Self-Assembly of Biomineralization Protein Mms6 and Its Function As a Ferric Iron Reductase That Associates with Lipid Membranes Shuren Feng Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Self-Assembly of Biomineralization Protein Mms6 and Its Function As a Ferric Iron Reductase That Associates with Lipid Membranes Shuren Feng Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Self-assembly of biomineralization protein Mms6 and its function as a ferric iron reductase that associates with lipid membranes Shuren Feng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons Recommended Citation Feng, Shuren, "Self-assembly of biomineralization protein Mms6 and its function as a ferric iron reductase that associates with lipid membranes" (2015). Graduate Theses and Dissertations. 14845. https://lib.dr.iastate.edu/etd/14845 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Self-assembly of biomineralization protein Mms6 and its function as a ferric iron reductase that associates with lipid membranes by Shuren Feng A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Molecular, Cellular, and Developmental Biology Program of Study Committee: Marit Nilsen-Hamilton, Major Professor Edward Yu Eric R Henderson Mark S Hargrove Gregory J Phillips Iowa State University Ames, Iowa 2015 Copyright © Shuren Feng, 2015. All rights reserved. ii DEDICATION To my family who have been supporting me unconditionally through the years, to my beloved wife Fan, and my daughter Eileen who have been my sources of impetus and inspiration in life… iii TABLE OF CONTENTS Page DEDICATIONS ......................................................................................................... ii TABLE OF CONTENTS ........................................................................................... iii ACKNOWLEDGMENTS ......................................................................................... v ABSTRACT………………………………. .............................................................. vii CHAPTER 1 GENERAL INTRODUCTION ...................................................... 1 1.1 Thesis Organization ...................................................................................... 1 1.2 Literature Review .......................................................................................... 3 1.2.1 Biomineralization theories and examples .............................................. 3 1.2.2 Structural and functional basis of biomineralization proteins ................. 20 1.2.3 Magnetotactic bacteria and magnetosomes ............................................. 31 1.2.4 Membrane proteins in magnetosome biogenesis .................................... 37 1.2.5 Magnetic nanoparticles: properties, applications, and synthesis ............. 61 1.2.6 Tables and Figures .................................................................................. 74 1.3 References ..................................................................................................... 75 CHAPTER 2 INTEGRATED SELF-ASSEMBLY OF THE MMS6 MAG- NETOSOME PROTEIN TO FORM AN IRON-RESPONSIVE STRUCTURE ...... 109 2.1 Introduction .................................................................................................. 110 2.2 Results and Discussion .................................................................................. 112 2.3 Experimental Section ..................................................................................... 118 2.4 Conclusions .................................................................................................. 122 2.5 References .................................................................................................. 123 2.6 Tables and Figures ..................................................................................... 125 CHAPTER 3 DYNAMIC STRUCTURAL CHANGE OF MMS6 WITH IRON BINDING: STRUCTURAL PREPARATION FOR BIOMINERALIZATION ....... 130 3.1 Introduction .................................................................................................. 131 3.2 Materials and Methods ................................................................................... 132 3.3 Results ........................................................................................................ 134 3.4 Discussion ..................................................................................................... 139 3.5 References ..................................................................................................... 141 3.6 Figure Legends .............................................................................................. 143 3.7 Tables and Figures ......................................................................................... 145 iv CHAPTER 4 THE BIOMINERALIZATION PROTEIN MMS6 IS A LIPID- ACTIVATED FERRIC REDUCTASE ................................................................... 148 4.1 Introduction .................................................................................................. 149 4.2 Materials and Methods .................................................................................. 150 4.3 Results ........................................................................................................... 154 4.4 Discussions .................................................................................................. 159 4.5 References ................................................................................................... 