Standardization in Spectrophotometry and Luminescence Measurements

Total Page:16

File Type:pdf, Size:1020Kb

Standardization in Spectrophotometry and Luminescence Measurements TECH R l-C NAT L INST. Of STAND & AlllOM QblH14 iMJIJWilDinfnm i tm n TIMtTmTiT Standardization in Spectrophotometry and Luminescence Measurements Proceedings of a Workshop Seminar Held at the National Bureau of Standards Gaithersburg, Maryland, November November 19-20, 1975 Edited by: K.D. Mielenz, R.A. Velapoldi, and R. Mavrodineanu Analytical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D.C. 20234 U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director Issued May 1977 Library of Congress Cataloging in Publication Data Workshop Seminar on Standardization in Spectrophotometry and Luminescence Measurements, National Bureau of Standards, 1975. Standardization in spectrophotometry and luminescence measure- ments. (NBS special publication ; 466) "Organized by the Analytical Chemistry Division, Institute for Materials Research, at the National Bureau of Standards." "Reprinted from the National Bureau of Standards Journal of Re- search, Section A. Physics and Chemistry, vol. 80 A, nos. 3 and 4, May- June, and July-Aug. 1976." Supt. of Docs. no. C13. 10:466 1. Spectrophotometry-Cnngresses. 2. Fluorimetry-Congresses. 3. Phosphorimetry—Congresses. I. Mielenz, K. D. II. Velapoldi, R. A. III. Mavrodineanu, Radu, 1910- IV. United States. National Bureau of Standards. Analytical Chemistry Division. V. Title. VI. Series: United States. National Bureau of Standards. Special publication ; 466. QC100.U57 no. 466 [QD79.P46] 602'. Is [543'.085] 77-4739 Library of Congress Catalog Card Number: National Bureau of Standards Special Publication 466 Nat. Bur. Stand. (U.S.), Spec. Publ. 147, 155 pages (May 1977) CODEN: XNBSAV Reprinted from the National Bureau of Standards Journal of Research, Section A. Physics and Chemistry Vol. 80A, Nos. 3 and 4, May-June, and July-Aug. 1976. U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13. 10:466). Stock No. 003-003-01791-4 - Price $5.25 (Add 25 percent additional for other than U.S. mailing). Abstract This volume contains 15 papers presented at the Workshop Seminar on Standardization in Spectrophotometry and Luminescence Measurements organized by the Analytical Chemistry Division, Institute for Materials Research, at the National Bureau of Standards, and held from November 19 to 20, 1975. These papers discuss the problems encountered where accurate measurements are required in the fields of luminescence quantum yields, diffuse reflectance spectroscopy, and ultraviolet absorption spectrometry. They also define the needs for standardization of measurements in these fields and suggest materials that could be used as Standard Reference Materials. Con- siderations on some applications of such standards in the field of environmental pollution and health are included. Key words: Accuracy; critical parameters; diffuse reflectance; fluorescence; instrumentation; luminescence; quantum yield; spectrophotometry; Standard Reference Materials; standardization. Ill Foreword A major function of the Institute for Materials Research of the National Bureau of Standards is the development of Standard Reference Materials (SRM's). These are: well characterized materials that can be used to calibrate a measurement system or to produce scientific data which can be re- ferred to a common base. In order to assure that these SRM's meet real needs and are certified to a realistic degree of accuracy, the Institute for Materials Research has sponsored a series of 'Workshop Seminars' in which leading domestic and foreign experts meet with NBS staff members to define the state of the art and to establish priorities for future efforts. The Workshop Seminar on 'Standardization in Spectrophotometry and Luminescence Measure- ments' was organized by the Analytical Chemistry Division, and was held at the National Bureau of Standards in Gaithersburg, Md., on November 19 and 20, 1975. Approximately forty participants, coming from seven different countries and representing industries, universities, as well as standard- izing laboratories, gathered to exchange ideas on improved standards and measurement techniques. Three specific topics were discussed: