinant PRDM1 was expressed in a baculovirus expression system as the full length protein (accession number NP_001189.2) with an N-terminal FLAG tag. The molecular weight of PRDM1 is 93 kDa. Application Notes: This product was manufactured as described in Protein Details. Recombinant PRDM1 protein gel Where possible, Active Motif has developed functional or activity assays for 9% SDS-PAGE gel with Coomassie recombinant proteins.
    [Show full text]
  • Computational Analysis of the Mesenchymal Signature Landscape in Gliomas Orieta Celiku1†, Anita Tandle1†, Joon-Yong Chung2, Stephen M
    Celiku et al. BMC Medical Genomics (2017) 10:13 DOI 10.1186/s12920-017-0252-7 RESEARCH ARTICLE Open Access Computational analysis of the mesenchymal signature landscape in gliomas Orieta Celiku1†, Anita Tandle1†, Joon-Yong Chung2, Stephen M. Hewitt2, Kevin Camphausen1 and Uma Shankavaram1* Abstract Background: Epithelial to mesenchymal transition, and mimicking processes, contribute to cancer invasion and metastasis, and are known to be responsible for resistance to various therapeutic agents in many cancers. While a number of studies have proposed molecular signatures that characterize the spectrum of such transition, more work is needed to understand how the mesenchymal signature (MS) is regulated in non-epithelial cancers like gliomas, to identify markers with the most prognostic significance, and potential for therapeutic targeting. Results: Computational analysis of 275 glioma samples from “TheCancerGenomeAtlas” was used to identify the regulatory changes between low grade gliomas with little expression of MS, and high grade glioblastomas with high expression of MS. TF (transcription factor)-gene regulatory networks were constructed for each of the cohorts, and 5 major pathways and 118 transcription factors were identified as involved in the differential regulation of the networks. The most significant pathway - Extracellular matrix organization - was further analyzed for prognostic relevance. A 20-gene signature was identified as having prognostic significance (HR (hazard ratio) 3.2, 95% CI (confidence interval) = 1.53–8.33), after controlling for known prognostic factors (age, and glioma grade). The signature’ssignificancewasvalidatedinanindependentdataset.TheputativestemcellmarkerCD44 was biologically validated in glioma cell lines and brain tissue samples. Conclusions: Our results suggest that the differences between low grade gliomas and high grade glioblastoma are associated with differential expression of the signature genes, raising the possibility that targeting these genes might prolong survival in glioma patients.
    [Show full text]
  • KLF4 Induces Mesenchymal-Epithelial Transition (MET)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457621; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. KLF4 induces Mesenchymal - Epithelial Transition (MET) by suppressing multiple EMT-inducing transcription factors Running title: KLF4 induces mesenchymal-epithelial transition (MET) Ayalur Raghu Subbalakshmi1, Sarthak Sahoo1, Isabelle McMullen2, Aaditya Narayan Saxena3, Sudhanva Kalasapura Venugopal, Jason Somarelli2,4*, Mohit Kumar Jolly1* 1 Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 2 Department of Medicine, Duke University, Durham, NC, United States 3 Department of Biotechnology, Indian Institute of Technology, Kharagpur, India 4 Duke Cancer Institute, Duke University, Durham, NC, United States Authors to whom correspondence to be addressed: [email protected] (J.A.S), [email protected] (M.K.J.) Abstract Epithelial-Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs) – TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, FOXC2 – are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2, GRHL1/2). Here, using mechanism-based mathematical modeling, we show that the transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote phenotypic shift toward a more epithelial state, an observation suggested by negative correlation of KLF4 with EMT-TFs and with transcriptomic based EMT scoring metrics in cancer cell lines.
    [Show full text]
  • Testicular Orphan Receptor 4 (TR4) Is a Marker for Metastasis and Poor Prognosis in Non-Small Cell Lung Cancer That Drives the EMT Phenotype
    Lung Cancer 89 (2015) 320–328 Contents lists available at ScienceDirect Lung Cancer journal homepage: www.elsevier.com/locate/lungcan Testicular orphan receptor 4 (TR4) is a marker for metastasis and poor prognosis in non-small cell lung cancer that drives the EMT phenotype Liyi Zhang a,1, Jianzhi Zhang a,1, Yuanyuan Ma a,1, Jinfeng Chen a, Bin Dong b, Wei Zhao c, Xing Wang a, Qinfeng Zheng a, Fang Fang a, Yue Yang a,∗ a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Beijing, People’s Republic of China b Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China c Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China article info abstract Article history: Objectives: Aberrant expression of testicular orphan receptor 4 (TR4) has been shown to regulate biological Received 11 December 2014 processes near solid tumors. However, the role of TR4 in non-small cell lung cancer (NSCLC) patient Received in revised form 30 May 2015 prognosis and the development of NSCLC cancer cells are unclear. Accepted 11 June 2015 Methods: Immunohistochemical analysis was used to evaluate the correlation between TR4 expression and clinicopathological characteristics in 291 cases of NSCLC specimens. A knockdown and overex- Keywords: pression of TR4 was performed to assess the role of TR4. Transwell and colony formation assays were Testicular orphan receptor 4 completed to investigate the metastatic and proliferative abilities. Quantitative real-time PCR, Western NSCLC Prognosis blotting and immunofluorescence staining were carried out to analyze the epithelial-to-mesenchymal Metastasis transition (EMT) phenotype.
