<<

JHEP02(2013)085 Springer of integrated 1 January 18, 2013 − February 14, 2013 : November 11, 2012 : : 10.1007/JHEP02(2013)085 Accepted Published Received doi: Published for SISSA by 1211.2472 -Hadron Scattering A search is performed for heavy resonances decaying to two long-lived massive , Copyright CERN, [email protected] = 7 TeV, and selected from data samples corresponding to 4.1 (5.1) fb s √ E-mail: Open Access for the benefit of the CMS collaboration Keywords: ArXiv ePrint: at luminosity in the () channel.model No expectations, significant and excess is an observed uppercross above standard section limit times is the set branching with fractionneutral 95% to confidence , lifetime. as level a on function the of production the long-lived massive Abstract: neutral , each decayingtopology to consisting of leptons. aondary pair The vertex. of experimental Events oppositely were signature charged collected leptons by is the originating a CMS at detector distinctive a at separated the LHC sec- during pp collisions The CMS collaboration Search in leptonic channelsdecaying for to heavy long-lived resonances neutral particles JHEP02(2013)085 9 ] or SUSY 1 models that 0 Z ], and 3 3 9 5 3 – 1 – 8 ], “hidden valley” models [ 2 5 9 7 6 ]. 4 4 16 5 2 1 14 This Letter presents the first search using data from the Compact Muon Solenoid 6.2 Trigger efficiency6.3 measurement Effect of6.4 higher-order QCD corrections Background uncertainty 5.1 Background normalisation 5.2 Background shape 6.1 Track-finding efficiency 4.1 Selection efficiency leptons. We search for(dileptons) events originating containing from a pair atracker, of common that oppositely is secondary charged significantly vertex electronsleptons transversely within or displaced are the from volume assumed the ofare to event required the primary originate to CMS vertex. from form These a a narrow 2-body resonance in decay the of dilepton a mass spectrum. long-lived This particle, topological and so could manifest themselves through their delayedexample, decays to in leptons. various Such supersymmetric scenarioswith (SUSY) arise, for scenarios very such weak as R-paritycontain “split long-lived violation SUSY” [ [ [ (CMS) for massive, long-lived exotic particles that decay to a pair of oppositely charged 1 Introduction Several models of new physics predict the existence of massive, long-lived particles which 8 Summary The CMS collaboration 7 Results 5 Background estimation and modelling 6 Systematic uncertainties 3 Data and Monte Carlo4 simulation samples Event reconstruction and selection Contents 1 Introduction 2 The CMS detector JHEP02(2013)085 ], 5% 9 . , 1 8 25 cm 4 with ≈ . ≈ ], where 2 5 of [ m in each < T µ − | p ` η 20 | + ` ≈ → d σ is the polar angle with θ 2X, X → 0 ]. The silicon tracker is also 2)] and 11 θ/ m. The track reconstruction algorithms ln[tan( µ ] is a superconducting solenoid of 6 m in- − 10 15 = ≈ – 2 – η of are reconstructed with a resolution in 0 d c 5, where . 50 cm from the beam line. The performance of the track 2 ≈ < | η = 100 GeV/ | T p 3. Muons are measured in the pseudorapidity range ], but these searches are sensitive to a much smaller kinematic phase < 7 , | 6 η | The first level of the CMS trigger system, composed of custom hardware processors, The ECAL consists of nearly 76 000 lead tungstate crystals, which provide coverage in The silicon tracker is composed of pixel detectors (three barrel layers and two forward The D0 Collaboration has performed searches for leptons from delayed decays in its This signature is sensitive to a wide class of models. However, for the purpose of pseudorapidity detection planes based on one ofstrip three technologies: chambers in drift tubes the in endcaps, the and barrel region, resistive cathode plate chambersselects in events the of barrel interest and using endcaps. information from the calorimeters and the muon detectors. from particles decaying upreconstruction to algorithms hasused been to studied reconstruct with thedimension. data primary [ vertex position with a precision of position measurements, but onlyprovide the three-dimensional pixel hit tracker position andand measurements. a the subset Owing high of to granularity the thetransverse of strip strong momentum the tracker magnetic silicon layers field tracker,and promptly produced in charged transverse particles impactare with parameter able to reconstruct displaced tracks with transverse impact parameters up to disks on either endthree of inner the disks detector) and surroundedthe nine pseudorapidity by forward range strip disks detectors atrespect (ten each to end barrel the of layers anticlockwise-beam the plus direction. detector). All tracker The layers provide tracker two-dimensional covers hit The central feature ofternal the diameter CMS providing an apparatuspixel axial [ and strip field tracker, of the lead-tungstate 3.8the crystal T. brass/scintillator electromagnetic calorimeter hadron Within (ECAL), calorimeter. and theembedded Muons field in are volume the identified are steel in the magnetic-flux gas-ionisation return silicon detectors yoke of the solenoid. using different decay channels from those considered in this Letter. 2 The CMS detector the Higgs isdisplaced produced dilepton through vertices in -gluon the fusion. tracking volume This per model event. predictstracker volume up [ to two space region than CMS. Thetive ATLAS to Collaboration decay has lengths performed up to searches about that are 20 m sensi- by exploiting the ATLAS muon spectrometer [ (SM). It is also very powerful in suppressing backgroundsestablishing from a signal processes. benchmark,X a which specific has model a ofthe non-zero a X branching is long-lived, fraction pair-produced spinless, to in dileptons exotic the is used. of In a this Higgs particular boson, model, i.e. H signature has the potential to provide clear evidence for physics beyond the standard model JHEP02(2013)085 ` ]. The 13 ) for the [ c ), where production − 38 GeV. For ` 0 + = 20, 50, 150, ` turn-on region. > X T T → Geant4 (33 GeV/ p M E c ], must exceed 25%. This are used, corresponding to 11 41 GeV/ ] to simulate H 12 > T pythia is forced to decay to two long-lived p 2, as the efficiency for finding tracks 0 are used in electron (muon) channels. . The tracker information is not used c < 1 V6.424 [ | − η | ) and X boson masses ( 2 1) fb c . 30 GeV/ 0 – 3 – pythia > ± 1 T . p 1 (5 . 0 ± ). Subsequently the H XX), which then decay to dileptons (X 0 1 . H → 0 → = 125, 200, 400, 1000 GeV/ (including jets), W/Z boson pair production with leptonic decays, and 0 − H ` + M ` ) are generated. The lifetimes of X used in these samples are chosen 2 c → /γ The selection of candidates from displaced secondary vertices begins by search- Signal samples are generated using For the electron channel, these data are collected with a trigger that requires two masses ( 0 t, Z ing for high-purityelectron tracks (muon) with channel. These transversethresholds, criteria momenta are to slightly minimise higher dependence thanThe the tracks on corresponding are the trigger required trigger to inefficiency have pseudorapidity in the in the direction transversethe to beam. the beamprotons Furthermore, with and to the no LHC reject more collimators,irrespective events in than any of produced 24 event cm with whether by at intracks they the least that the 10 are interaction are direction tracks associated classified (counting of along requirement all as beam-related with tracks is “high not a purity”, imposed as primary on defined events vertex) in with the less ref. than fraction [ 10 of tracks. the 4 Event reconstruction and selection Events are required to containand a whose primary position vertex, is which displaced has from at the least nominal four interaction associated point tracks by no more than 2 cm t QCD multijet events. Theall contribution the samples, from the single responsesamples W of are + the detector then jet is processed production simulatedof through in is the the detail negligible. CMS using trigger experiment. In emulation and event reconstruction chain represents either a muonH or an electron.350 GeV/ Several samples withto different give combinations a of meanSeveral transverse simulated decay background length samples generated of with approximately 20 cm in the laboratory frame. primary vertex constraint and having in either trigger. through gluon fusion (gg 0 exotic particles (H (The lower electron luminosity issuitable due for to this the analysis.) fact that not all dataclustered was taken energy with deposits triggers inthe the muon channel, ECAL, the each trigger with requires transverse two energy muons, each reconstructed without using any decrease the event rate. 3 Data and MonteFor Carlo this simulation analysis, samples ppan collision integrated data luminosity of at 4 a centre-of-mass energy of 7 TeV corresponding to A high-level trigger processor farm then employs the full event information to further JHEP02(2013)085 /ψ are the differences φ , the azimuthal angle , excluding the other c φ and ∆ 1 GeV/ η > T is the opening angle between the p α . To reject promptly produced parti- | 2. To eliminate background from J η . | 0 3 is constructed around each candidate. . in the isolation cone increases from 0.6 to 0 T p 5, where dof = 1. For events in the electron R > . This requirement has very little effect on the c < – 4 – P R < ∆ . If more than one X boson candidate is identified dof 2 of all tracks with / < c 2 T is less than 0.1. Here, ∆ χ p 03 2 . ) 95 is applied, where P φ . 