163 4.6 Figure legends .............................................................................................. 166 4.7 Tables and Figures ..................................................................................... 169 CHAPTER 5 CONCLUSIONS............................................................................. 173 5.1 Conclusions .................................................................................................... 173 5.2 References ................................................................................................... 176 v ACKNOWLEDGMENTS I would like to thank my major professor Dr. Marit Nilsen-Hamilton for her constant support and guidance through the years. I am grateful for her constant support and patient help all through the process of completing this thesis. I am appreciative of her efforts to teach me to evaluate data objectively, to think critically, and to effectively manage my time and resources. These training that I got will be invaluable for the future of my career, no matter what career path I might be going for. Without her devoted help and guidance, I could not have made it to the completion of this thesis. I am especially grateful for the caring, encouragement, and kind help from Dr. Marit Nilsen-Hamilton and her husband, Dr. Richard Hamilton, when I had to go through some hard times of my life. “Hardship is good for you, young man…” I was told these words by Dr. Richard Hamilton. These words always popped up on my mind and helped me to move on when I was in times of trouble and at the brim of giving up. Also, I would like to thank my committee members, Dr. Edward Yu, Dr. Eric Henderson, Dr. Gregory Phillips, Dr. Mark Hargrove, and my previous committee member Dr. Alan Dispirito for their guidance, constructive critiques, and kind help through the years. Special thanks are given to our lab manager Lee Bendickson who has been always there to help, with him being our lab manager, my mentor, and friend all at the same time. I would like to thank our collaborators from Ames Laboratory, Department of Chemical Engineering, and Department of Material Science and Engineering. Dr. Surya Mallapragada as our project leader has been always supporting, and working hard to make sure that our research moves towards the right directions. I would like to thank all our collaborators vi including Dr. David Vaknin, Dr. Wenjie Wang, Dr. Mufit Akinc, Dr. Monica Lamm, Dr. Klaus Schmidt-Rohr, Dr. Tanya Prozorov, Dr. Xunpei Liu, Keith Fritzsching, and Honghu Zhang for their collaborations, hardwork, and thoughtful discussions during the years. I really enjoyed and learned a lot from this multidisciplinary group, and some of the friendships developed will be cherished for the rest of my life. Also, my current and past colleagues in MNH lab; Dr. Alison Pappas, Dr. Lijun Wang, Dr. Wei Zhao, Dr. Xiaoling Song, Dr. Muslum Ilgu, Dr. Ilchung Shin, Supipi Liyamali Auwardt, Dr. Judhajeet Ray, Samir Mehanovic, Dr. Pierre Palo, Dr.Tianjiao Wang, Dr. Lijie Zhai, Shambhavi Shubang , Michael Zeller, Mathew Luriano and any other rotational, SULI and visiting students. This inspiring group has been a constant source of friendship, good advice and acompany. I would like to thank my family for their unconditional love and support during good and difficult times throughout this work. I would like to thank my wife for her constant love and support during my PhD life. I am appreciative of my parents, my sister Shiren Feng, and my brother-in-law Hong Shi for their unconditional love and support. Lastly, I want to thank god to send an angle to me and my family-Eileen. She teaches so many things as a four-year-old, far more than what I could have imagined. And, Eileen, dad loves you forever. vii ABSTRACT Biomineralization by living organisms provides excellent examples of controlled mineral synthesis
Recommended publications
  • Magnetotactic Bacteria and Their Application in Medicine
    Chem cal ist si ry y & h P B f i o o Dasdag and Bektas. J Phys Chem Biophys 2014, 4:2 p l h a Journal of Physical Chemistry & y n s r DOI: 10.4172/2161-0398.1000141 i u c o s J ISSN: 2161-0398 Biophysics ResearchReview Article Article OpenOpen Access Access Magnetotactic Bacteria and their Application in Medicine Suleyman Dasdag1* and Hava Bektas2 1Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey 2Department of Biophysics, Medical School of Yuzuncu Yil University, Van / Turkey Abstract It is a known fact how the magnetic field of the Earth is very important for life. Relation between living systems and the earth magnetic field has been investigated for many years. Birds and their migration routes are the first one of the things that comes to mind when we state living things. The Earth’s magnetic field is still accepted to be the main factor for birds and other flying living beings to complete their travels correctly. The changes in migration routes, which are observed from time to time, are sometimes said to be due to the changes in the magnetic field. However, no light has been shed to this matter yet. The Earth’s magnetic field has not been sufficiently studied, and its role on small living models such as bacteria has not been adequately discussed. One of the best examples in this field is relation between the Earth’s magnetic field and “magnetotactic bacteria (MTB)”, which were discovered by Salvatore Bellini in 1963. Currently, it is claimed that magnetotactic bacteria have a widespread use in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology.