luminescence quantum yields, diffuse reflectance spectroscopy, and ultraviolet absorption spectrometry. The fifteen papers given represented the points of view of chemists and physicists using these techniques for widely different applications: analytical and clini- cal chemistry, photochemistry, photometry and colorimetry, laser physics, and space research. Previous work in our Division has resulted in the development of several SRM's for spectro- photometry and luminescence spectrometry: neutral density filters for verifying the transmittance accuracy of spectrophotometers, liquid absorbance standards for the uv and visible, calibrated quartz cuvettes as pathlength standards for absorption spectrometry, and fluorescence emission standards to calibrate the spectral responsivity of luminescence spectrometers. These Proceedings will provide the basis for further progress. Philip D. LaFleur, Chief Analytical Chemistry Division January 1977 IV Preface Due to advances in optical instrumentation, electronics, and computer technology, spectrophoto- metry and luminescence measurements can now be performed with a precision that frequently ex- ceeds the accuracy of the results by a wide margin. The achievement of comparable accuracies requires improved standards as well as a better understanding of the measurement process. Thus, in organizing this Workshop Seminar on 'Standardization in Spectrophotometry and Luminescence Meas- urements' at NBS, we have endeavored to provide an interdisciplinary forum for chemists and physicists to present their views on how to achieve this goal. In this manner, we could learn from one another and, perhaps, also close the communications gap that sometimes appears to exist in these fields. The first part of these proceedings contains five invited papers on the measurement of lumines- cence yields. The introductory paper by J.B. Birks reviews the basic principles of fluorescence spec- trometry and defines the parameters to be measured. A. Bril and A.W. de Jager-Veenis discuss radiometric methods of luminescence efficiency measurements, J.N. Demas and B.H. Blumenthal describe the actinometric determination of luminescence quantum yields, and J.B. Callis illustrates the use of calorimetric techniques. In the final paper of this section, K.H. Drexhage discusses the chemistry of fluorescent dyes and proposes new fluorescence standards. In the section on diffuse reflectance spectroscopy, R.W. Frei reviews the numerous applications of this technique and H.G. Hecht summarizes the theories that are used for interpreting the results obtained. W. Budde discusses the calibration of diffuse reflectance standards, and J.B. Schutt and G.J. Buffone present practical examples of this technique in space technology and clinical chemistry. Errors in spectrophotometry and standards used to avoid them are discussed by A.G. Reule and A.R. Robertson. The suitability of potassium dichromate solutions as ultraviolet absorbance standards is demonstrated by R.W. Burke and R. Mavrodineanu. Considerations on semi-reflecting metallic films as transmittance standards are presented by R. Mavrodineanu, and the physical parameters that affect the properties of these metallic films are discussed by H.E. Bennett and J.L. Stanford. The important contributions of these authors are acknowledged with appreciation. The Workshop Seminar was planned and organized by K.D. Mielenz, R.A. Velapoldi and R. Mav- rodineanu (conference chairpersons), under the guidance of P.D. LaFleur (Chief, Analytical Chemistry Division) and J.R. DeVoe (Chief, Special Analytical Instrumentations Section), and with considerable help from R.B. Johnson, R.S. Maddox (Institute for Materials Research), S.R. Torrence (Office of Information Activities). E.S. Kershow, E.L. Zimmerman, and C.I. Wingo (Ana- lytical Chemistry Division). J.N. Demas (University of Virginia), G. Weber (University of Illinois). F. Grum and R.N. Rand (Eastman Kodak Co.) and R.W. Burke (NBS I served as conference co-chairpersons and discussion leaders. V The seminar had the encouragement of R.S. Melville ( Executive Secretary, National Institute of General Medical Sciences). NIGMS has also supported the development of advanced instrumen- tation for absorption and fluorescence spectrometry at