Regulations 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Appendix 3. Thousand Islands National Park Taxonomy Report
Appendix 3. Thousand Islands National Park Taxonomy Report Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Agelenopsis potteri Agelenopsis utahana Anyphaenidae Anyphaena Anyphaena celer Hibana Hibana gracilis Araneidae Araneus Araneus bicentenarius Larinioides Larinioides cornutus Larinioides patagiatus Clubionidae Clubiona Clubiona abboti Clubiona bishopi Clubiona canadensis Clubiona kastoni Clubiona obesa Clubiona pygmaea Elaver Elaver excepta Corinnidae Castianeira Castianeira cingulata Phrurolithus Phrurolithus festivus Dictynidae Emblyna Emblyna cruciata Emblyna sublata Eutichuridae Strotarchus Strotarchus piscatorius Gnaphosidae Herpyllus Herpyllus ecclesiasticus Zelotes Zelotes hentzi Linyphiidae Ceraticelus Ceraticelus atriceps 1 Collinsia Collinsia plumosa Erigone Erigone atra Hypselistes Hypselistes florens Microlinyphia Microlinyphia mandibulata Neriene Neriene radiata Soulgas Soulgas corticarius Spirembolus Lycosidae Pardosa Pardosa milvina Pardosa moesta Piratula Piratula canadensis Mimetidae Mimetus Mimetus notius Philodromidae Philodromus Philodromus peninsulanus Philodromus rufus vibrans Philodromus validus Philodromus vulgaris Thanatus Thanatus striatus Phrurolithidae Phrurotimpus Phrurotimpus borealis Pisauridae Dolomedes Dolomedes tenebrosus Dolomedes triton Pisaurina Pisaurina mira Salticidae Eris Eris militaris Hentzia Hentzia mitrata Naphrys Naphrys pulex Pelegrina Pelegrina proterva Tetragnathidae Tetragnatha 2 Tetragnatha caudata Tetragnatha shoshone Tetragnatha straminea Tetragnatha viridis -
B COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072 of 28 November 2019 Establishing Uniform Conditions for the Implementatio
02019R2072 — EN — 06.10.2020 — 002.001 — 1 This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authentic versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. Those official texts are directly accessible through the links embedded in this document ►B COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019 (OJ L 319, 10.12.2019, p. 1) Amended by: Official Journal No page date ►M1 Commission Implementing Regulation (EU) 2020/1199 of 13 August L 267 3 14.8.2020 2020 ►M2 Commission Implementing Regulation (EU) 2020/1292 of 15 L 302 20 16.9.2020 September 2020 02019R2072 — EN — 06.10.2020 — 002.001 — 2 ▼B COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019 Article 1 Subject matter This Regulation implements Regulation (EU) 2016/2031, as regards the listing of Union quarantine pests, protected zone quarantine pests and Union regulated non-quarantine pests, and the measures on plants, plant products and other objects to reduce the risks of those pests to an acceptable level. -
First Report of Onion Yellow Dwarf Virus and Allexivirus Associated with Noble Garlic in Itajai Valley, Santa Catarina State, Brazil
First report of Onion yellow dwarf virus and Allexivirus associated with noble garlic in Itajai Valley, Santa Catarina State, Brazil Edivânio Rodrigues de Araújo1; Fábio Satoshi Higashikawa1; Mirtes Freitas Lima2 1Epagri/Estação Experimental de Ituporanga, Estrada Geral Lageado Águas Negras, 453, CEP: 88400-000, Ituporanga-SC, Brazil. 2Embrapa Hortaliças, Rodovia BR-060, Km 09 (Brasília/Anápolis), Fazenda Tamanduá, CEP: 70275-970, Brasília-DF, Brazil. Autor para correspondência. Edivânio Rodrigues de Araújo ([email protected]) Data de chegada: 04/04/2017. Aceito para publicação em: 04/11/2017. 