The Crystal Structure of a 3D Domain-Swapped Dimer of Rnase a at a 2.1-Å Resolution (Protein Structure͞x-Ray Crystallography͞protein–Protein Interactions͞amyloid)

Total Page:16

File Type:pdf, Size:1020Kb

The Crystal Structure of a 3D Domain-Swapped Dimer of Rnase a at a 2.1-Å Resolution (Protein Structure͞x-Ray Crystallography͞protein–Protein Interactions͞amyloid) Proc. Natl. Acad. Sci. USA Vol. 95, pp. 3437–3442, March 1998 Biochemistry The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-Å resolution (protein structureyx-ray crystallographyyprotein–protein interactionsyamyloid) YANSHUN LIU*, P. JOHN HART*, MICHAEL P. SCHLUNEGGER†, AND DAVID EISENBERG*‡ *University of California-Department of Energy Laboratory of Structural Biology and Molecular Medicine, Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, CA 90095-1570; and †Merck Sharp & Dohme-Chibret AG, Schaffhauserstrasse 136, CH-8152 Glattbrugg, Switzerland Contributed by David Eisenberg, December 31, 1997 ABSTRACT The dimer of bovine pancreatic ribonuclease subunit and vice versa. The term 3D domain swapping was A (RNase A) discovered by Crestfield, Stein, and Moore in coined to describe a dimer of diphtheria toxin (8). Since then, 1962 has been crystallized and its structure determined and more than 10 crystal structures of 3D domain-swapped pro- refined to a 2.1-Å resolution. The dimer is 3D domain- teins have been reported (9), including a trimer (10). The swapped. The N-terminal helix (residues 1–15) of each subunit interface between domains found both in the monomer and in is swapped into the major domain (residues 23–124) of the the domain-swapped oligomer is termed the ‘‘closed inter- other subunit. The dimer of bull seminal ribonuclease (BS- face,’’ and the interface found only in the oligomer is termed RNase) is also known to be domain-swapped, but the rela- the ‘‘open interface’’ (9, 11). These two types of interfaces are tionship of the subunits within the two dimers is strikingly illustrated in Fig. 2 later in this paper. 3D domain swapping can different. In the RNase A dimer, the 3-stranded beta sheets of endow oligomers with additional properties, e.g., metal bind- the two subunits are hydrogen-bonded at their edges to form ing in the case of CksHs2, a cell cycle regulatory protein in a continuous 6-stranded sheet across the dimer interface; in yeast (12). In addition, domain swapping is a possible mech- the BS-RNase dimer, it is instead the two helices that abut. anism for the formation of protein aggregates, which can be Whereas the BS-RNase dimer has 2-fold molecular symmetry, favored by mutational and environmental changes (9, 11). The the two subunits of the RNase A dimer are related by a rotation amyloid-like fibrils formed by intact Ig light chains have been ; of 160°. Taken together, these structures show that inter- suggested by Klafki et al. (13) to form by a mechanism that is subunit adhesion comes mainly from the swapped helical essentially domain swapping. Studies of oligomers of the well domain binding to the other subunit in the ‘‘closed interface’’ characterized protein RNase A may therefore illuminate the but that the overall architecture of the domain-swapped formation of amyloid and other protein aggregates. oligomer depends on the interactions in the second type of Bull seminal (BS)-RNase is a 124-residue ribonuclease from interface, the ‘‘open interface.’’ The RNase A dimer crystals bovine seminal plasma that shares 81% sequence identity with take up the dye Congo Red, but the structure of a Congo RNase A. The structure of BS-RNase shows it is a domain- Red-stained crystal reveals no bound dye molecule. Dimer swapped dimer (14). Domain swapping endows this dimer with formation is inhibited by excess amounts of the swapped additional biological properties, such as allostery (15), and helical domain. The possible implications for amyloid forma- antitumor and immunorepression activity (16, 17), functions tion are discussed. not possessed by the monomer and the non-domain-swapped dimer of BS-RNase. The mechanism for these acquired bio- Bovine pancreatic ribonuclease A (RNase A) is a 124-residue logical properties remains under study (18). Solution and enzyme that catalyzes the hydrolysis of RNA with specificity computational studies of BS-RNase and RNase A suggest that 9 for pyrimidines at the 3 -side of the cleavage site. Studies of the hinge loop (residues 16–22) connecting the swapped RNase A have made great contributions to our understanding domain (residues 1–15) and the major domain (residues 23– of protein structure and function, including early studies of the 124) permits the domain exchange, perhaps with Pro-19 in spontaneous renaturation of proteins (1), amino acid sequence BS-RNase being important (19–21). The structure of the determination (2), synthesis of proteins (3), protein three- RNase A monomer was first determined to2ÅbyKartha et dimensional structure (4, 5), and peptide–protein interactions al. in 1967 (4) and later