NBS, and its use to develop and certify Standard Reference Materials for these fields. The fifteen papers reprinted in this volume were originally published in the Journal of Research of the National Bureau of Standards, 80A, 389-428 and 551-658 (1976). Special thanks are due to D.D. Wagman (Associate Editor, J. Res. NBS), W.R. Tilley, M.S. Reid, and M.V. Betizel (Office of Technical Publications) for their considerable efforts in publishing these papers. We hope that the collection of these papers in a single volume will be a worthy sequel to the Proceedings of the 1972 Conference on Accuracy in Spectrophotometry and Luminescence Meas- urements (NBS Special Publication 378, U.S. Govt. Print. Office, 1973). K. D. Mielenz R. A. Velapoldi R. Mavrodineanu January 1977 VI Contents Page Foreword iv Preface v Part 1. Luminescence Quantum Yields Fluorescence quantum yield measurements. J. B. Birks 1 Some methods of luminescence
Recommended publications
  • Protocol for Use of Differential Scanning Calorimeter (NSF/Epscor Proteomics Facility @ Brown University)
    MicroCal VP-DSC Geoff Stetson/ Page Laboratory/ 2007 Protocol for Use of Differential Scanning Calorimeter (NSF/EPSCoR Proteomics Facility @ Brown University) 1. Equipment (photos) 2. Getting Started Degasser - Turn on the degasser. - Make sure the metal valve on the top of the lid is closed. - Set the temperature to 20-25°C. - Place a small stir bar in a couple of plastic vials. - Fill vials 2/3 full with Milli-Q water. - Place vials into slots on top of degasser. - Turn the stirrer speed knob to - 10 or 11 o’clock. - - Place the lid on firmly, and while pressing down turn on the degasser o (Note: If you flip the switch to on, the degasser will run until switched off. If the switch is flipped to timer, the degasser will run for eight minutes). - Degas the sample for 8-15 minutes. o Turn off the vacuum. - Open the metal valve on top of the lid in order to release the vacuum created underneath. - Remove the plastic vials. 1 MicroCal VP-DSC Geoff Stetson/ Page Laboratory/ 2007 DSC - Unscrew top. - Remove contents of of the sample cell and the reference cell using the glass filling syringe. o Insert the funnel into the top of the cell. o Slowly put the syringe into the cell until it gently touches the bar across the top of the funnel, then remove the liquid. Repeat. o (Note: Be careful when putting anything into the cells. The machine is extremely sensitive.) - Fill glass syringe with degassed Milli-Q water. - Rinse out both cells with the Milli-Q water (3x).
    [Show full text]
  • Soda Can Calorimeter
    Soda Can Calorimeter Energy Content of Food SCIENTIFIC SCIENCEFAX! Introduction Have you ever noticed the nutrition label located on the packaging of the food you buy? One of the first things listed on the label are the calories per serving. How is the calorie content of food determined? This activity will introduce the concept of calorimetry and investigate the caloric content of snack foods. Concepts •Calorimetry • Conservation of energy • First law of thermodynamics Background The law of conservation of energy states that energy cannot be created or destroyed, only converted from one form to another. This fundamental law was used by scientists to derive new laws in the field of thermodynamics—the study of heat energy, temperature, and heat transfer. The First Law of Thermodynamics states that the heat energy lost by one body is gained by another body. Heat is the energy that is transferred between objects when there is a difference in temperature. Objects contain heat as a result of the small, rapid motion (vibrations, rotational motion, electron spin, etc.) that all atoms experience. The temperature of an object is an indirect measurement of its heat. Particles in a hot object exhibit more rapid motion than particles in a colder object. When a hot and cold object are placed in contact with one another, the faster moving particles in the hot object will begin to bump into the slower moving particles in the colder object making them move faster (vice versa, the faster particles will then move slower). Eventually, the two objects will reach the same equilibrium temperature—the initially cold object will now be warmer, and the initially hot object will now be cooler.