0 − conversions, X boson candidates are required to have dilepton + (∆ > γ 2 3 (2) in the electron (muon) channel. Because bremsstrahlung in ) ) η α > | (∆ d ) decays that pass the full set of selection criteria, as evaluated using p − /σ µ 0 = + d | µ R ( as the number of additional primary vertices per event increases from 0 to 20. − e c + e Cosmic ray muons may be reconstructed as back-to-back tracks. To reject them, Both lepton candidates are required to be isolated, to reject background from jets. A The X boson candidates are formed from pairs of oppositely-charged lepton candidates. → 4.1 Selection efficiency The selection efficiency forX the electron (muon)the channel simulated is signal defined events. as It the is fraction evaluated of separately the for two different classes of events: to be less thanof 0.8 modelling (0.2) the radians trigger inchannel efficiency the candidates for electron must closely be (muon) spacedand channel. separated muon Υ by Owing pairs, decays ∆ to the andinvariant the two from masses difficulty tracks larger in than muon 15in GeV/ a given event, all the selected candidates are retained. two tracks. Background fromlepton candidates misidentified are leptons not both isrejection matched reduced to is the achieved by same by requiring trigger requiringline, object. that that, projected the the Additional into background reconstructed two the momentum planevector vector perpendicular from of to the the primary the beam vertex X to boson the candidate secondary vertex. is The collinear collinearity with angle the is required signal efficiency, which isevent. relatively According insensitive to to simulation, the the1.2 number GeV/ mean of primary vertices in each a requirement of cos( closer to the centre of CMS than their commonhollow vertex, isolation the cone event is ofWithin rejected. radius this isolation 0 cone,lepton the candidate, must be less than 4 GeV/ The two corresponding trackschi-squared are per fitted degree to a of(muon) common freedom channel, vertex, the which vertex is mustfrom required lie the to at primary have a a vertex distance in of more the than transverse 8 plane. (5) standard If deviations either track has more than one hit between the track and a leptonabout trigger the object anticlockwise-beam in direction. pseudorapidityrithms and are Standard not CMS applied, offline sinceHowever lepton they these identification are algorithms algo- inefficient for arein leptons not from this needed highly analysis. displaced to vertices. Fordeposit suppress the in the electron the very ECAL channel, that low the is backgrounds energy near present of the the reconstructed electron track is trajectory. estimated from a cles, the tracks mustbeam have a line transverse of impactthe parameter material significance of with the respect trackerchannel significantly to affects selection the the criteria reconstruction are ofleptons , more if the restrictive. ∆ electron Tracks are considered to be identified as from displaced secondary vertices falls off at large JHEP02(2013)085 , 8 0 xy H are > /σ 2  /M xy xy X = 1 cm) L /σ M and cτ xy 1 , L  2 c spectrum, data distribution of a xy X /σ M xy L = 150 GeV/ X ) candidates in the electron 09 02 M . The efficiencies . . 2 0 ,  2 +0 − c 02 , after removing the lifetime-related . 1 (0 8 2 . . 1 +1 − 4 . = 1000 GeV/ 7–600 cm, by reweighting the simulated signal – 5 – . 0 0 H M ≈ , and second for events in which both long-lived exotic 1  were removed entirely. d /σ 0 d . We parameterize this distribution with the sum of two falling expo- masses or longer lifetimes. 0 xy /σ XX events in which only one long-lived exotic particle decays to the chosen xy L → also shows that the main background to this search consists of prompt dileptons . To verify that the simulation correctly describes the 0 1 7 . X figure M background sample. However, afterevents applying to all measure its selection shape requirementsrelated variables accurately. there are are Since only the weakly too correlatedof dilepton few in mass the simulated distribution background mass candidates, and distribution thesamples lifetime- shape is with instead the obtained lifetime-related by selection fitting requirements a removed. parameterized Namely, function no to selections data that have been reconstructed with large decay length5.2 significance. Background shape An estimate of the background shape can be obtained from the (muon) channel. This estimatein of section the mean totaland background simulation is distributions used to areselection derive compared requirements the in to results figure increase the numbernated of by events background. and Specifically, ensure the thatand thresholds the individual plots on lepton are the domi- decay length significance is estimated from simulatedsignificance samples using the distributionnentials. of the By transverse integrating decay(5) length the for fitted the curve electron (muon) overspectrum channel, the an is signal estimate obtained. of region, the defined mean The total by estimate background in gives the 1 mass background normalisation and aof parametrisation of the background shape as5.1 a function Background normalisation The number of background events passing all the selection criteria for X boson candidates smaller at lower H 5 Background estimation andAn modelling interpretation of the observed dilepton mass spectrum requires an estimate of the where the dimuon trigger isthe inefficient same for X the boson, two but nearly theX collinear trigger muons bosons. requirement from can the The still decay beto efficiencies of satisfied are mean by muons estimated transverse from for separate decayevents. a lengths The range of maximum of efficiencyis X (for boson approximately lifetimes, 34% corresponding (52%) in the electron (muon) channel, but becomes significantly lepton species, defining efficiency particles decay to chosen leptonusually pairs, almost identical, defining indicating efficiency that thestrongly efficiency affected to by select an whether Xlepton or boson channel. not candidate The is the only not second exception X is for boson the in muon the channel in event the decays case to of the small same first for H JHEP02(2013)085 , xy 002 . /σ 0 t events xy ± L 985 . ]. 14 – 6 – , the transverse decay length significance d shows the results of these fits to the electron and 2 /σ 0 d ] and is less than 1% for all mass points. The dependence 15 . Figure ϕ summarises the sources of systematic uncertainty affecting the signal efficiency. 001) for the electron (muon) channels. thresholds; and the second being a falling exponential function, to represent the . 1 . The transverse decay length significance of the candidates for the dielectron (left) 0 T p ± Varying the modelling of the pileup within its estimated uncertainties yields a relative Table 994 . change in the signalchosen. selection The efficiency relative ofusing uncertainty the less PDF4LHC due procedure than to [ 2%,of parton the irrespective distribution acceptance of functions on the (PDF) the is choice mass of studied point the renormalisation and factorisation scales, which are the simulation, the parton distributionscales function used sets, in the generating renormalisation simulated andIn events, factorisation and addition, the effect systematic ofestimate uncertainties higher are order in considered. QCD the corrections. integrated luminosity, andThe the relative background uncertainty in the luminosity is taken to be 2.2% [ 6 Systematic uncertainties The primary systematic uncertainty comes froming the efficiency signal in events. detecting andstructing reconstruct- This tracks uncertainty from derives displaced from vertices, uncertainties the in trigger the efficiency, efficiency the of modelling recon- of pileup in by a Gaussian errorlepton function, to approximate thenon-Z background. effect The on fits the give(0 selection the fraction efficiency of of the the background from the Z as 0 are made on the individualor lepton the collinearity anglemuon ∆ data samples. The observed backgroundfunctions: is approximately the described first by the being sum a of two Breit-Wigner function, to represent the Z resonance, multiplied Figure 1 and dimuon (right) channelsindicates with the loosened selection requirement cuts used inpassing for data these signal events. selection and requirements, There simulation. so are no The they simulated are vertical QCD omitted. dashed or t line JHEP02(2013)085 X M ] 2 - µ and + µ 0 H -1 20 cm, since [GeV/c M µ µ < ) M | µ 0 d | = 7 TeV L = 5.1 fb L TeV = 7 s 5% . 1% 0 6% (e), 11% ( . Uncertainty 2% < < 20% 2 4–12% 100 200 300 400 500 600 case. The relative uncertainty in the CMS 2 c 5 4 3 2 1