    [Show full text]
  • Life with Compass: Diversity and Biogeography of Magnetotactic Bacteria
    bs_bs_banner Environmental Microbiology (2014) 16(9), 2646–2658 doi:10.1111/1462-2920.12313 Minireview Life with compass: diversity and biogeography of magnetotactic bacteria Wei Lin,1,2 Dennis A. Bazylinski,3 Tian Xiao,2,4 the present-day biogeography of MTB, and the ruling Long-Fei Wu2,5 and Yongxin Pan1,2* parameters of their spatial distribution, will eventu- 1Biogeomagnetism Group, Paleomagnetism and ally help us predict MTB community shifts with envi- Geochronology Laboratory, Key Laboratory of the ronmental changes and assess their roles in global Earth’s Deep Interior, Institute of Geology and iron cycling. Geophysics, Chinese Academy of Sciences, Beijing 100029, China. 2France-China Bio-Mineralization and Nano-Structures Introduction Laboratory, Chinese Academy of Sciences, Beijing Iron is the fourth most common element in the Earth’s 100029, China. crust and a crucial nutrient for almost all known organ- 3 School of Life Sciences, University of Nevada at Las isms. The cycling of iron is one of the key processes in the Vegas, Las Vegas, NV, USA. Earth’s biogeochemical cycles. A number of organisms 4 Key Laboratory of Marine Ecology & Environmental synthesize iron minerals and play essential roles in global Sciences, Institute of Oceanology, Chinese Academy of iron cycling (Westbroek and de Jong, 1983; Winklhofer, Sciences, Qingdao, China. 2010). One of the most interesting examples of these 5 Laboratoire de Chimie Bactérienne, Aix-Marseille types of organisms are the magnetotactic bacteria (MTB), Université, CNRS, Marseille Cedex, France. a polyphyletic group of prokaryotes that are ubiquitous in aquatic and sedimentary environments (Bazylinski Summary and Frankel, 2004; Bazylinski et al., 2013).
    [Show full text]
  • Tooth Enamel and Its Dynamic Protein Matrix
    International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
    [Show full text]
  • Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria Using Graphene Liquid Cell – Transmission Electron Microscopy
    Nanoscale Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria using Graphene Liquid Cell – Transmission Electron Microscopy Journal: Nanoscale Manuscript ID NR-ART-10-2018-008647.R1 Article Type: Paper Date Submitted by the 27-Nov-2018 Author: Complete List of Authors: Firlar, Emre; University of Illinois at Chicago, Department of Bioengineering; University of Illinois at Chicago, Department of Mechanical and Industrial Engineering Ouy, Meagan; University of Illinois at Chicago, Department of Bioengineering Bogdanowicz, Agata; University of Illinois at Chicago, Department of Bioengineering Covnot, Leigha; University of Illinois at Chicago, Department of Bioengineering Song, Boao; University of Illinois at Chicago, Mechanical Engineering Department Nadkarni, Yash; University of Illinois at Chicago, Department of Bioengineering Shahbazian-Yassar, Reza; University of Illinois at Chicago, Mechanical and Industrial Engineering; University of Illinois at Chicago Shokuhfar, Tolou; University of Illinois at Chicago, Department of Bioengineering; Michigan Technological University, Department of Mechanical Engineering Page 1 of 8 Please doNanoscale not adjust margins Journal Name ARTICLE Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria using Graphene Liquid Cell – Transmission Electron Microscopy Received 00th January 20xx, Accepted 00th January 20xx Emre Firlara,b*, Meagan Ouya, Agata Bogdanowicza, Leigha Covnota, Boao Songb, Yash Nadkarnia, DOI: 10.1039/x0xx00000x Reza Shahbazian-Yassarb*,
    [Show full text]
  • Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle
    ARTICLE Received 6 Feb 2014 | Accepted 25 Jul 2014 | Published 1 Sep 2014 DOI: 10.1038/ncomms5797 Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle A.P. Chen1, V.M. Berounsky2, M.K. Chan3, M.G. Blackford4, C. Cady5,w, B.M. Moskowitz6, P. Kraal7, E.A. Lima8, R.E. Kopp9, G.R. Lumpkin4, B.P. Weiss8, P. Hesse1 & N.G.F. Vella10 Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. 1 Department of Environment and Geography, Macquarie University, North Ryde, New South Wales 2109, Australia. 2 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, USA. 3 School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA.