10.1590/0100-5405/178028 Figure 1. Symptomatic leaves of garlic (Allium sativum L.) plants exhibiting yellowing mosaic caused by viruses, 29 days after planting, collected at Epagri/Ituporanga Experimental Station, Itajai Valley, Santa Catarina, Brazil. A - Symptoms on leaves of infected plants observed in the field. B - Symptomatic leaves collected from virus-infected plants for diagnosis. Garlic (Allium sativum L.) is the second most economically were infected by potyviruses and carlaviruses (2). It is noteworthy that important Allium species in Brazil, which produced 130.4 thousand there is no available information on viruses associated with garlic in tons in 2016. The state of Santa Catarina (SC) contributed with the Itajai Valley region. Therefore, this study represents a contribution approximately 20% of this production (4). In the country, planting of to the knowledge of virus occurrence in garlic fields in this region. noble garlic started in SC in 1970. Nowadays, SC stands out as the Plants of noble garlic, cultivars Ito and Quitéria, exhibiting yellow second largest national garlic producer, after the state of Minas Gerais mosaic symptoms on the leaves, were observed in fields at Epagri/ (4). -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2021-01 General 2021/001 New data on quarantine pests and pests of the EPPO Alert List 2021/002 Update on the situation of quarantine pests in the Russian Federation 2021/003 Update on the situation of quarantine pests in Tajikistan 2021/004 Update on the situation of quarantine pests in Uzbekistan 2021/005 New and revised dynamic EPPO datasheets are available in the EPPO Global Database Pests 2021/006 Anoplophora glabripennis eradicated from Austria 2021/007 Popillia japonica is absent from Germany 2021/008 First report of Scirtothrips aurantii in Spain 2021/009 Agrilus planipennis found in Saint Petersburg, Russia 2021/010 First report of Spodoptera frugiperda in Syria 2021/011 Spodoptera frugiperda found in New South Wales, Australia 2021/012 Spodoptera ornithogalli (Lepidoptera Noctuidae - yellow-striped armyworm): addition to the EPPO Alert List 2021/013 First report of Xylosandrus compactus in mainland Spain 2021/014 First report of Eotetranychus lewisi in mainland Portugal 2021/015 First report of Meloidogyne chitwoodi in Spain 2021/016 Update on the situation of the potato cyst nematodes Globodera rostochiensis and G. pallida in Portugal Diseases 2021/017 First report of tomato brown rugose fruit virus in Belgium 2021/018 Update on the situation of tomato brown rugose fruit virus in Spain 2021/019 Update on the situation of Acidovorax citrulli in Greece with findings -
Clavibacter Michiganensis Subsp
Bulletin OEPP/EPPO Bulletin (2016) 46 (2), 202–225 ISSN 0250-8052. DOI: 10.1111/epp.12302 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/42 (3) Diagnostics Diagnostic PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2004-09. Clavibacter michiganensis subsp. michiganensis.1,2 Revision adopted in 2012-09. Second revision adopted in 2016-04. The diagnostic procedure for symptomatic plants (Fig. 1) 1. Introduction comprises isolation from infected tissue on non-selective Clavibacter michiganensis subsp. michiganensis was origi- and/or semi-selective media, followed by identification of nally described in 1910 as the cause of bacterial canker of presumptive isolates including determination of pathogenic- tomato in North America. The pathogen is now present in ity. This procedure includes tests which have been validated all main areas of production of tomato and is quite widely (for which available validation data is presented with the distributed in the EPPO region (EPPO/CABI, 1998). Occur- description of the relevant test) and tests which are currently rence is usually erratic; epidemics can follow years of in use in some laboratories, but for which full validation data absence or limited appearance. is not yet available. Two different procedures for testing Tomato is the most important host, but in some cases tomato seed are presented (Fig. 2). In addition, a detection natural infections have also been recorded on Capsicum, protocol for screening for symptomless, latently infected aubergine (Solanum dulcamara) and several Solanum tomato plantlets is presented in Appendix 1, although this weeds (e.g. -
Implementation of Recommendations on Invasive Alien Species / Mise En Œuvre Des Recommandations Sur Les Espèces Exotiques Envahissantes