10

10 10 10 10

Events / (GeV/c / Events

) only) 2 Source 2 c = 125 GeV/ – 7 – 0 H ] 2 M - Pileup modelling Trigger efficiency e + Tracking efficiency e = 125 GeV/ 0 -1 H . We focus principally on the region [GeV/c ee M 3 M Parton distribution functions = 7 TeV L = 4.1 fb L TeV = 7 s NLO effects ( Renormalisation and factorisation scales 100 200 300 400 500 600 CMS . Distribution of the dilepton mass and the fitted shape in a data sample with lifetime- 2 4 3 1 . Systematic uncertainties affecting the signal efficiency over the range of

10

10 10 10

Events / (GeV/c / Events ) 2 The first method consists of a direct measurement of the efficiency to reconstruct Figure 2 related selection requirements removed,The shown shape for used is thenential that electron term. of (left) a and Breit-Wigner distribution muon times (right) a channels. turn-on function, added to an expo- isolated tracks, using cosmic raybeam muons. activity Events and are themuon selected cosmic chambers from from ray dedicated opposite muons runs halves areassociated with of with reconstructed CMS. no a The by cosmic efficiency combining ray toparameters, muon, the reconstruct as is a hits a shown tracker function in track in of the the figure transverse and longitudinal impact 6.1 Track-finding efficiency Understanding the efficiency to find aaspect track as of a function the of itsdisplaced analysis. impact tracks parameter is is Two a correctly crucial methods modelled by are the used simulation. to assess if the efficiency to reconstruct luminosity is taken to be 2.2%. chosen to be equalThese and uncertainties are are varied applied by factors in of the cross-section 0.5 limit and calculation. 2, is found to be well below 0.5%. Table 1 values considered. InNLO all uncertainty cases, is the only evaluated uncertainty for specified the is a relative uncertainty. Note that the JHEP02(2013)085 100 | [cm] 0 |z 80 ]. It is assumed ]. The decays of 16 Simulation Data 17 60 40 is required to be less than 10 cm, | 20 0 z | must be less than 4 cm. | 0 CMS 0 d 1 0

|

0.8 0.6 0.4 0.2 Tracking efficiency Tracking – 8 – 50 | [cm] 0 |d 40 Simulation Data 30 20 10 . Efficiency of the tracker to find a track, given a cosmic ray muon reconstructed in the CMS 0 1 0