    [Show full text]
  • A Perspective on Underlying Crystal Growth Mechanisms in Biomineralization: Solution Mediated Growth Versus Nanosphere Particle Accretion
    CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Journal: CrystEngComm Manuscript ID: CE-HIG-07-2014-001474.R1 Article Type: Highlight Date Submitted by the Author: 01-Dec-2014 Complete List of Authors: Gal, Assaf; Weizmann Institute of Science, Structural Biology Weiner, Steve; Weizmann Institute of Science, Structural Biology Addadi, Lia; Weizmann Institute of Science, Structural Biology Page 1 of 23 CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Assaf Gal, Steve Weiner, and Lia Addadi Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel 76100 Abstract Many organisms form crystals from transient amorphous precursor phases. In the cases where the precursor phases were imaged, they consist of nanosphere particles. Interestingly, some mature biogenic crystals also have nanosphere particle morphology, but some are characterized by crystallographic faces that are smooth at the nanometer level. There are also biogenic crystals that have both crystallographic faces and nanosphere particle morphology. This highlight presents a working hypothesis, stating that some biomineralization processes involve growth by nanosphere particle accretion, where amorphous nanoparticles are incorporated as such into growing crystals and preserve their morphology upon crystallization. This process produces biogenic crystals with a nanosphere particle morphology. Other biomineralization processes proceed by ion-by-ion growth, and some cases of biological crystal growth involve both processes. We also identify several biomineralization processes which do not seem to fit this working hypothesis. It is our hope that this highlight will inspire studies that will shed more light on the underlying crystallization mechanisms in biology.
    [Show full text]
  • Porcine Enamel Protein Fractions Contain Transforming Growth
    Volume 77 • Number 10 Porcine Enamel Protein Fractions Contain Transforming Growth Factor-b1 Takatoshi Nagano,* Shinichiro Oida,† Shinichi Suzuki,* Takanori Iwata,‡ Yasuo Yamakoshi,‡ Yorimasa Ogata,§ Kazuhiro Gomi,* Takashi Arai,* and Makoto Fukae† Background: Enamel extracts are biologically active and capable of inducing osteogenesis and cementogenesis, but the specific molecules carrying these activities have not been as- certained. The purpose of this study was to identify osteogenic factors in porcine enamel extracts. Methods: Enamel proteins were separated by size-exclusion chromatography into four fractions, which were tested for their roteins extracted from the imma- osteogenic activity on osteoblast-like cells (ST2) and human ture enamel matrix of developing periodontal ligament (HPDL) cells. Pteeth possess important biologic Results: Fraction 3 (Fr.3) and a transforming growth factor- activities, such as the induction of osteo- beta 1 (TGF-b1) control reduced alkaline phosphatase (ALP) genesis1-3 and cementogenesis.4 For activity in ST2 but enhanced ALP activity in HPDL cells. The example, it was shown in in vivo and in enhanced ALP activity was blocked by anti-TGF-b antibodies. vitro systems that enamel matrix deriv- Furthermore, using a dual-luciferase reporter assay, we dem- atives (EMDs) have cementum- and onstrated that Fr.3 can induce the promoter activity of the osteopromotive activities5 and stimulate plasminogen activator inhibitor type 1 (PAI-1) gene. the proliferation and differentiation of Conclusion: These results show that the osteoinductive ac- osteoblastic cells.6 tivity of enamel extracts on HPDL cells is mediated by TGF-b1. In developing dental enamel, there are J Periodontol 2006;77:1688-1694.
