The Evolution of Chorionic Ultrastructure, Delayed Hatching, and Desiccation Tolerance in Annual Killifishes

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Chorionic Ultrastructure, Delayed Hatching, and Desiccation Tolerance in Annual Killifishes The Evolution of Chorionic Ultrastructure, Delayed Hatching, and Desiccation Tolerance in Annual Killifishes. by Andrew William Thompson B.S. in Biology, December 2009, Clarion University of Pennsylvania A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 31, 2017 Guillermo Ortí Louis Weintraub Professor of Biological Sciences The Columbian College of Arts and Sciences of The George Washington University certifies that Andrew William Thompson has passed the Final Examination for the degree of Doctor of Philosophy as of August 1, 2016. This is the final and approved form of the dissertation. The Evolution of Chorionic Ultrastructure, Delayed Hatching, and Desiccation Tolerance in Annual Killifishes. Andrew William Thompson Dissertation Research Committee: Guillermo Ortí, Louis Weintraub Professor of Biological Sciences, Dissertation Director. Jason E. Podrabsky, Professor and Chair, Department of Biology, Portland State University, Committee Member. Jeremy Goecks, Assistant Professor of Computational Biology, Committee Member. ii Copyright 2016 by Andrew William Thompson All rights reserved iii Dedication To Jacqueline for being my compass needle towards adventure and my infinite source of strength. To Rian for being my partner in crime. To Mom for encouraging me to always dream bigger. To Dad for showing me that nature is beautiful. To Grandma for our trips to the creek. To Pap for his faith in me. To Uncle Jeff for showing me the honor in hard work. To Aunt Pam for teaching me that science is cool. To Uncle Michael for always finding me when I am away from home. To John and Kate for welcoming me into their family. To Aunt Barb for teaching me that kindness is everything. iv Acknowledgements I have had an incredible amount of support along my way. I thank Andrew Turner at Clarion University for realizing my passion as a freshman and getting me an early start in research. His guidance and mentorship helped paved my way to a Ph.D. I thank all of my friends and colleagues at George Washington University especially Jesus “Chuy” Ballesteros and my labmates Lily Hughes, Daniela Campanella, and Dahiana Arcila for their constant support. Thanks to Robert Kallal, Thiago Moreira, Diana Lipscomb and Gustavo Hormiga for all of their help with the electron microscope. I thank Cori Stone, Anais Hayes, and Kerry Mullaney for all of their help in the laboratory. I am grateful for the mentorship of Ricardo Betancur that was immensely important during that first year of graduate school. I am grateful for the kindness and expertise of Jason Podrabsky, Claire Riggs, and Amie Romney as they welcomed me into their lab and showed me the ways of the killifish. Many thanks to Andrew Furness for donating tissues and specimens. I thank my friends in Brazil for a wonderful collection trip and making me feel at home in a foreign country: Claudio Olivera, Ricardo Britzke, and Jefferson Henriques. I am indebted to my thesis committee members Lynne Parenti, Keith Crandall, and Jeremy Goecks for their guidance. I thank Berkeley Davenport at Children’s National Medical Center for all of his help with sequencing. I thank my wife Jacqueline for all of her help with killifish husbandry. Lastly, I thank my advisor Guillermo Ortí for his confidence in my abilities and his willingness to take on such a different and novel project. I have learned an incredible amount under his leadership. v Abstract of Dissertation The Evolution of Chorionic Ultrastructure, Delayed Hatching, and Desiccation Tolerance in Annual Killifishes Fishes are the most diverse vertebrates on the planet with over 33,000 species. They have colonized every major body of water from caves, toxic environments, the deepest oceans, to temporary pools. Some species in these extreme environments belong to a group of fishes known as killifishes (Cyprinodontiformes: Aplocheiloidei). Often popular pets, killifishes contain over 700 species. These small, colorful fish can be found in habitats inhospitable to all other species of fishes. Killifishes inhabit seasonal pools that dry up, resulting in the death of all adults in the pond. The population is able to survive dry periods as embryos with specialized egg envelopes, unique diapause stages, and desiccation tolerance. We use an integrative approach of scanning electron microscopy (SEM), comparative transcriptomics, and phylogenomics to investigate the evolutionary patterns and genetic processes that led to the evolution of this remarkable trait. We present new data and inferences on egg structure of multiple lineages, hundreds of candidate genes involved diapause and desiccation tolerance, as well as a robust phylogenomic hypothesis for Aplocheiloidei. Specifically, we document egg structure in 52 aplocheiloid species for the first time with SEM. We examine the convergence/parallelism of egg structural characters in a phylogenetic framework. In addition, we use whole transcriptomes to study the evolution of annualism in Aplocheiloidei. Specifically, we find evidence of transcriptional convergence in dormancy across metazoa after identifying significantly differentially expressed transcripts during diapause in the annual killifish Nematolebias whitei. We also identify vi differentially expressed genes during delayed hatching and desiccation tolerance in the non-annual killifish Aplocheilus lineatus providing evidence that delayed hatching is not a form of dormancy. Lastly, we construct a species tree of Aplocheiloidei with 8,000 orthologous loci and verify the convergent/parallel evolution of annualism with “big data.” vii Table of Contents Dedication ..................................................................................................................... iv Acknowledgments .......................................................................................................... v Abstract of Dissertation ................................................................................................ vi List of Figures ............................................................................................................... ix List of Tables ................................................................................................................. x Chapter 1 ........................................................................................................................ 