0.6 0.4 0.2 0.8 Tracking efficiency Tracking To determine if the simulation properly describes the tracking efficiency in the presence The trigger efficiency isZ measured bosons using to the dileptons “tag-and-probe” areare reconstructed method used in [ data to collected measureused with in single-lepton the this triggers. efficiency analysis. They forsingle-lepton The dilepton efficiency, a trigger which lepton efficiency assumes to is that then pass there obtained one as is leg the no square of correlation of the this in dilepton efficiency triggers between embedded in bothreconstruct data the particles and is simulated compared.is data The less relative than events, difference 1%. between and data and the simulation difference6.2 in efficiency to Trigger efficiency measurement similar precision. The differencelarger can systematic therefore uncertainty be in the neglected efficiency in to comparison reconstruct with dilepton theof candidates. much a high densityat of hits, various a production second points method is throughout used. the Single tracker charged volume. particles are simulated These particles are then measure tracking efficiency for dielectronthat candidates. the However, electron simulation efficiency studies is indicate difference can only be about attributed 10% to smallerthe bremsstrahlung in tracker than the is the electron modelled muon case. in efficiency,that simulation The where material with the the budget an difference in accuracy in better than tracking 10% efficiency [ between electrons and muons is modelled with in simulated signal, thethis reconstructed region. tracks from Data displacedrelative vertices and systematic lie simulation uncertainty predominantly in agree in thetaken within efficiency to 10% to be in reconstruct 20%, this dilepton as candidates region, there is so are thus the two tracks corresponding per candidate. This method does not explicitly Figure 3 muon chambers, as a(with function respect of to the the transversewidth. nominal (left) For interaction and the point longitudinal leftand (right) of plot, for impact CMS). the the parameters The longitudinal right plot, efficiency impact the parameter is transverse plotted impact in parameter bins of 2 cm JHEP02(2013)085 ) < 09 02 . . 0 xy +0 − /σ 02 . xy spectrum (0 L T 8 2 . . p 1 +1 − 4 . the signal efficiency 2 c spectrum, which may in T masses, the corresponding p 0 . In the electron channel, a to- 09 02 . . 0 6% for the electron channel and 11% = 20 (50) GeV/ +0 − . 02 X . requirements. For this reason the signal , where these fits yield 1 M T p 5.1 and – 9 – case. For larger H 2 c 2 c 2 must be excluded because the trigger is inefficient for . 0 , other functional forms are also tried. The resulting effect , but restricting the fit to the background region = 125 GeV/ = 125 GeV/ 0 5.2 5.1 H 0 R < H M , the leptons from the X boson decay have a combined efficiency 2 M c , the uncertainty in the background normalisation actually affects the observed spectrum from our signal sample to match the corresponding Higgs = 125 GeV/ 7 T 0 p . However, 2 of these candidates fall in the region above the Z mass, where the H 8 2 0 . . 1 M To determine the sensitivity of the limits to variations in the assumed background +1 − 4 . 1 7 Results After all selection requirementsconsistent are with applied, the no expectedtal candidates mean of survive in 4 number the of candidates muon remain, 0 channel, which is also consistent with the expected mean number of background shape is repeatedAs using an simulated events additional and checkrequirements, consistent that the results mass the are distribution shape obtained. quirements obtained is by is not relaxing also the strongly fitted,change lifetime-related influenced in in selection by the both re- limits the data is lifetime-related negligible. and simulated events. In all cases, the resulting in section limits only for X boson masses close to theshape, Z described resonance. in section on the limits, which is taken as a systematic uncertainty, is negligibly small. The fit for the the fit described in section 8 (5) in the electroncross-check (muon) is channel performed and for then bothnormalisation extrapolating simulated events is it and into estimated data. the by signal Additionally,background simply the region. passing counting background all This the selection number criteria. of All candidates methods in give consistent the results. simulated As explained 6.4 Background uncertainty The systematic uncertainty for the backgroundon normalisation is the taken background from the fitscandidates uncertainty in described the in electron (muon) section channel. In addition, a cross-check is made by repeating LO H evaluated at NLO. For changes by 4% (12%).the efficiency This for change the systematic is uncertainty taken is as below 0.5%, an and additional hence systematic neglected. uncertainty in 6.3 Effect ofFor higher-order QCD corrections of only a fewefficiency percent at this for mass passing isturn the sensitive to be lepton the influenced modelling by of higher the order Higgs QCD corrections. To study this effect, we reweight the dimuons separated by ∆ closely spaced dimuons. Theis systematic evaluated uncertainty by associated taking the withsimulation, difference the yielding between trigger a the efficiency total estimates offor relative the the uncertainty efficiency of muon from channel. 2 data and the two leptons. This is generally a good assumption except in the muon channel, where JHEP02(2013)085 . . 5.2 5 . These 4 . 5 of X bosons that could , which has the largest 2 X c N = 1000 GeV/ give negligible changes in the results. H 5 M – 10 – ], which makes use of an unbinned likelihood fit to the dilepton are close to 3.0 at most masses, as one would expect from Poisson 19 X , N 18 at 95% CL for the electron and muon channels are presented in figure , multiplied by the estimated Z (non-Z) background fraction from section X 5.1 mass, the mass resolution used in the Gaussian is obtained from the simulated N 0 by introducing a nuisance parameter for each uncertainty, marginalized by a log- The sum of two backgroundfrom functions, the one Z distribution peak representing andbackground. another the more background These slowly functions varying distribution are representing obtained the as non-Z described in section A Gaussian signalH function to representsignal the samples, signal’s as a mass functionthe of distribution. generated the X X boson boson For mass masses each and with lifetime, a interpolating smooth between curve when necessary. method [ As a first step, upper limits are placed on the mean number The limit calculation takes into account the systematic uncertainties described in sec- We set 95% confidence level (CL) upper limitsThis fit on to the the mass signal spectrum uses process the following using functions: the 6 • • s candidates observed in the data.are extremely Since small, the the fitted limitsindeed background are using levels not the under expected the alternativesThis to described signal figure depend peak in also on section shows the thea background 95% priori shape, CL predictions and expected of limit the band. background Except normalisation near are the very Z small, resonance, so the the expected limit for the mass resolutionpeaks assumed in for the thethe observed signal, Monte limit. Carlo which simulation affects Themass for the mass resolution the of width resolution hypothesis the of used signalThe the points for limits studied resulting these and on limits hencestatistics yields with is zero the observed derived most signal, but from conservative are limits. larger at mass points near the masses of dilepton must have a prediction of the background normalisation, whichpass is the taken from selection section requirements,limits as on a function oflimits the are X independent boson of mass. the The particular resulting model upper assumed for X boson production, except constrain the normalisation ofa the signal non-Z is background, unknown.non-Z even background As though normalisation a when the result,Z calculating normalisation background, it the of observed the is limits. a notlimits priori necessary In for X the estimate to bosons case of use whose of the the mass the normalisation a is is close priori to used, estimate that but of of it the the Z. affects only To calculate the expected limits, one tion normal prior distribution.can In be particular, constrained by the the a normalisationin priori section of estimate of the the Z totalHowever, background (non-Z) the normalisation fits presented background to the mass spectrum performed as part of the limit calculation strongly less than 0.3 cm. CL mass spectrum. estimated background is lower. The observed candidates all have transverse decay lengths JHEP02(2013)085 , B σ ] 2 500 is the σ , -1 4.1 400 , thus allowing in the electron B is the branching 2 σ c B 300 case, the efficiency is . However, the factor 2 B c ) depends not only on 200 200 GeV/ = 7 TeV L = 5.1 fb L TeV = 7 Observed 95% CL limitsObserved 95% CL Expectedlimits 95% CL (7.1) 7.1 s Mass of X boson [GeV/c ≤ 1)] 0 - H 100 µ − + = 20 GeV/ M 1 µ are calculated. The observed limits in eq. ( CMS X / B 2 3 2 7 6 5 4 X M  σ

( , N Number of X bosons X of Number 2 B c , such that the factor in square brackets in [1 + B ] are the efficiencies defined in section 2 – 11 – B 500 σ σ 2) 1 ,  (1 L  -1 and X boson masses that are modelled, and for a range = 1000 GeV/ 400 0 . This expression takes into account that either one or = 2 0 − H ` X + M ` N 300 → . (No results are shown for 7 X – 5 200 = 7 TeV L = 4.1 fb L TeV = 7 Expected 95% CL Expectedlimits 95% CL Observed 95% CL limitsObserved 95% CL s Mass of X boson [GeV/c . - , the upper limits depend on the assumed value of 100 e , the efficiency to select such an X boson is slightly different in the two cases. B + B e CMS 4.1 when calculating the limits on . The 95% CL upper limits on the mean number of X bosons that could pass the selection is the integrated luminosity, 1) is in practice always positive or very small. Hence if one assumes infinitesimally 2 4 3 7 6 5 ) is equal to 1, the resulting limits will be valid, and in some cases conservative, for