    [Show full text]
  • The Pitx2:Mir-200C/141:Noggin Pathway Regulates Bmp Signaling
    3348 RESEARCH ARTICLE STEM CELLS AND REGENERATION Development 140, 3348-3359 (2013) doi:10.1242/dev.089193 © 2013. Published by The Company of Biologists Ltd The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation Huojun Cao1,*, Andrew Jheon2,*, Xiao Li1, Zhao Sun1, Jianbo Wang1, Sergio Florez1, Zichao Zhang1, Michael T. McManus3, Ophir D. Klein2,4 and Brad A. Amendt1,5,‡ SUMMARY The mouse incisor is a remarkable tooth that grows throughout the animal’s lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development.
    [Show full text]
  • Properties of Magnetosome Suspension Under the in Uence Of
    Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 2 Proceedings of the European Conference Physics of Magnetism, Pozna« 2014 Properties of Magnetosome Suspension under the Inuence of Magnetic Field A. Józefczaka;*, M. Mol£anb, Z. Rozynekc;d, T. Hornowskia, A. Skumiela, M. Timkob, J. Tóthováe, P. Kop£anskýb and B. Leszczy«skia;f aInstitute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«, Poland bInstitute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Ko²ice, Slovakia cInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland dDepartment of Physics, NTNU, Høgskoleringen 5, NO-7491 Trondheim, Norway eDepartment of Physics, Technical University of Ko²ice, Park Komenského 2, 042 00 Ko²ice, Slovakia f NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«, Poland The magnetotactic bacteria synthesize chains of nanosized magnetic particles that function as a compass nee- dle to navigate in the direction of the earth's magnetic eld. Magnetosomes are bacterial magnetic nanoparticles containing iron mineral crystals of magnetite or greigite, enveloped by a natural biological membrane. The objec- tive of the work is to study the inuence of magnetic eld on rheology and acoustic properties of magnetosome suspension. Experimental results show a clear eect of the external magnetic eld on the acoustic parameters such as velocity and attenuation of ultrasonic wave, and the viscosity of the suspension, arising from the biogenic magnetic particles aggregation. DOI: 10.12693/APhysPolA.127.629 PACS: 75.50.Mm, 43.35.Bf 1. Introduction Magnetosome suspension properties change under the inuence of the magnetic eld, similar to that of magnetic uid.
    [Show full text]
  • Novel Biological Activity of Ameloblastin in Enamel Matrix Derivative
    www.scielo.br/jaos http://dx.doi.org/10.1590/1678-775720140291 Novel biological activity of ameloblastin in enamel matrix derivative Sachiko KURAMITSU-FUJIMOTO1, Wataru ARIYOSHI2, Noriko SAITO3, Toshinori OKINAGA2, Masaharu KAMO4, Akira ISHISAKI4, Takashi TAKATA5, Kazunori YAMAGUCHI1, Tatsuji NISHIHARA2 1- Division of Orofacial Functions and Orthodontics, Department of Growth Development of Functions, Kyushu Dental University, Fukuoka, Japan. 2- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan. 3- Division of Pulp Biology, Operative Dentistry and Endodontics, Department of Cariology and Periodontology, Kyushu Dental University, Fukuoka, Japan. 4- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate, Japan. 5- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. Corresponding address: Tatsuji Nishihara - Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University - 2-6-1 Manazuru - Kokurakita-ku - Kitakyushu - Fukuoka - 803-8580 - Japan - Phone: +81 93 285 3050 - fax: +81 93 581 4984 - e-mail: [email protected] Submitted: July 24, 2014 - Modification: October 24, 2014 - Accepted: October 27, 2014 ABSTRACT bjective: Enamel matrix derivative (EMD) is used clinically to promote periodontal Otissue regeneration. However, the effects of EMD on gingival epithelial cells during regeneration of periodontal tissues are unclear. In this in vitro study, we purified ameloblastin from EMD and investigated its biological effects on epithelial cells. Material and Methods: Bioactive fractions were purified from EMD by reversed-phase high-performance liquid chromatography using hydrophobic support with a C18 column. The mouse gingival epithelial cell line GE-1 and human oral squamous cell carcinoma line SCC-25 were treated with purified EMD fraction, and cell survival was assessed with a WST-1 assay.