    [Show full text]
  • T E M P E R a T U
    THE HIGH TEMPERATURE HEAT CONTENTS OP 0 MOLYBDENUM AND TITANIUM AND THE LOW TEMPERATURE HEAT CAPACITIES OP TITANIUM DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By CHARLES WILLIAM KOTHEN, B.A. // The Ohio State University 1952 Approved By: Adviser i TABLE OF CONTENTS E&gft INTRODUCTION ............................ 1 THEORETICAL ............................. 3 HISTORICAL .............................. 6 PART I The High Temperature Heat Contents of Molybdenum and Titahium ................... 13 Introduction ...................... 13 Apparatus .......................... 14 Measurements and Calculations ........ 32 Errors ... ......................... 45 Experimental Results ............... 49 PART II Low Temperature Heat Capacity of Titanium.. 61 Introduction ...................... 61 Apparatus ........................... 62 Measurements and Calculations ....... 71 Errors ................... 74 Experimental Results ............... 75 ACKNOWLEDGMENTS .......................... 80 APPENDIX I Physical Constants, Drop Calorimeter Data .... 61 APPENDIX II Low Temperature Calorimeter Data ..... 82 APPENDIX III Standard Lamp Calibration ............ 83 3182G G TABLE OF CONTENTS, (cont.) Page APPENDIX IV Bibliography ................. 85 AUTOBIOGRAPHY .......................... 89 iii LIST OF ILLUSTRATIONS 1 Vacuum Furnace 15 2 Dropping Mechanism 19 3 Improved Calorimeter 20 4. Modified Calorimeter, II 21 5 Drop Calorimeter Electrical Circuits
    [Show full text]
  • Adiabatic Dewar Calorimeter
    I.CHEM.E. SYMPOSIUM SERIES NO. 97 ADIABATIC DEWAR CALORIMETER T.K.Wright'and R.L.Rogers* A simple calorimeter has been developed that enables chemical reaction runaway conditions to be directly determined, under the low heat loss conditions found in full scale chemical plants. Since the calorimeter provides temperature time data in the near absence of environmental heat losses the data can be simply analysed to yield heats of reaction and chemical power output. The latter are used either in conjunction with plant natural cooling data to assess reactor stability or at higher temperatures to size reactor vents. If the reaction mechanisms are known or adequate assumptions can be made then the temperature-time data can also be processed to yield reaction kinetics constants for simulation purposes. Keywords: Hazards, Exotherms, Adiabatic Calorimeter, kinetics INTRODUCTION Evaluation of chemical reaction hazards requires the detection of exotherms/gas generation likely to lead to reactor overpressure. Some form of small scale scanning calorimetry is generally used for the initial detection of the exotherm and gas generation and a temperature of onset will be determined which is dependent on the sensitivity of the equipment, but on a 10-20gm scale exothermlcity will generally be detected at self heating rates of 2-10°C/hr - approximately 3-10 watts/lit. Depending on apparent exotherm size and proximity to process temperature or any likely excursions then secondary testing may be required to display more accurately (a) The minimum temperature above which the reactor will be unstable on the scale used. (b) The consequences of the exotherm - heat of reaction/adiabatic rise/ pressure developed/venting requirement.
    [Show full text]
  • Linseis Optical Dilatometer and Heating Microscope Brochure
    THERMAL ANALYSIS Optical Dilatometer DIL L74 Heating Microscope Since 1957 LINSEIS Corporation has been deliv- ering outstanding service, know how and lead- ing innovative products in the field of thermal analysis and thermo physical properties. Customer satisfaction, innovation, flexibility and high quality are what LINSEIS represents. Thanks to these fundamentals our company enjoys an exceptional reputation among the leading scientific and industrial organizations. LINSEIS has been offering highly innovative benchmark products for many years. The LINSEIS business unit of thermal analysis is involved in the complete range of thermo Claus Linseis analytical equipment for R&D as well as qual- Managing Director ity control. We support applications in sectors such as polymers, chemical industry, inorganic building materials and environmental analytics. In addition, thermo physical properties of solids, liquids and melts can be analyzed. LINSEIS provides technological leadership. We develop and manufacture thermo analytic and thermo physical testing equipment to the high- est standards and precision. Due to our innova- tive drive and precision, we are a leading manu- facturer of thermal Analysis equipment. The development of thermo analytical testing machines requires significant research and a high degree of precision. LINSEIS Corp. invests in this research to the benefit of our customers. 2 German engineering Innovation The strive for the best due diligence and ac- We want to deliver the latest and best tech- countability is part of our DNA. Our history is af- nology for our customers. LINSEIS continues fected by German engineering and strict quality to innovate and enhance our existing thermal control. analyzers. Our goal is constantly develop new technologies to enable continued discovery in Science.