refined to 1.26 Å by Wlodawer et al. (6). Here, we pursue another aspect of RNase A: its formation (22). Also, the structure of RNase S, the RNase A cleaved by of oligomers by 3D domain swapping. subtilisin, was determined by Wyckoff et al. (5). The structure In 1962, Crestfield et al. (7) reported that RNase A forms of the RNase A dimer, however, has gone undetermined until dimers and higher oligomers after dialysis against 50% acetic now. acid and lyophilization. The dimer remains active with the Our rationale for studying binding of Congo Red to the same specific activity as the monomer. From studies of chem- RNase A dimer is the possible relationship of domain swap- ical modification of active site residues, Crestfield et al. pro- ping to amyloid formation, mentioned above. Congo Red is a posed that RNase A forms a dimer by exchanging its N- clinical probe for amyloid; when it binds to amyloid a green terminal helix (7), a phenomenon now called 3D domain swapping (8). In a 3D domain-swapped dimer, two subunits exchange Abbreviations: RNase A, bovine pancreatic ribonuclease A; BS- RNase, bull seminal ribonuclease. identical ‘‘domains.’’ That is, a structural unit of one subunit Data deposition: The atomic coordinates and structure factors have takes the place of the identical structural unit of the other been deposited in the Protein Data Bank, Biology Department, Brookhaven National Laboratory, Upton, NY 11973 (reference The publication costs of this article were defrayed in part by page charge 1A2W). ‡To whom reprint requests should be addressed at: UCLA-DOE payment. This article must therefore be hereby marked ‘‘advertisement’’ in Laboratory of Structural Biology and Molecular Medicine, Depart- accordance with 18 U.S.C. §1734 solely to indicate this fact. ments of Chemistry and Biochemistry and Biological Chemistry, © 1998 by The National Academy of Sciences 0027-8424y98y953437-6$2.00y0 University of California, Los Angeles, Box 951570, Los Angeles, CA PNAS is available online at http:yywww.pnas.org. 90095-1570. e-mail: david@pauling.mbi.ucla.edu. 3437 Downloaded by guest on September 27, 2021 3438 Biochemistry: Liu et al. Proc. Natl. Acad. Sci. USA 95 (1998) birefringence is given off under polarized light (23). Several Initially, cryogenic x-ray diffraction data to a 2.8-Å resolu- models of Congo Red binding to amyloid have been proposed tion were collected with a Rigaku R-AXIS IV imaging plate (24, 25), but further structural evidence is needed to under- detector. Data to a 2.1-Å resolution were collected with an stand this interaction. We observed that Congo Red stains R-AXIS II imaging plate detector at room temperature with a crystals of the RNase A dimer, which led us to examine the larger crystal (0.1 3 0.1 3 0.5 mm3). The x-ray source was a crystal structure of a potential RNase A–Congo Red complex. Rigaku RU-200 generator running at 50 kV, 100 mA with There exists a subtilisin cleavage site between residues 20 focusing mirrors. Crystals were rotated about f, and oscilla- and 21 in RNase A. After cleavage, the N-terminal segment, tion images were collected every 1.5°. The data were processed the S-peptide, remains associated with the rest of the protein, and reduced using the programs DENZO and SCALEPACK (26). the S-protein (6). Low pH is required to separate the S-peptide The statistics of data collection are listed in Table 1. from the S-protein. Because the swapped helices in the RNase Structure Determination. The structure of the RNase A A dimer are contained within the S-peptide, exogenous S- dimer was determined by molecular replacement method using peptide may compete with the formation of the dimer. Studies AMORE (27). The search model was the RNase A monomer of this competition may thus illuminate the mechanism of (28) without the hinge loop. The BS-RNase dimer (14) failed as a search model, for reasons which the structure now makes domain swapping. s Our structural study of the RNase A dimer was undertaken clear. Model building was undertaken using all data (no to see if it is domain-swapped, and if so, to compare its mode cutoff) during 20 rounds of crystallographic refinement in of 3D domain swapping with the BS-RNase dimer. Other goals XPLOR (29). A ‘‘round’’ of refinement is defined as sequential included studying the mechanism of binding of Congo Red to application of positional, simulated annealing and isotropic amyloids and the formation of protein aggregates. temperature factor (B factor) refinement, followed by visual inspection of electron density maps coupled with manual model building using the molecular graphics program FRODO METHODS (30). The solvent molecules were added using program XTAL Purification of the RNase A Dimer. The RNase A dimer was VIEW (version 4.0) (31). Model atom positions of the hinge formed and isolated as reported by Crestfield et al. (7). RNase loops were verified by the examination of conventional and simulated annealing omit maps (32). A was purchased from Sigma (RNase A III-A).