    [Show full text]
  • GATA2 Regulates Mast Cell Identity and Responsiveness to Antigenic Stimulation by Promoting Chromatin Remodeling at Super- Enhancers
    ARTICLE https://doi.org/10.1038/s41467-020-20766-0 OPEN GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super- enhancers Yapeng Li1, Junfeng Gao 1, Mohammad Kamran1, Laura Harmacek2, Thomas Danhorn 2, Sonia M. Leach1,2, ✉ Brian P. O’Connor2, James R. Hagman 1,3 & Hua Huang 1,3 1234567890():,; Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage- determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes. 1 Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA. 2 Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA. 3 Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, ✉ CO 80045, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:494 | https://doi.org/10.1038/s41467-020-20766-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20766-0 ast cells (MCs) are critical effectors in immunity that at key MC genes.
    [Show full text]
  • Pan-HDAC Inhibitors Restore PRDM1 Response to IL21 in CREBBP
    Published OnlineFirst October 22, 2018; DOI: 10.1158/1078-0432.CCR-18-1153 Cancer Therapy: Preclinical Clinical Cancer Research Pan-HDAC Inhibitors Restore PRDM1 Response to IL21 in CREBBP-Mutated Follicular Lymphoma Fabienne Desmots1,2, Mikael€ Roussel1,2,Celine Pangault1,2, Francisco Llamas-Gutierrez3,Cedric Pastoret1,2, Eric Guiheneuf2,Jer ome^ Le Priol2, Valerie Camara-Clayette4, Gersende Caron1,2, Catherine Henry5, Marc-Antoine Belaud-Rotureau5, Pascal Godmer6, Thierry Lamy1,7, Fabrice Jardin8, Karin Tarte1,9, Vincent Ribrag4, and Thierry Fest1,2 Abstract Purpose: Follicular lymphoma arises from a germinal cen- is enriched in the potent inducer of PRDM1 and IL21, highly ter B-cell proliferation supported by a bidirectional crosstalk produced by Tfhs. In follicular lymphoma carrying CREBBP with tumor microenvironment, in particular with follicular loss-of-function mutations, we found a lack of IL21-mediated helper T cells (Tfh). We explored the relation that exists PRDM1 response associated with an abnormal increased between the differentiation arrest of follicular lymphoma cells enrichment of the BCL6 protein repressor in PRDM1 gene. and loss-of-function of CREBBP acetyltransferase. Moreover, in these follicular lymphoma cells, pan-HDAC Experimental Design: The study used human primary cells inhibitor, vorinostat, restored their PRDM1 response to IL21 obtained from either follicular lymphoma tumors character- by lowering BCL6 bound to PRDM1. This finding was rein- ized for somatic mutations, or inflamed tonsils for normal forced by our exploration of patients with follicular lympho- germinal center B cells. Transcriptome and functional analyses ma treated with another pan-HDAC inhibitor. Patients were done to decipher the B- and T-cell crosstalk.