L B − Number of X bosons X of Number 1 7.1 For each combination of the H The expected number of signal dilepton candidates passing the selection cuts can be / 2  are shown in figures channel, since the high triggerfor thresholds the result muon in channel asignificantly in very reduced the low because signal efficiency.) thetrigger Note muons inefficiencies. that are Since produced the very observed close dilepton together, candidates do which not causes have masses close to ( small eq. ( any value of of X boson lifetimes, the 95% CL upper limits on both X bosons in anin event section may decay to theUsing chosen this lepton equation, species, the and likelihoodupper that, function limits as can to mentioned be be expressed placedbut in terms on also of this on quantity. Since where production cross section offraction the for heavy resonance the decaying decay to X X, and is close to 3.0expected and limit the is expected in limit fact band equal to is 3.0 extremely everywhere. expressed narrow; as: the median value of the Figure 4 requirements in the electronband (muon) shows channels the are 95% quantile shownlimit for in curves. the the expected left limits, (right) but is plot. almost A entirely hidden yellow by shaded the observed JHEP02(2013)085 . 2 c 3 3 2 10 2 would 10 2 [cm] [cm] c -1 τ -1 τ c c 2 10 2 = 350 GeV/ = 400 GeV/c = 1000 GeV/c 10 H H X m m , exact limits are M 7 = 170 GeV/ – 10 5 X and 10 2 2 2 2 2 2 2 M 2 c = 7 TeV L = 5.1 fb L TeV = 7 = 7 TeV L = 5.1 fb L TeV = 7 s 1 s 1 = 20 GeV/c = 50 GeV/c = 150 GeV/c = 350 GeV/c = 20 GeV/c = 50 GeV/c = 150 GeV/c X X X X X X X Observed 95% CL limitsObserved 95% CL m m m m limitsExpected 95% CL Observed limits 95% CL m m m Expected limits 95% CL -1 CMS CMS 10 = 150 GeV/ -1 X 1 2 -1 -2 -3 1 2

-1

10

-2 -3

10

10

10

µ → → σ µ 10

B(X XX) (H ) [pb] ) M

10 10 10

µ → → σ µ 10

B(X XX) (H

) [pb] ) 10 10

+

- 0 + - 0 for the electron (left) and muon channel (right) 3 3 – 12 – 2 B 10 2 for the electron (left) and muon channel (right) for a σ 10 [cm] B [cm] τ -1 τ -1 σ c c 2 10 2 = 400 GeV/c = 1000 GeV/c H 10 H m m . Narrow yellow shaded bands show the 95% quantiles for the 2 c 10 10 2 2 2 2 2 2 2 = 7 TeV L = 4.1 fb 4.1 = L TeV 7 = = 7 TeV L = 4.1 fb L TeV = 7 . Narrow yellow shaded bands show the 95% quantiles for the expected limits. s 1 , it should be safe to assume that the limits for and X boson masses, one can infer approximate limits for other masses, s 2 2 c 0 c 1 = 20 GeV/c = 50 GeV/c = 150 GeV/c = 350 GeV/c = 20 GeV/c = 50 GeV/c = 150 GeV/c X X X X X X X Observed 95% CL limits CL 95% Observed m m m m limits CL 95% Expected Observed limits 95% CL m m m Expected limits 95% CL -1 CMS or X boson masses other than those plotted in figures CMS 10 0 mass of 1000 GeV/ . The 95% CL upper limits on -1 . The 95% CL upper limits on 1 2 -1 -2 -3 1 2

-1

0 10 -2 -3

10

10

10

→ σ →

XX) (H e e B(X ) [pb] ) 10

10 10 10

→ σ

→ 10 XX) (H e e B(X

) [pb] ) 10 10

= 1000 GeV/

+ -

0 + - 0 For H 0 mass of 400 GeV/ H 0 However, for X bosons that are close in mass to the candidates seen in data, the limits the signal selection efficiency.functions However, of since the the H observedprovided limits appear the to latter be lieM monotonic within the rangebe of at those least as shown good in as the the weaker figures. of the limits For for example, for those of the Xbands bosons show the considered 95% in quantile these for the plots, expected they limits. not have no computed, effect since on no the simulated limits. signal samples The are available with which to determine Figure 6 H Figure 5 for a H expected limits. JHEP02(2013)085 2 2 c c (left) 2 model 2 3 c 0 10 [cm] τ -1 c = 125 GeV/c 2 H m 10 , and comparison = 20 (50) GeV/ 1  X masses of 200 GeV/ = M boson, the acceptance mass of 200 GeV/ 0 , the selection efficiency 0 1 0 0 2 2  2 Z model is less than 3% for 10 c gives an indication of the 0 = 7 TeV L = 5.1 fb L TeV = 7 s are produced predominantly 4 mass, and below 25% (in the passing the selection cuts can 0 0 = 20 GeV/c = 50 GeV/c X X Z X 1 Observed limits 95% CL m m Expected limits 95% CL 2 N CMS c = 125 GeV/ 0 1 XY, where the Y boson does not decay 2 -1 H -2

10

10 µ → → σ µ 10 B(X XX) (H

) [pb] ) 10

M + - → 0 0 models as well, for 0 3 Z is the efficiency to select signal candidates, in 10 – 13 – 2 0 1 for the muon channel for a H  [cm] bosons produced through gluon-gluon fusion. If the is to decay to a pair of long-lived spin 0 particles, with spin 1 instead of a H -1 τ ‘hidden valley’ that have hadronised in the B c 0 0 0 q annihilation, whilst H σ 1 2 mass. Thus the limits quoted above on the H Z Z 2 and rapidity selection cuts would be slightly different, 0 10 = 200 GeV/c T Z ]. Studies with simulated events show that the change in H p models relative to the original H 3 m 2 , where 0 c B Z σ 0 1  10 , less than 11% for a 400 GeV/ L 2 2 2 c = = 7 TeV L = 5.1 fb L TeV = 7 s X are produced by q 1 0 N = 20 GeV/c = 50 GeV/c X X Z Observed limits 95% CL m m Expected limits 95% CL (right). Narrow yellow shaded bands show the 95% quantiles for the expected limits. CMS ) shows that the limits would be a factor of 2 worse than those presented in 2 c . -1 7.1 7 1 2 . The 95% CL upper limits on -1 10 – -3 -2