1 Chapter 2 ........................................................................................................................ 9 Chapter 3 ..................................................................................................................... 34 Chapter 4 ...................................................................................................................... 46 Chapter 5 ...................................................................................................................... 68 References .................................................................................................................... 85 viii List of Figures Figure 1.1 ....................................................................................................................... 2 Figure 1.2 ....................................................................................................................... 3 Figure 2.1 ..................................................................................................................... 11 Figure 2.2 ..................................................................................................................... 19 Figure 2.3 ..................................................................................................................... 20 Figure 2.4 ..................................................................................................................... 21 Figure 2.5 ..................................................................................................................... 22 Figure 2.6 ..................................................................................................................... 26 Figure 2.7 ..................................................................................................................... 27 Figure 3.1 ..................................................................................................................... 37 Figure 3.2 ..................................................................................................................... 40 Figure 4.1 ..................................................................................................................... 54 Figure 4.2 ..................................................................................................................... 58 Figure 5.1 ..................................................................................................................... 71 Figure 5.2 ..................................................................................................................... 79 Figure 5.3 ..................................................................................................................... 84 ix List of Tables Table 2.1 ....................................................................................................................... 16 Table 2.2 ......................................................................................................................
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Discovery of the Critically Endangered Annual Killifish, Austrolebias
    JoTT SHORT COMMUNI C ATION 2(11): 1282-1285 Discovery of the Critically Endangered annual killifishAustrolebias wolterstorffi (Ahl, 1924) (Cyprinodontiformes: Rivulidae) in Lagoa do Peixe National Park, Rio Grande do Sul, southern Brazil L.E.K. Lanés 1 & L. Maltchik 2 1,2 Laboratory of Ecology and Conservation of Aquatic Ecosystems, University of Vale do Rio dos Sinos (UNISINOS). Av. Unisinos 950, Bairro Cristo Rei, CEP 93022-000, São Leopoldo, Rio Grande do Sul, Brazil. Email: 1 [email protected], 2 [email protected] Abstract: This paper documents the discovery of the rare and live in shallow temporary wetlands formed close to rivers, Critically Endangered annual killifish Austrolebias wolterstorffi streams and lagoons during the rainy season, and die in temporary wetland of Lagoa do Peixe National Park, an im- portant conservation unit of southern Brazil protected under the off when the pools dry (Costa 2003, 2006). Their eggs Ramsar Convention and recognized Biosphere Reserve. survive the dry season and hatch after the next rainy season begins. Keywords: Annual fish, Cynolebiasinae, endemic, freshwater, The genus Austrolebias has recently been redefined Neotropics, protected areas, Ramsar sites, restricted-range fish- phylogenetically by Costa (2006), including the species es, threatened species, wetlands. previously referred to the genus Megalebias Costa. Subsequently the genus Austrolebias was divided into subgenera (Costa 2008), according to clades defined in The neotropical aplocheiloid genus Austrolebias Costa (2006). Accordingly the subgenus Megalebias Costa comprises 40 small annual killifishes endemic to which has the same general geographic range as South America, distributed in southern Brazil, southern Austrolebias, comprises five valid species: Austrolebias Bolivia, Paraguay, Uruguay and northeastern Argentina cheradophilus (Vaz-Ferreira, Sierra de Soriano & Scaglia- (Costa 2010).