    [Show full text]
  • Alterations in Gene Expression During Sexual Differentiation in Androgen Receptor Knockout Mice Induced by Environmental Endocrine Disruptors
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 399-404, 2015 Alterations in gene expression during sexual differentiation in androgen receptor knockout mice induced by environmental endocrine disruptors DEHONG LIU1,2, LIPING SHEN1, YONGLIN TAO3, YING KUANG4, LEI CAI4, DAN WANG5, MEIDUO HE3, XUEBO TONG1, SHUGUANG ZHOU1, JIE SUN1, CHENCHEN SHI3, CHUNXIAO WANG1 and YI WU1 1Department of Pediatric Surgery, Ruijin Hospital, 2Department of Pediatric Surgery, Ruijin Hospital North, 3Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025; 4Shanghai Research Center for Model Organisms, Shanghai 201203; 5School of Life Science, Shanghai University, Shanghai 200444, P.R. China Received April 4, 2014; Accepted November 13, 2014 DOI: 10.3892/ijmm.2014.2015 Abstract. In the present study, we aimed to explore the effect heterozygous and wild-type male mice offspring during sexual of environmental endocrine disruptors (EEDs) on sexual differentiation, but has no effect on homozygous offspring. differentiation in androgen receptor (AR)-/-, AR+/- and AR+/+ Therefore, EEDs play an important role during the third stage male mice. By using a Cre-loxP conditional knockout strategy, of sexual differentiation. we generated AR knockout mice. By mating flox-AR female mice with AR-Cre male mice, the offspring male mice which Introduction were produced were examined. Mice not subjected to any type of intervention were used as the controls. Furthermore, male Endocrine disruption has become a critical issue in environ- mice of different genotypes were selected and further divided mental science, particularly after the endocrine-disrupting into subgroups as follows: the control group, bisphenol A (BPA) chemical pollution accident in Taiwan which attracted public group and the D binding protein (DBP) group.
    [Show full text]
  • Cellular Differentiation Regulator BLIMP1 Induces Epstein-Barr Virus Lytic
    JVI Accepts, published online ahead of print on 19 November 2014 J. Virol. doi:10.1128/JVI.02781-14 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 2 Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic 3 reactivation in epithelial and B cells by activating transcription from both the 4 R and Z promoters 5 6 Jessica A. Reusch1, Dhananjay M. Nawandar1, Kenneth L. Wright2, Shannon C. Kenney1,3, and 7 Janet E. Mertz1# 8 9 1McArdle Laboratory for Cancer Research and 3Department of Medicine, University of 10 Wisconsin School of Medicine and Public Health, Madison, WI 53705; 2Department of 11 Immunology, Moffitt Cancer Center, Tampa, FL, 33612 12 13 Running Title: BLIMP1 induces EBV reactivation via both Rp and Zp 14 Key words: EBV latent-lytic switch, EBV-positive epithelial cells, PRDI-BF1, PRDM1, EBV R 15 promoter 16 17 #Corresponding author. Phone: (608) 262-2383; Fax: (608) 262-2824; E-mail: 18 [email protected] 19 20 Abstract word count: 243 21 Text word count: 12,284 1 22 Abstract: EBV maintains a life-long latent infection within a subset of its host’s memory B cells, 23 while lytic EBV replication takes place in plasma cells and differentiated epithelial cells. 24 Therefore, cellular transcription factors such as BLIMP1 that are key mediators of differentiation 25 likely contribute to the EBV latent-to-lytic switch. Previous reports showed that ectopic BLIMP1 26 expression induces reactivation in some EBV(+) B-cell lines and transcription from Zp, with all 27 Z(+) cells in oral hairy leukoplakia being BLIMP1(+).
    [Show full text]
  • 141 Are Regulated by a FOXP3-KAT2B Axis and Associated
    Zhang et al. Breast Cancer Research (2017) 19:73 DOI 10.1186/s13058-017-0858-x RESEARCH ARTICLE Open Access MicroRNA-200c and microRNA- 141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer Guangxin Zhang1,2, Wei Zhang3, Bingjin Li1, Erica Stringer-Reasor4, Chengjing Chu5, Liyan Sun3, Sejong Bae6, Dongquan Chen6, Shi Wei7, Kenneth Jiao8, Wei-Hsiung Yang9, Ranji Cui1*, Runhua Liu2,8* and Lizhong Wang2,8* Abstract Background: Members of the microRNA (miR)-200 family, which are involved in tumor metastasis, have potential as cancer biomarkers, but their regulatory mechanisms remain elusive. Methods: We investigated FOXP3-inducible breast cancer cells, Foxp3 heterozygous Scurfy mutant (Foxp3sf/+) female mice, and patients with breast cancer for characterization of the formation and regulation of the miR-200 family in breast cancer cells and circulation. Participants (259), including patients with breast cancer or benign breast tumors, members of breast cancer families, and healthy controls, were assessed for tumor and circulating levels of the miR-200 family. Results: First, we identified a FOXP3-KAT2B-miR-200c/141 axis in breast cancer cells. Second, aging Foxp3sf/+ female mice developed spontaneous breast cancers and lung metastases. Levels of miR-200c and miR-141 were lower in Foxp3sf/+ tumor cells than in normal breast epithelial cells, but plasma levels of miR-200c and miR-141 in the Foxp3sf/+ mice increased during tumor progression and metastasis. Third, in patients with breast cancer, the levels of miR-200c and 141 were lower in FOXP3low relative to those with FOXP3high breast cancer cells, especially in late-stage and metastatic cancer cells.
    [Show full text]