10

10

µ → → σ µ 10

B(X XX) (H

) [pb] ) 10 10 5

+ - 0 mass of 1000 GeV/ If the initial resonance were a The limits quoted above are for H In an alternative signal model, in which H 0 bosons were instead produced by the sum of all standard model production mechanisms, Z 0 or more. dark sector into spin 0the acceptance bosons for [ these two a muon channel) for awill 200 GeV/ be approximately valid for these two for a dilepton pairmainly to because pass the through gluon-gluon fusion.these If cannot the be identical ifhave CP equal is mass. to Their be angular conserved,fundamental distributions but spin would they differ 0 are depending assumed bosons on in or whether what they follows spin were to their momentum spectra would be different.would For then be largerand by there a would be factor a of corresponding approximately improvement 1.18 in the (1.08) limits. for this scenario. If thewith X eq. and ( Y bosonsfigures have identical masses, then H factors by which the limits would be degraded. to dileptons, the expectedbe number of expressed signal as candidates Figure 7 and 125 GeV/ would be worse than this. For these particular masses, figure JHEP02(2013)085 = 7 TeV and s √ 200 cm. For a Higgs channel 4 candidates channel no candidates − − e ]. µ + + < cτ < µ 1 SPIRE . IN . The limits are typically in the − ][ µ + µ Signatures of long-lived in split and − e , decaying into a pair of X bosons, in the mass – 14 – + 2 c hep-ph/0408248 [ has been performed. In the e − µ + (2004) 070 µ 09 or − e + JHEP , the corresponding limits are in the range 10–100 fb. These are the 2 , This article is distributed under the terms of the Creative Commons c J.L. Hewett, B. Lillie, M. Masip and T.G. Rizzo, [1] References (Taipei); ThEP, IPST and NECTEC(Ukraine); (Thailand); STFC TUBITAK (United and Kingdom); TAEK DOE (Turkey); NASU and NSF (USA). Open Access. Attribution License which permits anyprovided use, the distribution original and author(s) reproduction and in source any are medium, credited. and DST (India);LAS IPM (Lithuania); CINVESTAV, (Iran); CONACYT, SEP, SFIZealand); and UASLP-FAI (Ireland); PAEC (Mexico); (Pakistan); INFN MSI MSHE (New nia, (Italy); and Belarus, NRF Georgia, NSC Ukraine, and (Poland);MSTD Uzbekistan); FCT WCU (Serbia); MON, (Portugal); (Korea); SEIDI RosAtom, JINR and RAS CPAN (Arme- and (Spain); RFBR Swiss (Russia); Funding Agencies (Switzerland); NSC and FWF (Austria); FNRS and(Brazil); FWO (Belgium); MEYS CNPq, (Bulgaria); CAPES, FAPERJ,(Colombia); and CERN; FAPESP MSES CAS, (Croatia); MoST,nia); RPF and Academy (Cyprus); NSFC of MoER, Finland, (China);BMBF, SF0690030s09 MEC, DFG, COLCIENCIAS and and and HGF HIP (Germany); ERDF GSRT (Finland); (Esto- (Greece); CEA OTKA and and NKTH CNRS/IN2P3 (Hungary); (France); DAE other CMS institutes for theirwe contributions gratefully to acknowledge the success theComputing of computing Grid the for centres CMS delivering effort. and soanalyses. In personnel effectively Finally, addition, the we of acknowledge computing the the infrastructureof enduring Worldwide essential support the LHC to for LHC the our construction and and the operation CMS detector provided by the following funding agencies: BMWF Acknowledgments We congratulate our colleagues in theformance CERN of accelerator departments the for LHC the and excellent per- thank the technical and administrative staffs at CERN and at boson, in the massrange range 20-350 200–1000 GeV, GeV/ which eachrange decay 0.7–10 fb, to for e Xmass bosons of with 125 GeV/ lifetimesmost in stringent the limits range in 0 these channels to date. A search for long-liveddecaying neutral to particles, either X, e producedare in observed, pp of collisions which 2 at are are observed. in These the results Zto are mass derive consistent region, upper with and limits standard in on model the the expectations product and of are cross used section times branching fraction for a Higgs 8 Summary JHEP02(2013)085 ] ] Phys. , . 05 Nucl. (2009) Eur. Phys. , , (2002) 2693 collisions at Nucl. Instrum. S08004 JHEP D 80 , , 3 pp arXiv:1109.2242 ]. [ G 28 arXiv:0806.2223 (2010). [ Phenomenology of the (2005) 1 SPIRE JINST IN Phys. Rev. TeV with the ATLAS , ]. ][ J. Phys. 420 (2012) 478 , ]. (2006) 161802 2008 = 7 , ]. s 97 cross sections in SPIRE √ (2008) 111802 SPIRE IN Z B 707 IN ][ SPIRE ][ IN ]. 101 Phys. Rept. and and neutrinos ]. , ][ 0 W CMS-PAS-TRK-10-003 Z Phenomenology of hidden valleys at hadron , LHAPDF: PDF use from the Tevatron to the arXiv:1203.1303 GEANT4: a simulation toolkit SPIRE [ SPIRE Phys. Lett. IN PYTHIA 6.4 physics and manual , Phys. Rev. Lett. IN ][ – 15 – , ][ ]. ]. TeV Search for neutral, long-lived particles decaying into two Search for long-lived particles decaying into electron or arXiv:1012.2466 hep-ex/9902006 Phys. Rev. Lett. [ ]. [ 96 , . SPIRE ]. Discovering the Higgs through highly-displaced vertices arXiv:0712.2041 (2012). IN (2012) 251801 [ SPIRE = 1 ][ IN SPIRE s ]. ]. ][ SPIRE 108 IN √ hep-ph/0605193 [ IN (2011) 080 [ (1999) 435 Search for a light decaying to long-lived Search for displaced vertices arising from decays of new heavy [ arXiv:1007.1988 SPIRE SPIRE Measurements of inclusive CMS tracking performance results from early LHC operation 01 [ Absolute calibration of the luminosity measurement at CMS: winter 2012 Studies of tracker material The CMS experiment at the CERN LHC (2008) 008 IN IN ][ ][ R-parity violating supersymmetry 07 A 434 (2003) 250 TeV pp collisions at ATLAS JHEP collisions at (2008) 263 , hep-ph/0603175 