Strasbourg, 13 May 2011 T-PVS/Inf (2011) 3 [Inf03a_2011.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Bern Convention Group of Experts on Invasive Alien Species / Groupe d’experts de la Convention de Berne sur les espèces exotiques envahissantes St. Julians, Malta (18-20 May 2011) / St Julians, Malte (18-20 mai 2011) __________ Implementation of recommendations on Invasive Alien Species / Mise en œuvre des recommandations sur les espèces exotiques envahissantes National reports and contributions / Rapports nationaux et Contributions-- Document prepared by the Directorate of Culture and of Cultural and Natural Heritage This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2011) 3 - 2 - CONTENTS / SOMMAIRE __________ 1. Armenia / Arménie ................................................................................................................ 3 2. Belgium / Belgique ................................................................................................................ 7 3. France / France....................................................................................................................... 16 4. Ireland / Irlande...................................................................................................................... ²19 5. Italy / Italie............................................................................................................................ -
2003Session3.Pdf
THE SITUATION OF GRAPEVINE YELLOWS AND CURRENT RESEARCH DIRECTIONS: DISTRIBUTION, DIVERSITY, VECTORS, DIFFUSION AND CONTROL E. Boudon-Padieu Biologie et écologie des phytoplasmes, UMR 1088 Plante Microbe Environnement, INRA – Université de Bourgogne, Domaine d’Epoisses, BP 86510 – 21065 Dijon Cedex France Grapevine yellows (GY) are known now for 50 years. After the first appearance of Flavescence dorée (FD) in West-South France in the 1950’s, similar diseases have been observed in vineyards of other regions or countries (22) in Europe, North-America, Asia Minor and Australia. Typical symptoms are leaf rolling and discoloration of veins and laminae, uneven or total lack of lignification of canes, flower abortion or berry withering. Eventually, severe decline and death occur with sensitive varieties or with particular GY diseases. All these diseases have been associated with phytoplasmas. Phytoplasmas, discovered in 1967, are wall-less intracellular bacterias restricted to phloem sieve tubes and transmitted only by vector insects in which they multiply and circulate. Recently, comparisons of conserved regions in their genomic DNA, have permitted to classify all known phytoplasmas into about 20 groups and subgroups within a monophyletic clade in the Class Mollicutes, closest to the Acholeplasma clade (57, 78). Numerous DNA probes have been designed that permit diagnosis and identification of phytoplasmas in plant tissues and in insects. This, together with transmission assays, has also permitted the recent identification of new phytoplasma vectors. Though Koch’s postulate cannot be fully satisfied with non-culturable pathogen agents, it is now considered that phytoplasmas are responsible for typical GY symptoms. These conclusions have been reached because of transmission experiments with natural vectors in the case of Flavescence dorée (FD) and Bois noir (BN), of the similarity of symptoms caused world wide by GY diseases on numerous grapevine cultivars and of consistent detection of phytoplasmas in affected grapevines and in infective insect vectors. -
First Report of Onion Yellow Dwarf Virus, Leek Yellow Stripe Virus, and Garlic Common Latent Virus in Garlic in Washington State
Plant Disease Note 2005 | First Report of Onion yellow dwarf virus, Leek ye... stripe virus, and Garlic common latent virus in Garlic in Washington State Overview Current Issue Past Issues Search PD Search APS Journals Sample Issue Buy an Article Buy a Single Issue CD-Roms Subscribe Acceptances Online e-Xtras For Authors Editorial Board Acrobat Reader Back First Report of Onion yellow dwarf virus, Leek yellow stripe virus, and Garlic common latent virus in Garlic in Washington State. H. R. Pappu, Department of Plant Pathology, Washington State University, Pullman 99164; B. C. Hellier and F. M. Dugan, USDA-ARS, Western Regional Plant Introduction Station, Washington State University, Pullman 