    [Show full text]
  • Historical Biogeography of Cynolebiasine Annual Killifishes
    Journal of Biogeography (J. Biogeogr.) (2010) 37, 1995–2004 ORIGINAL Historical biogeography of cynolebiasine ARTICLE annual killifishes inferred from dispersal–vicariance analysis Wilson J. E. M. Costa* Laborato´rio de Sistema´tica e Evoluc¸a˜ode ABSTRACT Peixes Teleo´steos, Departamento de Zoologia, Aim To analyse the biogeographical events responsible for the present Universidade Federal do Rio de Janeiro, Caixa Postal 68049, CEP 21944-970, Rio de Janeiro, distribution of cynolebiasine killifishes (Teleostei: Rivulidae: Cynolebiasini), RJ, Brazil a diversified and widespread Neotropical group of annual fishes threatened with extinction. Location South America, focusing on the main river basins draining the Brazilian Shield and adjacent zones. Methods Phylogenetic analysis of 214 morphological characters of 102 cynolebiasine species using tnt, in conjunction with dispersal–vicariance analysis (diva) based on the distribution of cynolebiasine species among 16 areas of endemism. Results The basal cynolebiasine node is hypothesized to be derived from an old vicariance event occurring just after the separation of South America from Africa, when the terrains at the passive margin of the South American plate were isolated from the remaining interior areas. This would have been followed by geodispersal events caused by river-capturing episodes from the adjacent upland river basins to the coastal region. Optimal ancestral reconstructions suggest that the diversification of the tribe Cynolebiasini in north-eastern South America was first caused by vicariance events in the Parana˜–Urucuia–Sa˜o Francisco area, followed by dispersal from the Sa˜o Francisco to the Northeastern Brazil area. The latter dispersal event occurred simultaneously in two different cynolebiasine clades, possibly as a result of a temporary connection of the Sa˜o Francisco area before the uplift of the Borborema Plateau during the Miocene.
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Deterministic Shifts in Molecular Evolution Correlate with Convergence to Annualism in Killifishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455723; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deterministic shifts in molecular evolution correlate with convergence to annualism in killifishes Andrew W. Thompson1,2, Amanda C. Black3, Yu Huang4,5,6 Qiong Shi4,5 Andrew I. Furness7, Ingo, Braasch1,2, Federico G. Hoffmann3, and Guillermo Ortí6 1Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48823, USA. 2Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA. 3Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Starkville, MS 39759, USA. 4Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, Shenzhen 518083, China. 5BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China. 6Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA. 7Department of Biological and Marine Sciences, University of Hull, UK. Corresponding author: Andrew W. Thompson, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455723; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: The repeated evolution of novel life histories correlating with ecological variables offer opportunities to test scenarios of convergence and determinism in genetic, developmental, and metabolic features. Here we leverage the diversity of aplocheiloid killifishes, a clade of teleost fishes that contains over 750 species on three continents.