Recommended publications
  • Packing of Secondary Structures II
    7.88 Lecture Notes - 5 7.24/7.88J/5.48J The Protein Folding and Human Disease Packing of Secondary Structures • Packing of Helices against sheets • Packing of sheets against sheets • Parallel • Orthogonal Table: “Amino Acid Composition of the Ten Proteins and of the Residues at the Helix to Helix Interfaces” Name Total % Total At contacts % at contacts Gly 182 9 15 4 Ala 191 9 49 12 Val 151 7 46 12 Leu 148 7 48 12 Ile 114 6 36 9 Pro 67 3 41 1 Phe 68 3 25 6 Tyr 87 6 14 4 Trp 35 2 7 2 His 45 2 18 5 ½Cys 21 1 3 1 Met 29 1 10 3 Ser 165 8 19 5 Thr 132 7 21 5 Asp 112 6 14 4 Asn 113 6 13 3 Glu 94 5 13 3 Gln 70 3 12 3 Lys 125 6 19 5 Arg 76 4 13 3 A. Factors Contributing to Stability of Correctly Folded Native State 1. Major source of stability = removal of hydrophobic side chains atoms from the solvent and burying in environment which excludes the solvent (Entropic contribution from water structure). 1 2. Formation of hydrogen bonds between buried amide and carbonyl groups is maximized 3. Retention of backbone conformations close to the minimal energies. 4. Close packing means optimal Van der Waals interactions. You have read about alpha/beta proteins in Brandon and Tooze. B. Helix to Sheet Packing Lets examine buried contacts between the helices and the sheets. First a quick review of beta sheet structure: Colored transparency: Theoretical model, not actual sheet.
    [Show full text]
  • Amino Acid Preference Against Beta Sheet Through Allowing Backbone Hydration Enabled by the Presence of Cation
    Amino acid preference against beta sheet through allowing backbone hydration enabled by the presence of cation John N. Sharley, University of Adelaide. arXiv 2016-10-03 john.sharley@pobox.com Table of Contents 1 Abstract 1 2 Introduction 2 2.1 Alpha helix preferring amino acid residues in a beta sheet 2 2.2 Cation interactions with protein backbone oxygen 3 2.3 Quantum molecular dynamics with quantum mechanical treatment of every water molecule 3 3 Methods 4 4 Results 5 4.1 Preparation 5 4.2 Experiment 1302 5 4.3 Experiment 1303 7 5 Discussion 9 5.1 HB networks of water 9 5.2 Subsequent to rupture of a transient beta sheet 9 5.3 Hofmeister effects 10 6 Conclusion 11 7 Future work 12 8 Acknowledgements 13 9 References 14 10 Appendix 1. Backbone hydration in experiment 1302 16 11 Appendix 2. Backbone hydration in experiment 1303 17 1 Abstract It is known that steric blocking by peptide sidechains of hydrogen bonding, HB, between water and peptide groups, PGs, in beta sheets accords with an amino acid intrinsic beta sheet preference [1]. The present observations with Quantum Molecular Dynamics, QMD, simulation with Quantum Mechanical, QM, treatment of every water molecule solvating a beta sheet that would be transient in nature suggest that this steric blocking is not applicable in a hydrophobic region unless a cation is present, so that the amino acid beta sheet preference due to this steric blocking is only effective in the presence of a cation. We observed backbone hydration in a polyalanine and to a lesser extent polyvaline alpha helix without a cation being present, but a cation could increase the strength of these HBs.