    [Show full text]
  • Whitepaper Edgehd Optics
    A FLEXIBLE IMAGING PLATFORM AT AN AFFORDABLE PRICE Superior flat-field, coma-free imaging by the Celestron Engineering Team Ver. 04-2013, For release in April 2013. The Celestron EdgeHD A Flexible Imaging Platform at an Affordable Price By the Celestron Engineering Team ABSTRACT: The Celestron EdgeHD is an advanced, flat-field, aplanatic A skilled optician in a well-equipped optical shop can reliably series of telescopes designed for visual observation and imaging produce near-perfect spherical surfaces. Furthermore, by with astronomical CCD cameras and full-frame digital SLR comparing an optical surface against a matchplate—a precision cameras. This paper describes the development goals and reference surface—departures in both the radius and sphericity design decisions behind EdgeHD technology and their practical can be quickly assessed. realization in 8-, 9.25-, 11-, and 14-inch apertures. We include In forty years of manufacturing its classic Schmidt-Cassegrain cross-sections of the EdgeHD series, a table with visual and telescope, Celestron had fully mastered the art of making imaging specifications, and comparative spot diagrams for large numbers of essentially perfect spherical primary and the EdgeHD and competing “coma-free” Schmidt-Cassegrain secondary mirrors. designs. We also outline the construction and testing process for EdgeHD telescopes and provide instructions for placing sensors In addition, Celestron’s strengths included the production of at the optimum back-focus distance for astroimaging. Schmidt corrector plates. In the early 1970s, Tom Johnson, Celestron’s founder, perfected the necessary techniques. Before Johnson, corrector plates like that on the 48-inch 1. INTRODUCTION Schmidt camera on Palomar Mountain required many long The classic Schmidt-Cassegrain telescope (SCT) manufactured hours of skilled work by master opticians.
    [Show full text]
  • Simple Calorimeter for Heats of Fusion. Data on The
    U.S. Department of Commerce, Bureau of Standards RESEARCH PAPER RP607 Part of Bureau of Standards Journal of Research, Vol. 11, October 1933 A SIMPLE CALORIMETER FOR HEATS OF FUSION. DATA ON THE FUSION OF PSEUDOCUMENE, MESITYLENE (« AND 0), HEMIMELLITENE, o- AND m-XYLENE, AND ON TWO TRANSITIONS OF HEMIMELLITENE By Frederick D. Rossini abstract A vacuum flask with a thermoelement serves as a simple calorimeter for measuring heats of fusion quickly and economically, with an accuracy of a few percent. The following heats of fusion (with estimated uncertainties), in k-cal. per mole, were obtained: pseudocumene, — 44.1° C, 2.75±0.06; hemimelli- tene,-25.5° C, 2.00±0.05; mesitylene (a), — 44.8° C, 2.28±0.06; mesitylene (0), -51.7° C., 1.91±0.05; o-xylene,-25.3° C, 3.33±0.07; m-xylene,-47.9° C, 2.76 ±0.05. Hemimellitene was found to have two transitions below the freez- ing point, with the following heats of transition, in A>cal. per mole: hemimelli- tene (7-»0),-58±2° C.,0.28±0.04; hemimellitene (P^a),- 46 ± 1° C.,0.36±0.04. CONTENTS Page I. Introduction 553 II. Apparatus and method 553 III. Materials 554 IV. Standardization experiments 555 V. Experimental data 557 VI. Conclusion 559 I. INTRODUCTION The simple calorimeter described here was assembled in order to provide a means for measuring as quickly and economically as prac- ticable, and with an accuracy of a few percent, the heats of fusion of certain hydrocarbons for which there are no data.