    [Show full text]
  • The Etyfish Project © Christopher Scharpf and Kenneth J
    CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a
    [Show full text]
  • Zootaxa, a New Species of Simpsonichthys
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2452: 51–58 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Simpsonichthys (Cyprinodontiformes: Rivulidae) from the rio São Francisco basin, northeastern Brazil DALTON TAVARES BRESSANE NIELSEN1, OSCAR AKIO SHIBATTA2, ROGÉRIO DOS REIS SUZART1 & AMER FAOUR MARTÍN1 1Av. Independência, 531, ap. 21-B, 12031-000, Taubaté, SP. E-mail: [email protected] 2Museu de Zoologia, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-990, Londrina, PR. Corresponding author. E-mail: [email protected] Abstract Simpsonichtys lopesi n. sp. is described from a temporary pool located in the São Francisco river basin. This species is distinguished from remaining species, except S. adornatus, by the large number of dorsal fin rays, which makes possible a large dorsal fin base length that begins well anterior to the middle of the body, before the vertical line through the pelvic fin. This species differs from S. adornatus by the color pattern of the anal fin, which may have yellow stripes or light dots (vs. small light points), and also by the lower number of dorsal fin rays. Key words: Annual fishes, Neotropical region, temporary pools Resumo Simpsonichthys lopesi n. sp. é descrita de uma poça temporária localizada na bacia do rio São Francisco. A espécie distingue-se das demais, exceto S. adornatus, pelo grande número de raios da nadadeira dorsal, o que confere grande comprimento da base dessa nadadeira que se inicia muito antes da metade do corpo, antes da nadadeira pélvica.
    [Show full text]
  • Characterization of the G Protein-Coupled Receptor Family
    www.nature.com/scientificreports OPEN Characterization of the G protein‑coupled receptor family SREB across fsh evolution Timothy S. Breton1*, William G. B. Sampson1, Benjamin Cliford2, Anyssa M. Phaneuf1, Ilze Smidt3, Tamera True1, Andrew R. Wilcox1, Taylor Lipscomb4,5, Casey Murray4 & Matthew A. DiMaggio4 The SREB (Super‑conserved Receptors Expressed in Brain) family of G protein‑coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identifed, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non‑mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fsh, using comparative genomics and gonadal expression analyses in fve diverse ray‑fnned (Actinopterygii) species across evolution. Several unique characteristics were identifed in fsh, including: (1) a novel, fourth euteleost‑specifc gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression diferences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may refect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in pufer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a.
    [Show full text]
  • A Replacement Name for the Preoccupied Genus Name Adamas Huber, 1979 (Actinopterygii: Cyprinodontiformes)
    _____________Mun. Ent. Zool. Vol. 1, No. 1, January 2006___________ 167 A REPLACEMENT NAME FOR THE PREOCCUPIED GENUS NAME ADAMAS HUBER, 1979 (ACTINOPTERYGII: CYPRINODONTIFORMES) Hüseyin Özdikmen*, Nazmi Polat**, Mahmut Yılmaz*** and Okan Yazıcıoğlu*** * Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mail: [email protected] ** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mail: [email protected] *** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mails: [email protected]; [Özdikmen, H., Polat, N., Yılmaz, M. & Yazıcıoğlu, O. 2006. A replacement name for the preoccupied genus name Adamas Huber, 1979 (Actinopterygii: Cyprinodontiformes). Munis Entomology & Zoology, 1 (1): 167-168] ABSTRACT: A replacement name, Fenerbahce is proposed for the genus name Adamas Huber, 1979 in the fish family Aplocheilidae (Cyprinodontiformes). KEY WORDS: Fenerbahce, Adamas, homonymy, replacement name, Actinopterygii, Cyprinodontiformes, Aplocheilidae. Class Actinopterygii Order Cyprinodontiformes Family Aplocheilidae Genus Fenerbahce nom. nov. Adamas Huber, 1979. Journal Am. Killifish Ass. 12 (6): 166 and Revue fr. Aquariol. Herpetol. 6 (1): 6. (Actinopterygii: Cyprinodontiformes: Aplocheiloidei: Aplocheilidae: Aplocheilinae). Preoccupied by Adamas Malaise, 1945. Opusc. ent., Lund, Suppl. 4, 97. (Hymenoptera: Symphyta: Tenthredinoidea: Tenthredinidae: Allantinae: Adamasini). The genus name Adamas was proposed by Malaise, 1945 as an objective replacement name of the genus Dinax Konow, 1897 with the type species Dinax jakowleffi Konow, 1897. For the present, the genus Adamas Malaise, 1945 includes six species (Wei, 2004). Subsequently, the genus Adamas was described by Huber, 1979 with the type species Adamas formosus Huber, 1979 by monotypy from in front of Ntokou village near the banks of Likouala-Mossaka River, Congo.