    [Show full text]
  • And Beta-Helical Protein Motifs
    Soft Matter Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs Journal: Soft Matter Manuscript ID SM-ART-10-2018-002046.R1 Article Type: Paper Date Submitted by the 28-Nov-2018 Author: Complete List of Authors: DeBenedictis, Elizabeth; Northwestern University Keten, Sinan; Northwestern University, Mechanical Engineering Page 1 of 10 Please doSoft not Matter adjust margins Soft Matter ARTICLE Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs E. P. DeBenedictis and S. Keten* Received 24th September 2018, Alpha helices and beta sheets are the two most common secondary structure motifs in proteins. Beta-helical structures Accepted 00th January 20xx merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell- DOI: 10.1039/x0xx00000x puncture devices, antifreeze proteins, and extracellular matrices. Alpha helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix www.rsc.org/ components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta- helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.).
    [Show full text]
  • The Structure of Small Beta Barrels
    bioRxiv preprint doi: https://doi.org/10.1101/140376; this version posted May 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Structure of Small Beta Barrels Philippe Youkharibache*, Stella Veretnik1, Qingliang Li, Philip E. Bourne*1 National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda Maryland 20894 USA. *To whom correspondence should be addressed at philippe.youkharibache@nih.gov and pebourne@gmail.com 1 Current address: Department of Biomedical Engineering, The University of Virginia, Charlottesville VA 22908 USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/140376; this version posted May 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The small beta barrel is a protein structural domain, highly conserved throughout evolution and hence exhibits a broad diversity of functions. Here we undertake a comprehensive review of the structural features of this domain. We begin with what characterizes the structure and the variable nomenclature that has been used to describe it. We then go on to explore the anatomy of the structure and how functional diversity is achieved, including through establishing a variety of multimeric states, which, if misformed, contribute to disease states.
    [Show full text]
  • Protein Folding CMSC 423 Proteins
    Protein Folding CMSC 423 Proteins mRNA AGG GUC UGU CGA ∑ = {A,C,G,U} protein R V C R |∑| = 20 amino acids Amino acids with flexible side chains strung R V together on a backbone C residue R Function depends on 3D shape Examples of Proteins Alcohol dehydrogenase Antibodies TATA DNA binding protein Collagen: forms Trypsin: breaks down tendons, bones, etc. other proteins Examples of “Molecules of the Month” from the Protein Data Bank http://www.rcsb.org/pdb/ Protein Structure Backbone Protein Structure Backbone Side-chains http://www.jalview.org/help/html/misc/properties.gif Alpha helix Beta sheet 1tim Alpha Helix C’=O of residue n bonds to NH of residue n + 4 Suggested from theoretical consideration by Linus Pauling in 1951. Beta Sheets antiparallel parallel Structure Prediction Given: KETAAAKFERQHMDSSTSAASSSN… Determine: Folding Ubiquitin with Rosetta@Home http://boinc.bakerlab.org/rah_about.php CASP8 Best Target Prediction Ben-David et al, 2009 Critical Assessment of protein Structure Prediction Structural Genomics Determined structure Space of all protein structures Structure Prediction & Design Successes FoldIt players determination the structure of the retroviral protease of Mason-Pfizer monkey virus (causes AIDS-like disease in monkeys). [Khatib et al, 2011] Top7: start with unnatural, novel fold at left, designed a sequence of amino acids that will fold into it. (Khulman et al, Science, 2003) Determining the Energy + - 0 electrostatics van der Waals • Energy of a protein conformation is the sum of several energy terms. bond lengths
    [Show full text]
  • Folding-TIM Barrel
    Protein Folding Practical September 2011 Folding up the TIM barrel Preliminary Examine the parallel beta barrel that you constructed, noting the stagger of the strands that was needed to connect the ends of the 8-stranded parallel beta sheet into the 8-stranded beta barrel. Notice that the stagger dictates which side of the sheet is on the inside and which is on the outside. This will be key information in folding the complete TIM linear peptide into the TIM barrel. Assembling the full linear peptide 1. Make sure the white beta strands are extended correctly, and the 8 yellow helices (with the green loops at each end) are correctly folded into an alpha helix (right handed with H-bonds to the 4th ahead in the chain). 2. starting with a beta strand connect an alpha helix and green loop to make the blue-red connecting peptide bond. Making sure that you connect the carbonyl (red) end of the beta strand to the amino (blue) end of the loop-helix-loop. Secure the just connected peptide bond bond with a twist-tie as shown. 3. complete step 2 for all beta strand/loop-helix-loop pairs, working in parallel with your partners 4. As pairs are completed attach the carboxy end of the strand- loop-helix-loop to the amino end of the next strand-loop-helix-loop module and secure the new peptide bond with a twist-tie as before. Repeat until the full linear TIM polypeptide chain is assembled. Make sure all strands and helices are still in the correct conformations.