    [Show full text]
  • Mixotrophic Magnetosome-Dependent Magnetoautotrophic Metabolism of Model Magnetototactic Bacterium Magnetospirillum Magneticum A
    Mixotrophic Magnetosome-Dependent Magnetoautotrophic Metabolism of Model Magnetototactic Bacterium Magnetospirillum magneticum AMB-1 Dissertation Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Eric Keith Mumper, BA Graduate Program in the School of Earth Sciences The Ohio State University 2019 Dissertation Committee: Steven K. Lower, Adviser Brian H. Lower Ratnasingham Sooryakumar Ann E. Cook Copyright by Eric Keith Mumper 2019 Abstract Magnetospirillum magneticum AMB-1 is a member of a phylogenetically diverse group of bacteria characterized by their ability to biomineralize magnetic minerals known collectively as magnetotactic bacteria (MTB).1,2,3 MTB produce chains of membrane- bound intracellular magnetic nanocrystals, collectively known as magnetosomes.1,2,3 The current scientific consensus is that magnetosomes are used by MTB to orient themselves in vertically stratified water columns in order to achieve optimal oxygen concentrations in a process known as magnetoaerotaxis.4,5 Biomineralization of magnetosomes is an energy intensive process which accounts for roughly 33% of the cell's metabolic budget.6 This high metabolic cost seems to contradict with the amount of time MTB cells spend aligned with external magnetic fields.5 Due to this apparent discrepancy, I examined the potential role the magnetosome may play in bacterial metabolism. Through analysis of comparative growth on a variety of media compositions both magnetic, wild type and non-magnetic, mutant strains of AMB-1, I discovered that cells grown under stress conditions exhibit an inversion of growth dynamics which indicates some advantage for magnetic cells. Non-magnetic, mutant cells display a direct relationship between external magnetic field strength and growth, indicating magnetic field dependence.
    [Show full text]
  • How Do Enamelysin and Kallikrein 4 Process the 32-Kda Enamelin?
    Eur J Oral Sci 2006; 114 (Suppl. 1): 45–51 Copyright Ó Eur J Oral Sci 2006 Printed in Singapore. All rights reserved European Journal of Oral Sciences Yasuo Yamakoshi1, Jan C.-C. Hu1, How do enamelysin and kallikrein 4 Makoto Fukae2, Fumiko Yamakoshi1, James P. Simmer1 process the 32-kDa enamelin? 1University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA; 2Department of Biochemistry, School of Dental Medicine, Yamakoshi Y, Hu JC-C, Fukae M, Yamakoshi F, Simmer JP. How do enamelysin and Tsurumi University, Yokohama, Japan kallikrein 4 process the 32-kDa enamelin? Eur J Oral Sci 2006; 114 (Suppl. 1): 45–51 Ó Eur J Oral Sci, 2006 The activities of two proteases – enamelysin (MMP-20) and kallikrein 4 (KLK4) – are necessary for dental enamel to achieve its high degree of mineralization. We hypo- thesize that the selected enamel protein cleavage products which accumulate in the secretory-stage enamel matrix do so because they are resistant to further cleavage by MMP-20. Later, they are degraded by KLK4. The 32-kDa enamelin is the only domain of the parent protein that accumulates in the deeper enamel. Our objective was to identify the cleavage sites of 32-kDa enamelin that are generated by proteolysis with MMP-20 and KLK4. Enamelysin, KLK4, the major amelogenin isoform (P173), and the 32-kDa enamelin were isolated from developing porcine enamel. P173 and the James P. Simmer, University of Michigan 32-kDa enamelin were incubated with MMP-20 or KLK4 for up to 48 h. Then, the Dental Research Laboratory, 1210 Eisenhower 32-kDa enamelin digestion products were fractionated by reverse-phase high-per- Place, Ann Arbor, MI 48108, USA formance liquid chromatography (RP-HPLC) and characterized by Edman sequen- Telefax: +1–734–9759329 cing, amino acid analysis, and mass spectrometry.
    [Show full text]