    [Show full text]
  • Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes
    Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes by Andy Joseph Turko A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Andy Joseph Turko, October 2018 ABSTRACT COPING WITH LIFE ON LAND: PHYSIOLOGICAL, BIOCHEMICAL, AND STRUCTURAL MECHANISMS TO ENHANCE FUNCTION IN AMPHIBIOUS FISHES Andy Joseph Turko Advisor: University of Guelph, 2018 Dr. Patricia A. Wright The invasion of land by fishes was one of the most dramatic transitions in the evolutionary history of vertebrates. In this thesis, I investigated how amphibious fishes cope with increased effective gravity and the inability to feed while out of water. In response to increased body weight on land (7 d), the gill skeleton of Kryptolebias marmoratus became stiffer, and I found increased abundance of many proteins typically associated with bone and cartilage growth in mammals. Conversely, there was no change in gill stiffness in the primitive ray-finned fish Polypterus senegalus after one week out of water, but after eight months the arches were significantly shorter and smaller. A similar pattern of gill reduction occurred during the tetrapod invasion of land, and my results suggest that genetic assimilation of gill plasticity could be an underlying mechanism. I also found proliferation of a gill inter-lamellar cell mass in P. senegalus out of water (7 d) that resembled gill remodelling in several other fishes, suggesting this may be an ancestral actinopterygian trait. Next, I tested the function of a calcified sheath that I discovered surrounding the gill filaments of >100 species of killifishes and some other percomorphs.
    [Show full text]
  • Monophyly and Taxonomy of the Neotropical Seasonal Killifish Genus Leptolebias (Teleostei: Aplocheiloidei: Rivulidae), with the Description of a New Genus
    Zoological Journal of the Linnean Society, 2008, 153, 147–160. With 11 figures Monophyly and taxonomy of the Neotropical seasonal killifish genus Leptolebias (Teleostei: Aplocheiloidei: Rivulidae), with the description of a new genus WILSON J. E. M. COSTA* Downloaded from https://academic.oup.com/zoolinnean/article/153/1/147/2606377 by guest on 23 November 2020 Laboratório de Ictiologia Geral e Aplicada, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68049, CEP 21944-970, Rio de Janeiro, Brazil Received 30 March 2007; accepted for publication 4 July 2007 A phylogenetic analysis based on morphological characters indicates that Leptolebias Myers, 1952, a genus of small killifishes highly threatened with extinction, from Brazil, is paraphyletic. As a consequence, Leptolebias is restricted in this study to a well-supported clade that includes Leptolebias marmoratus (Ladiges, 1934), Leptolebias splendens (Myers, 1942), Leptolebias opalescens (Myers, 1942), and Leptolebias citrinipinnis (Costa, Lacerda & Tanizaki, 1988), from the coastal plains of Rio de Janeiro, and Leptolebias aureoguttatus (Cruz, 1974) (herein redescribed, and for which a lectotype is designated) and Leptolebias itanhaensis sp. nov., from the coastal plains of São Paulo and Paraná, in southern Brazil. Leptolebias is diagnosed by three synapomorphies: a caudal fin that is longer than deep, a single anterior supraorbital neuromast, and dark pigmentation that does not extend to the distal portion of the dorsal fin in males. A key is provided for the identification of species of Leptolebias. Three species formerly placed in Leptolebias, Leptolebias minimus (Myers, 1942), Leptolebias fractifasciatus (Costa, 1988), and Leptolebias cruzi (Costa, 1988), are transferred to Notholebias gen.
    [Show full text]