    [Show full text]
  • Protein Folding Guides Disulfide Bond Formation
    Protein folding guides disulfide bond formation Meng Qina,b, Wei Wanga,1, and D. Thirumalaib,1 aNational Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; and bBiophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 Edited by Harold A. Scheraga, Cornell University, Ithaca, NY, and approved June 26, 2015 (received for review February 25, 2015) The Anfinsen principle that the protein sequence uniquely deter- Here, we investigate the coupling between conformational folding mines its structure is based on experiments on oxidative refolding of and disulfide bond formation by creating a novel way to mimic the a protein with disulfide bonds. The problem of how protein folding effect of disulfide bond formation and rupture in coarse-grained drives disulfide bond formation is poorly understood. Here, we have (CG) molecular simulations, which have proven useful in a number – solved this long-standing problem by creating a general method of applications (15 18). As a case study, we use the 58-residue bo- – for implementing the chemistry of disulfide bond formation and vine pancreatic trypsin inhibitor (BPTI) with three S Sbondsinthe rupture in coarse-grained molecular simulations. As a case study, native state to illustrate the key structural changes that occur during the folding reaction. The pioneering experiments of Creighton (9) we investigate the oxidative folding of bovine pancreatic trypsin – inhibitor (BPTI). After confirming the experimental findings that the seemed to indicate that nonnative disulfide species (19 22) are obligatory for productive folding to occur (for a thoughtful analysis, multiple routes to the folded state contain a network of states see ref.
    [Show full text]
  • Β-Barrel Oligomers As Common Intermediates of Peptides Self
    www.nature.com/scientificreports OPEN β-barrel Oligomers as Common Intermediates of Peptides Self-Assembling into Cross-β Received: 20 April 2018 Accepted: 22 June 2018 Aggregates Published: xx xx xxxx Yunxiang Sun, Xinwei Ge, Yanting Xing, Bo Wang & Feng Ding Oligomers populated during the early amyloid aggregation process are more toxic than mature fbrils, but pinpointing the exact toxic species among highly dynamic and heterogeneous aggregation intermediates remains a major challenge. β-barrel oligomers, structurally-determined recently for a slow-aggregating peptide derived from αB crystallin, are attractive candidates for exerting amyloid toxicity due to their well-defned structures as therapeutic targets and compatibility to the “amyloid- pore” hypothesis of toxicity. To assess whether β-barrel oligomers are common intermediates to amyloid peptides - a necessary step toward associating β-barrel oligomers with general amyloid cytotoxicity, we computationally studied the oligomerization and fbrillization dynamics of seven well- studied fragments of amyloidogenic proteins with diferent experimentally-determined aggregation morphologies and cytotoxicity. In our molecular dynamics simulations, β-barrel oligomers were only observed in fve peptides self-assembling into the characteristic cross-β aggregates, but not the other two that formed polymorphic β-rich aggregates as reported experimentally. Interestingly, the latter two peptides were previously found nontoxic. Hence, the observed correlation between β-barrel oligomers formation and cytotoxicity supports the hypothesis of β-barrel oligomers as the common toxic intermediates of amyloid aggregation. Aggregation of proteins and peptides into amyloid fbrils is associated with more than 25 degenerative diseases, including Alzheimer’s disease (AD)1,2, Parkinson’s disease (PD)3,4, prion conditions5 and type-2 diabetes (T2D)6,7.