99164. Plant Dis. 89:205, 2005; published on-line as DOI: 10.1094/PD-89-0205C. Accepted for publication 23 November 2004. Washington State ranks fourth in the country in garlic (Allium sativum) production (2). The impact of viruses on garlic production may be significant in The American Washington State, but little is known about the occurrence or identity of Phytopathological Society (APS) is a non-profit, specific viruses (2). The USDA-ARS Western Regional Plant Introduction professional, scientific Station (WRPIS) collects, maintains, and distributes garlic accessions. As part organization dedicated to of the regeneration process, accessions are grown in field conditions at the the study and control of WRPIS farm in Pullman, WA. In June 2004, several WRPIS accessions plant diseases. developed symptoms indicative of viral infection, primarily chlorotic spots and Copyright 1994-2006 yellow stripes on leaves and scapes. Cultivars Georgia Fire and Georgia Crystal The American showed more than 90% incidence of symptomatic plants. -
Population Dynamics and Dispersal of Scaphoideus Titanus from Recently Recorded Infested Areas in Central-Eastern Italy
Bulletin of Insectology 67 (1): 99-107, 2014 ISSN 1721-8861 Population dynamics and dispersal of Scaphoideus titanus from recently recorded infested areas in central-eastern Italy 1 1 1 2 2 2 Paola RIOLO , Roxana Luisa MINUZ , Lucia LANDI , Sandro NARDI , Emanuela RICCI , Marina RIGHI , 1 Nunzio ISIDORO 1Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy 2Agenzia per i Servizi nel Settore Agroalimentare delle Marche (ASSAM), Servizio Fitosanitario Regione Marche, Osimo Stazione, Italy Abstract We investigated the presence of the leafhopper Scaphoideus titanus Ball in the Marche region, central Italy, during a 10-year sur- vey. Furthermore, from 2009 to 2011, yellow sticky traps were deployed to investigate the population dynamics. Taylor‟s power law and distance-weighted least-squares contour maps were used to determine the leafhopper distribution within vine fields. Po- lymerase chain reaction was used to detect Flavescence doreé (FD) phytoplasma in insect bodies. The leafhopper was first re- corded in 2007 in a commercial nursery of scion mother vines (1 specimen) in southern Pesaro-Urbino province and in 2009 in a commercial vineyard (1 specimen; the FD focus) in north-eastern Pesaro-Urbino. Adults (total, 301) were recorded from end of June to end of September, 2009-2011, with a shifted flight activity observed for females. Male captures were more abundant than females (M:F = 1.71; p < 0.001). In the site including the FD focus, insecticide treatments contributed to very low leafhopper population levels: only a few individuals (n = 4) were caught, and no phytoplasma were detected in their bodies. -
Sensitive and Specific Detection of Pseudomonas Avellanae Using
J. Phytopathology 149, 527±532 (2001) Ó 2001 Blackwell Wissenschafts-Verlag, Berlin ISSN 0931-1785 Istituto Sperimentale per la Frutticoltura, Ciampino Aeroporto, Roma, Italy Sensitive and Speci®c Detection of Pseudomonas avellanae using Primers based on 16S rRNA Gene Sequences M. SCORTICHINI* and U. MARCHESI Authors' address: Istituto Sperimentale per la Frutticoltura, Via di Fioranello, 52, I-00040 Ciampino Aeroporto, Rome, Italy (correspondence to M. Scortichini. E-mail: [email protected]) With 4 ®gures Received January 1, 2001; accepted May 1, 2001 Keywords: Pseudomonas avellanae, 16S rRNA gene, detection, hazelnut decline, primers Abstract up to some years. The detection of P. avellanae is A rapid polymerase chain reaction (PCR)-based proce- currently based either on traditional techniques that dure was developed for the detection of Pseudomonas include pathogenicity tests which require at least avellanae, the causal agent of hazelnut (Corylus avellana) 6±7 months for the completion or on repetitive-PCR decline in northern Greece and central Italy. The partial using the ERIC primers and requiring the isolation and sequence of the 16S rRNA gene of P. avellanae strain the production of pure cultures (Scortichini et al., PD 2390, isolated in central Italy, was compared with 2000a). The latter procedure can be completed in the sequence coding for the same gene of P. syringae pv. 4±6 days but latent infection cannot be detected. The syringae type-strain LMG 1247t1. Primers PAV 1 and possibility of utilizing a diagnostic technique enabling a PAV 22 were chosen, and after the PCR, an ampli®ca- reliable and rapid screening of the propagative material, tion product of 762 base pairs was speci®cally produced can also support the establishing of new hazelnut only by 40 strains of P. -