    [Show full text]
  • The Measurement of Heat Release Rates by Oxygen Consumption Calorimetry in Fires Under Suppression
    The Measurement of Heat Release Rates by Oxygen Consumption Calorimetry in Fires Under Suppression BOGDAN Z. DLUGOGORSKI, JACK R. MAWHINNEY and VO HUU DUC National Research Counc~l,Institute for Research in Construction Ottawa, Ontario KIA OR6, Canada ABSTRACT A series of open-space fire experiments was conducted at the National Fire Laboratory (NFL) to validate the capabilities of the NFL room-size oxygen-consumption calorimeter, and to assess the importance of accounting for actual water vapour content in the exhaust gases in calculating heat release rates (HRR). Water spray was used to partially suppress some of the fires, and to add significantly to the humidity of the exhaust gases. The equations normally used in the fire research community for oxygen calorimeter assume unsuppressed fires, and that water vapour in the exhaust gases is due solely to the humidity of the incoming air and to combustion reactions. This paper derives the basic equations for computing heat release rates based on the principle of nitrogen balance. The general equations take into account all sources of water vapour, including incoming air, combustion reactions, and evaporation due to suppression. The equations are then simplified to i) neglect all humidity, and, ii) consider only the humidity of the incoming air. The predictions of the HRR from the three sets of equations are compared with the HRR calculated for unsuppressed fires and with the HRR obtained by measuring fuel consumption rates. As long as the water vapour content in the exhaust gases is less than 7 %, both simplified equations can be used to measure the HRR of partially suppressed fires, without significant error.
    [Show full text]
  • Calorimetry Lab
    P31220 lab Calorimetry Lab Purpose: Students will measure latent heat and specific heat. PLEASE READ the entire handout before starting. You won’t know what to do unless you understand how it works! Introduction: Calorimetry is the art of measuring energy. For example, determining how many calories are in a cheeseburger is done with a device called a “bomb calorimeter.” A sample of the food is burned in a closed container that is surrounded by water. The energy content of the food is determined from the temperature increase of the water jacket that surrounds the combustion chamber. In this lab, you will do two classic calorimetry experiments: measuring the latent heat of fusion of water, and measuring the specific heat capacities of two different metals. Both experiments will use the same apparatus. Apparatus: Fig. 1 shows the construction of the basic calorimeter. The calorimeter is designed to minimize heat flow between the inner cup and the outside world. Conduction of heat is eliminated by supporting the inner cup only by the thin, insulating phenolic (a type of plastic) ring, and by providing an insulating air space around the cup. Convection is eliminated by blocking air circulation with the solid ring and the lid. Radiation is eliminated by making the inner cup and outer jacket out of aluminum, which is mirror- bright to infrared radiation. Fig. 1: The calorimeter. To use the calorimeter, the inner cup is half filled with a known mass of water, and the temperature is measured. The sample is added, the temperature is measured again, and the desired quantity (latent heat or specific heat) is calculated.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,792,003 B2 Volodin Et Al
    US007792003B2 (12) United States Patent (10) Patent No.: US 7,792,003 B2 Volodin et al. (45) Date of Patent: Sep. 7, 2010 (54) METHODS FOR MANUFACTURING 4,057,408 A 1 1/1977 Pierson et al. ................. 65/18 VOLUME BRAGGGRATING ELEMENTS 4,095,875. A 6/1978 Lee et al. .......... ... 350,320 (75) Inventors: Boris Leonidovich Volodin, West 4,215.937 A 8, 1980 Borsuk ...................... 356,731 Windsor, NJ (US): Sergei Dolgy 4,239,333. A 12, 1980 Dakss et al. ............. 350/96.21 Lambertville, NJ (US), Vladimir S. Ban, 4,398,797 A 8/1983 Wedertz et al. ............. 385,137 Princeton, NJ (US) 4,514,053 A 4, 1985 Borrelli et al. ........... 350,162.2 (73) Assignee: PD-LD, Inc., Pennington, NJ (US) 4,747,657. A 5/1988 Chaoui et al. .............. 350,962 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 358 days. (Continued) (21) Appl. No.: 12/127,590 FOREIGN PATENT DOCUMENTS ppl. No.: 9 EP O 310 438 A1 4f1989 (22) Filed: May 27, 2008 (65) Prior Publication Data US 2008/O225672 A1 Sep. 18, 2008 (Continued) Related U.S. Application Data OTHER PUBLICATIONS (62) Division of application No. 10/947,990, filed on Sep. Borgman, V.A., et al., “Photothermal refractive effect in silicate 23, 2004, now Pat. No. 7,391,703. glasses.” Sov. Phys. Dokl., Nov. 1989, 1011-1013. (60) Provisional application No. 60/506,409, filed on Sep. (Continued) 26, 2003. Primary Examiner Thang V Tran (51) Int.