    [Show full text]
  • Beta-Sheet Overview
    Beta Sheet: Overview of Secondary Structure http://mentor.lscf.ucsb.edu/mcdb108a/tw-2nd/beta-over.htm Overview of Beta-Pleated Sheet Secondary Structure Back to b-Sheet Topic Outline Like the a-helix, beta-pleated sheet (b-sheet) structures are a common feature of protein three-dimensional conformations and, again by analogy, the prevalence of b-beta sheets is most likely attributed to the inherent stability of these structures. Namely, the geometry of the b-beta sheet polypeptide backbone is such that H-bonding atoms are aligned for nearly perfect H-bond formation. Moreover, close internal packing of the backbone atoms in b-beta sheet structures serves to optimize van der Waals interactions and minimize energetically unfavorable hydrophobic interactions between nonpolar protein groups and water molecules in the environment. Collectively, these factors help reduce the net free energy of the b-beta sheet thereby increasing its stability relative to other structures. When viewed in a wireframe representation, the basic design of the b-sheet resembles that of a pleated skirt. Typically, b-sheets are formed from several adjacent, almost fully-extended polypeptide backbone strands which together weave the "fabric" of the skirt. In proteins, b-sheets can be composed of parallel, anti-parallel, or mixtures of parallel and anti-parallel adjacent polypeptide segments. By convention, the orientations of adjacent strands of a b-sheet are defined by the relative N » C orientations of their primary AA sequences. For example, in parallel b-sheets the N » C orientations of the AA sequences of adjacent strands run in a parallel direction.
    [Show full text]
  • Lecture 7 Protein Secondary Structure Prediction
    Protein primary structure C Master Course E N DNA/Protein Structure- 20 amino acid types A generic residue Peptide bond T R E function Analysis and F B O I Prediction R O I I N N T F E O G R R M Lecture 7 SARS Protein From Staphylococcus Aureus A A 1 MKYNNHDKIR DFIIIEAYMF RFKKKVKPEV T T 31 DMTIKEFILL TYLFHQQENT LPFKKIVSDL I I 61 CYKQSDLVQH IKVLVKHSYI SKVRSKIDER V C 91 NTYISISEEQ REKIAERVTL FDQIIKQFNL E S 121 ADQSESQMIP KDSKEFLNLM MYTMYFKNII V Protein Secondary 151 KKHLTLSFVE FTILAIITSQ NKNIVLLKDL U 181 IETIHHKYPQ TVRALNNLKK QGYLIKERST 211 EDERKILIHM DDAQQDHAEQ LLAQVNQLLA Structure Prediction 241 DKDHLHLVFE Protein secondary structure Alpha-helix Beta strands/sheet Secondary Structure • An easier question – what is the secondary structure when the 3D structure is known? SARS Protein From Staphylococcus Aureus 1 MKYNNHDKIR DFIIIEAYMF RFKKKVKPEV DMTIKEFILL TYLFHQQENT SHHH HHHHHHHHHH HHHHHHTTT SS HHHHHHH HHHHS S SE 51 LPFKKIVSDL CYKQSDLVQH IKVLVKHSYI SKVRSKIDER NTYISISEEQ EEHHHHHHHS SS GGGTHHH HHHHHHTTS EEEE SSSTT EEEE HHH 101 REKIAERVTL FDQIIKQFNL ADQSESQMIP KDSKEFLNLM MYTMYFKNII HHHHHHHHHH HHHHHHHHHH HTT SS S SHHHHHHHH HHHHHHHHHH 151 KKHLTLSFVE FTILAIITSQ NKNIVLLKDL IETIHHKYPQ TVRALNNLKK HHH SS HHH HHHHHHHHTT TT EEHHHH HHHSSS HHH HHHHHHHHHH 201 QGYLIKERST EDERKILIHM DDAQQDHAEQ LLAQVNQLLA DKDHLHLVFE HTSSEEEE S SSTT EEEE HHHHHHHHH HHHHHHHHTS SS TT SS DSSP • DSSP (Dictionary of Secondary Structure of a Protein) – assigns secondary structure to proteins which have a crystal (x-ray) or NMR (Nuclear Magnetic Resonance) A more challenging task: structure Predicting secondary structure from H = alpha helix primary sequence alone B = beta bridge (isolated residue) DSSP uses hydrogen-bonding E = extended beta strand structure to assign Secondary Structure Elements (SSEs).