Insect Vectors of Phytoplasmas - R
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Insect Vectors of Phytoplasmas - R. I. Rojas- Martínez INSECT VECTORS OF PHYTOPLASMAS R. I. Rojas-Martínez Department of Plant Pathology, Colegio de Postgraduado- Campus Montecillo, México Keywords: Specificity of phytoplasmas, species diversity, host Contents 1. Introduction 2. Factors involved in the transmission of phytoplasmas by the insect vector 3. Acquisition and transmission of phytoplasmas 4. Families reported to contain species that act as vectors of phytoplasmas 5. Bactericera cockerelli Glossary Bibliography Biographical Sketch Summary The principal means of dissemination of phytoplasmas is by insect vectors. The interactions between phytoplasmas and their insect vectors are, in some cases, very specific, as is suggested by the complex sequence of events that has to take place and the complex form of recognition that this entails between the two species. The commonest vectors, or at least those best known, are members of the order Homoptera of the families Cicadellidae, Cixiidae, Psyllidae, Cercopidae, Delphacidae, Derbidae, Menoplidae and Flatidae. The family with the most known species is, without doubt, the Cicadellidae (15,000 species described, perhaps 25,000 altogether), in which 88 species are known to be able to transmit phytoplasmas. In the majority of cases, the transmission is of a trans-stage form, and only in a few species has transovarial transmission been demonstrated. Thus, two forms of transmission by insects generally are known for phytoplasmas: trans-stage transmission occurs for most phytoplasmas in their interactions with their insect vectors, and transovarial transmission is known for only a few phytoplasmas. UNESCO – EOLSS 1. Introduction The phytoplasmas are non culturable parasitic prokaryotes, the mechanisms of dissemination isSAMPLE mainly by the vector insects. -
Molecular Analysis of the 3' Terminal Region of Onion Yellow Dwarf
Phytopathologia Mediterranea (2014) 53, 3, 438−450 DOI: 10.14601/Phytopathol_Mediterr-14027 RESEARCH PAPERS Molecular analysis of the 3’ terminal region of Onion yellow dwarf virus from onion in southern Italy 1,2 3 3 1 1 ARIANA MANGLLI , HEYAM S. MOHAMMED , ADIL ALI EL HUSSEIN , GIOVANNI E. AGOSTEO , GIULIANA ALBANESE 2 and LAURA TOMASSOLI 1 Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89122, Reggio Calabria, Italy 2 Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Plant Pathology Research Centre, Via C. G. Bertero 22, 00156, Roma, Italy 3 Department of Botany, Faculty of Science, University of Khartoum, PO Box 321 11115, Khartoum, Sudan Summary. Onion yellow dwarf virus (OYDV) is an economically important pathogen causing severe disease in gar- lic, onion and other Allium crops. Eleven isolates of OYDV, all from onion originating from Calabria, southern Italy, were genetically analyzed. An OYDV onion isolate from Sudan was also included in this study. The 3’ terminal region of about 2.5 kb of the twelve isolates were sequenced and the sequences comprising a part of the nuclear in- clusion a (NIa-Pro), the complete nuclear inclusion b (NIb) and coat protein (CP) genes and the 3’ untranslated re- gion (3’UTR), were compared to each other and to corresponding sequences of other OYDV isolates from different countries and Allium hosts. The within-population nucleotide identity of the Italian OYDV onion isolates was very high (more than 99.3%), whereas nucleotide identity between them and OYDV onion isolates from Germany was 94%, Argentina 92% and Sudan 87%.