7 Presentation of search results: the CL(s) technique ¯ p collaboration, S. Agostinelli et al., [ p JHEP Confidence level computation for combining searches with small statistics Phys. Rev. Lett. collaboration, collaboration, ]. ]. ]. (2010) 1165 arXiv:0812.4313 , TeV , CMS-PAS-SMP-12-008 [ A 506 , collaboration, collaboration, hep-ph/0605240 B 661 , collaboration, V. Abazov et al., collaboration, V. Abazov et al., = 7 C 70 SPIRE SPIRE SPIRE s IN IN IN hep-ex/0607028 hep-ph/0406039 Instrum. Meth. [ Lett. D0 muons in colliders minimal B-L extension of055030 the Standard model: CMS √ Meth. update LHC CMS J. (2006) 026 GEANT4 detector ATLAS particles in [ D0 pairs with the[ D0 detector ATLAS weakly-interacting particles in -proton collisions at [ [ T. Junk, M.J. Strassler and K.M. Zurek, T. Han, Z. Si, K.M. Zurek and M.J. Strassler, L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, R. Barbie et al., CMS collaboration, A.L. Read, CMS collaboration, D. Bourilkov, R.C. Group and M.R. Whalley, T. Sj¨ostrand,S. Mrenna and P.Z. Skands, CMS collaboration, [9] [7] [8] [5] [6] [3] [4] [2] [19] [16] [17] [18] [14] [15] [11] [12] [13] [10] JHEP02(2013)085 , 2 , M. Friedl, 1 , D. Rabady † , W. Kiesenhofer, 1 – 16 – , J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, 3 , I. D. Kr¨atschmer, Liko, I. Mikulec, M. Pernicka 1 1 , V.M. Ghete, N. H¨ormann, J. Hrubec, M. Jeitler 1 Universidade do Estado doW.L. Rio Carvalho, Ald´aJ´unior,W. de A. Cust´odio,E.M. Janeiro, Da Rio Costa,Oliveira D. de Martins, De Janeiro, S. Jesus Brazil Fonseca Damiao, DeL. C. De Souza, Mundim, H. H. Malbouisson, Nogima,A. M. W.L. Vilela Malek, Prado Pereira D. Da Matos Silva, Figueiredo, A. Santoro, L. Soares Jorge, A. Sznajder, Universit´ede Mons, Mons, Belgium N. Beliy, T. Caebergs, E. Daubie,Centro G.H. Brasileiro Hammad de PesquisasG.A. Fisicas, Alves, Rio M. de Correa Janeiro, Martins Brazil Junior, T. Martins, M.E. Pol, M.H.G. Souza N. Strobbe, F. Thyssen, M. Tytgat,Universit´eCatholique S. de Walsh, Louvain, E. Louvain-la-Neuve, Yazgan, Belgium N.S. Zaganidis Basegmez, G.L. Forthomme, Bruno, A. Giammanco R.D. Castello, Pagano, A. L. Pin, K. Ceard, Piotrzkowski, J.M. C. Vizan Garcia Delaere, T. du Pree, D. Favart, B. Clerbaux, G. De Lentdecker,A. V. Mohammadi, Dero, T. A.P.R. Gay, Reis, T. L. Hreus, Thomas, A.Ghent C. L´eonard,P.E. Marage, University, Vander Ghent, Velde, Belgium P. Vanlaer,V. J. Wang Adler, K. Beernaert,J. A. Lellouch, Cimmino, A. S. Marinov, Costantini, G. J. Garcia, Mccartin, M. A.A. Grunewald, Ocampo B. Rios, Klein, D. Ryckbosch, M. Sigamani, Vrije Universiteit Brussel, Brussel, Belgium F. Blekman, S. Blyweert,A. J. Olbrechts, D’Hondt, S. R. Tavernier, W. Gonzalez Van Suarez, Doninck,Universit´eLibre A. P. de Van Kalogeropoulos, Bruxelles, Mulders, M. Bruxelles, G.P. Van Maes, Belgium Onsem, I. Villella V. Mossolov, N. Shumeiko, J. SuarezUniversiteit Gonzalez Antwerpen, Antwerpen, Belgium S. Alderweireldt, M. Bansal, S.L. Bansal, Mucibello, T. S. Ochesanu, Cornelis, B. E.A. Roland,Mechelen, De R. N. Wolf, Rougny, Van M. X. Remortel, Selvaggi, Janssen, H. A. S. Van Van Haevermaet, Luyckx, Spilbeeck P. Van R. Fr¨uhwirth V. Kn¨unz,M. Krammer B. Rahbaran, C. Rohringer,tenberger, H. C.-E. Rohringer, Wulz R. J. Sch¨ofbeck, Strauss, A.National Taurok, Centre W. for Wal- Particle and High Energy Physics, Minsk, Belarus Yerevan Physics Institute, Yerevan, Armenia S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A.Institut Tumasyan f¨urHochenergiephysik der OeAW, Wien,W. Austria Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Er¨o, C. Fabjan The CMS collaboration JHEP02(2013)085 , , a 10 , Sandra a , Sao Paulo, b , M.A. Mahmoud 10 , S.F. Novaes 4 b, 2 , T.R. Fernandez Perez Tomei 5 a, , A.M. Kuotb Awad 9 , P.G. Mercadante a – 17 – , D. Polic, I. Puljak , F.A. Dias 6 4 b, , Universidade Estadual Paulista a , F. Marinho a , A. Ellithi Kamel 8 , S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, 2 , C. Lagana 4 b, , C.A. Bernardes 4 , P. Iaydjiev b, 2 , S. Elgammal 12 7 , a 11 National Institute of ChemicalM. Physics Kadastik, and M. Biophysics, M. M¨untel, Murumaa, Tallinn, Estonia M. Raidal,Department L. of Rebane, Physics, A. University Tiko ofP. Eerola, Helsinki, G. Helsinki, Fedi, Finland M. Voutilainen M. Finger, M. Finger Jr. Academy of Scientific Research andEgyptian Technology of Network the of Arab High RepublicY. Energy of Egypt, Physics, Assran Cairo, Egypt A. Radi V. Brigljevic, S. Duric, K. Kadija,University J. of Luetic, Cyprus, D. Nicosia, Mekterovic, S.A. Cyprus Morovic, Attikis, M. L. Galanti, Tikvica G. Mavromanolakis, J.Charles Mousa, C. University, Prague, Nicolaou, F. Czech Ptochos, Republic P.A. Razis Technical University of Split, Split,N. Croatia Godinovic, D. Lelas, R. Plestina University of Split, Split,Z. Croatia Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia D. Wang, L. Zhang, W. Zou Universidad de Los Andes,C. Bogota, Avila, Colombia C.A. CarrilloJ.C. Montoya, Sanabria J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, Institute of High EnergyJ.G. Physics, Beijing, Bian, China G.M.J. Chen, Wang, X. H.S. Wang, Chen, Z. Wang, C.H. H.State Xiao, Jiang, Key M. D. Lab. Xu, of J. Liang,C. Zang, Nucl. S. Z. Phys. Asawatangtrakuldee, Zhang Liang, and Y. Tech., X. Ban, Meng, Peking Y. University, J. Guo, Beijing, Tao, China W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, V. Genchev R. Trayanov, M. Vutova University of Sofia, Sofia,A. Bulgaria Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov Brazil T.S. Anjos E.M. Gregores S. Padula Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria Instituto de Fisica Teorica JHEP02(2013)085 , 2 , P. Busson, C. Charlot, 13 , D. Gel´e,U. Goerlach, P. Juillot, 14 16 – 18 – , J.