    [Show full text]
  • 040 Heat of Hydration
    Heat of hydration HEAT OF HYDRATION. SEMI ADIABATIC METHOD Standard EN 196-9 COMPUTERIZED LANGAVANT CALORIMETER. Ref. 111-101238 For the determination of cement heat hydration. Features This equipment comprises a computerized system for the automatic data acquisition during the test. Test data can be managed by means of a specific test software WinLec32 (Test-Lang version), developed specifically by the R&D IBERTEST Dept. for the Langavant method. The system automates data collection and performs the calculations required by computer, thus avoiding possible errors in the manual data collection, providing test results provided reliable and reproducible. The test results are stored on computer files and can be retrieved at any time for reporting, comparison, statistical analysis, etc. The minimun configuration comprises the following elements › Set of 2 isolated calorimeter bottles (one for reference), supplied with official calibration certificate. › Set of 2 temperature probes type Pt-100, supplied with official calibration certificate. › Set of 50 disposable mortar test cans. › Electronic module, with 4 measuring channels, for connecting up to 4 calorimeter bottles to the PC (3 for testing + 1 for temperature reference). The module is linked to the PC via USB 2.0 › Next-generation PC (dual-core microprocessor or higher), keyboard, mouse, TFT widescreen, Windows® operating system, manuals and licenses. › WinLec32 IBERTEST Software License (Version Test-Lang), preinstalled on the provided PC, running on Windows® NOTE: All the calorimeter bottles have been calibrated and certified by the “Laboratoire Regional Ponts et Chaussées”. Each bottle is individually marked and comprises a metallic plate indicating its heat loss coefficient and heat mass.
    [Show full text]
  • Technology Data Sheet Nuclear Material (NM)
    IPNDV Working Group 3: Technical Challenges and Solutions Nuclear Material (1)—Technology Data Sheet September 14, 2016 Nuclear Material (NM) Technology Name: Calorimetry Physical Principle/Methodology of Technology: Calorimetry measures the thermal power output of heat-producing NM. The heat results from the radioactive decay of isotopes by alpha particle emission (for most Pu isotopes and 241Am) and by beta decay (for 241Pu and Tritium). 239Pu for instance decays to 235U with the emission of an alpha particle and releasing 5.15 MeV in energy. The energy loss through the emission of spontaneous fission neutrons on the other hand is many orders of magnitude smaller than the total disintegration of energy and loss due to gamma ray emission, representing only a small percent of the total disintegration energy of Pu isotopes. Calorimetry is most commonly used for Pu measurements due to the high heat output of most Pu isotopes. In addition, the build-up of 241Am as Pu ages significantly increases the power output. It is also possible to measure highly enriched uranium (HEU) when there is a high enough 234U content. For reference, isotopes that emit relatively large amounts of heat include 238Pu (560 W/kg), 239Pu (1.9 W/kg), 240Pu (6.8 W/kg), 241Pu (4.2 W/kg), 241Am (114 W/kg), and 234U (0.2 W/kg). Thermal powers ranging from 0.1 mW to 1000 W can be measured with calorimetry. Used independently, calorimetry confirms that an item emits heat and determines how much heat is being emitted. The heat measurement is very accurate and precise.
    [Show full text]