    [Show full text]
  • Peptide Folding Simulations S Gnanakaran, Hugh Nymeyer, John Portman, Kevin Y Sanbonmatsu and Angel E Garcı´A
    Peptide folding simulations S Gnanakaran, Hugh Nymeyer, John Portman, Kevin Y Sanbonmatsu and Angel E Garcı´aà Developments in the design of small peptides that mimic urational entropy, hydrogen bond formation, solvation, proteins in complexity, recent advances in nanosecond hydrophobic core formation and ion pair formation deter- time-resolved spectroscopy methods to study peptides and the mines the folding rate and stability of proteins. This development of modern, highly parallel simulation algorithms competition plays an essential role throughout the fold- have come together to give us a detailed picture of peptide ing process and determines the thermodynamic equili- folding dynamics. Two newly implemented simulation brium between folded and unfolded states. Modeling techniques, parallel replica dynamics and replica exchange this competition is a standing challenge in peptide fold- molecular dynamics, can now describe directly from simulations ing simulations. the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation Three major developments have positioned the simulation community now has the tools to verify and validate simulation community to make significant advances toward under- protocols and models (forcefields). standing the mechanism of folding of peptides and small proteins. Firstly, the design of small peptides that mimic Addresses proteins in complexity, but are sufficiently small to allow Theoretical Biology and Biophysics Group, Theoretical Division, T10 MS detailed simulation studies [1–4]. Secondly, the develop- K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA à ment of fast (nanosecond) time-resolved spectroscopy e-mail: axg@lanl.gov methods to study peptide folding dynamics on the same timescale as computer simulations [5–8,9,10,11,12].
    [Show full text]
  • Post-Translational Regulation of the Mammalian Formin Daam1 Senior
    Post-Translational Regulation of the Mammalian Formin Daam1 Senior Thesis Presented to The Faculty of the School of Arts and Sciences Brandeis University Undergraduate Program in Biology Bruce Goode, Advisor In partial fulfillment of the requirements for the degree of Bachelor of Science By Jessica Kirshner May 2015 Copyright by Jessica Kirshner Committee members: Name: Bruce Goode Signature: . Name: Avital Rodal Signature: . Name: Joan Press Signature: . Abstract: Daam1 is a mammalian formin that, like other formins, has a catalytic FH2 domain. However, unlike other formins, the linker region differs in that it contains a small antiparallel beta sheet structure that partially occludes the two actin binding sites of the FH2 domain. This feature makes unmodified Daam1 a poor actin nucleator in vitro, as compared to most other formins. Here, we use total internal reflection fluorescence (TIRF) microscopy and bulk fluorescence assembly assays to demonstrate that Src kinase can phosphorylate Daam1 in vitro to increase its nucleation activity. This effect is dampened in a point mutant of Daam1 lacking the critical tyrosine at residue 652. We propose that phosphorylation by Src kinase in vivo serves as a regulatory mechanism in controlling Daam1 function by releasing the protein from its novel autoinhibited conformation to stimulate actin assembly. Experiments in NIH3T3 cells support this hypothesis by demonstrating that inhibiting Src family kinases reduce the number of filopodia protruding from the cells. The biological importance of this mechanism will continue to be elucidated using in vivo experiments on Daam1 mutants in live cells. Introduction: Eukaryotic cells depend upon actin to maintain their integrity and perform vital cellular functions so much so that this protein is present in all types of eukaryotic cells; the only known exception to this observation being the sperm of nematodes1.
    [Show full text]