-C. Fontaine 14 , F. Drouhin 14 15 , J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, 14 RWTH Aachen University, III. PhysikalischesM. Institut Ata, A, J. Caudron, Aachen, E.T. Germany Dietz-Laursonn, Hebbeker, D. C. Duchardt, M. Heidemann,A. Erdmann, K. Meyer, R. Hoepfner, M. Fischer, A. Olschewski, D.L. G¨uth, Sonnenschein, K. Klingebiel, J. Padeken, P. Steggemann, P. Kreuzer, D. Papacz, Teyssier, M. S. H. Merschmeyer, Th¨uer,M. Weber Pieta, H. Reithler, S.A. Schmitz, Z. Tsamalaidze RWTH Aachen University, I. Physikalisches Institut,C. Autermann, Aachen, S. Germany Beranek,R. B. Jussen, Calpas, K. Klein, M. J. Edelhoff, Merz,D. L. A. Ostapchuk, Sprenger, Feld, A. N. H. Perieanu, F. Weber, Heracleous, Raupach, B. O. J. Wittmer, Sammet, Hindrichs, S. V. Schael, Zhukov T. Kurca, M. Lethuillier,P. Verdier, L. S. Mirabito, Viret S. Perries,Institute L. of Sgandurra, High V. Energy Sordini, PhysicsTbilisi, and Y. Georgia Informatization, Tschudi, Tbilisi State University, A.-C. Le Bihan, P. Van Hove Lyon,Universit´ede Bernard Universit´eClaude Lyon 1, CNRS-IN2P3,de Institut Physique Nucl´eairede Lyon, Villeurbanne,S. France Beauceron, N. Beaupere, O.D. Bondu, Contardo, G. Boudoul, P. S. Depasse, Brochet, J. H. Chasserat, El R. Chierici Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, D. Sabes, R. Salerno, Y. Sirois,Institut C. Veelken, Pluridisciplinaire A. Hubert Zabi sit´ede Curien, Haute Alsace Universit´ede Mulhouse, Strasbourg, CNRS/IN2P3,J.-L. Univer- Strasbourg, Agram France C. Collard, E. Conte Laboratoire Leprince-Ringuet, Ecole Polytechnique,France IN2P3-CNRS, Palaiseau, S. Baffioni, F. Beaudette,N. L. Daci, Benhabib, T. Dahms, L.M. M. Bianchini, Haguenauer, Dalchenko, P. M. Min´e,C. L. Mironov, Bluj Dobrzynski, I.N. Naranjo, A. M. Florent, Nguyen, R. C. Granier Ochando, P. de Paganini, Cassagnac, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Besancon, S. Choudhury, F.F. Couderc, Ferri, M. S. Dejardin, Ganjour, A. D.J. Givernaud, Denegri, P. Malcles, B. Gras, L. Fabbro, G. J.L. Millischer, Hamel A. Faure, de Nayak, Monchenault, J. P. Jarry, Rander, E. A. Locci, Rosowsky, M. Titov J. Heikkinen, H¨ark¨onen,A. V. Karim¨aki,R.K. Lassila-Perini, Kinnunen, S. M.J. Lehti,J. Kortelainen, T. Tuominiemi, Lind´en,P. T. Peltola, E. Luukka, E. T. Tuovinen, Lamp´en, D. Tuominen, M¨aenp¨a¨a,T. Ungaro, L.Lappeenranta Wendland University of Technology, Lappeenranta,A. Finland Korpela, T. Tuuva Helsinki Institute of Physics, Helsinki, Finland JHEP02(2013)085 , , 17 20 , V. Sola, 18 , M. Heinrich, 2 , B. Lutz, R. Mankel, , A. Nowack, I.M. Nu- 2 17 , T. Hauth 2 , J.R. Komaragiri, P. Lobelle Pardo, 16 , F. Sikler, V. Veszpremi, G. Vesztergombi 19 – 19 – , C. Hackstein, F. Hartmann 2 , T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, 17 University of Io´annina,Io´annina,Greece I. Evangelou, C. Foudas, P. Kokkas, N.KFKI Manthos, Research I. Institute Papadopoulos for ParticleG. and Bencze, Nuclear C. Physics, Hajdu, Budapest, Hungary P.A.J. Hidas, Zsigmond D. Horvath G. Anagnostou, G.I. Manolakos, Daskalakis, A. Markou, T. C. Markou,University Geralis, E. of Ntomari Athens, S. Athens, Greece Kesisoglou,L. Gouskos, T.J. A. Mertzimekis, Kyriakis, A. Panagiotou, N. D. Saoulidou Loukas, D. Martschei, S. Mueller, Th. M¨uller,M. Niegel,G. A. O. Quast, N¨urnberg, Oberst, A. K. Oehler, Rabbertz, J.H.J. Ott, F. Simonis, Ratnikov, F.M. N. Stober, Ratnikova, D.M. S. Troendle, F.-P. R. Zeise R¨ocker, Schilling, Ulrich, G. J. Wagner-Kuhr, Schott, S. Wayand, T.Institute Weiler, of ”Demokritos”, Aghia Paraskevi, Greece H. Stadie, G. J. Steinbr¨uck, Thomsen, L. Vanelderen Institut f¨urExperimentelle Kernphysik, Karlsruhe, Germany C. Barth, C. Baus,lamm, J. M. Berger, Feindt, C. T. B¨oser, H. M. Chwalek, Held, Guthoff W. K.H. De Hoffmann, Boer, U. A. Husemann, Descroix, I. A. Katkov Dier- University of Hamburg, Hamburg, Germany V. Blobel, H.T. Hermanns, Enderle, R.S. J.J. H¨oing, K. Lange, Erfle, Kaschube, T. U.E. G. Peiffer, Gebbert, Schlieckau, Kaussen, N. A. H. M. Pietsch, Schmidt, Kirschenmann, G¨orner, D. M. M. R. Rathjens, Klanner, Schr¨oder, Gosselink, T. C. Schum, J. Sander, M. Haller, H. Seidel, Schettler, J. P. Sibille Schleper, I. Marfin, M.S. Marienfeld, I.-A. Naumann-Emme, Melzer-Pellmann, O.D. A.B. Novgorodova, Pitzl, Meyer, F. A. J. Nowak, Raspereza,Nebgen, Mnich, R. J. P.M. A. Schmidt Ribeiro Olzem, Mussgiller, Cipriano,C. H. Wissing C. Perrey, Riedl, A. E. Ron, Petrukhin, M. Rosin, J. Salfeld- A. Bethani, K. Borras,F. A. Costanza, Burgmeier, D. A.G. Cakir, Dammann, Flucke, L. C. A. Calligaris,H. Diez A. Jung, Geiser, Campbell, Pardos, M. I. E.D. Kasemann, T. E. Castro, Kr¨ucker, Glushkov, P. Kuznetsova, Dorland, Katsas, W. P. Lange, G. C. Gunnellini, J. Kleinwort, Eckerlin, Leonard, H. S. W. D. Kluge, Lohmann Habib, Eckstein, A. Knutsson, J. M. Hauk, Kr¨amer, G. Hellwig, M. Bontenackels, V. Cherepanov, Y.Ahmad, Erdogan, F. G. Hoehle, Fl¨ugge,H. B. Geenen, Kargoll,gent, M. T. L. Geisler, Kress, Perchalla, W. Y. O. Haj Kuessel, Pooth, J. P. Lingemann Sauerland,Deutsches A. Elektronen-Synchrotron, Stahl Hamburg, Germany M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany JHEP02(2013)085 , , , , , , , , , a a a a a,b a,b a,b a,b a,c , G. Ma- 23 , H. Hesari, , C. Grandi 26 , G. Maggi , Bari, Italy a , T. Rovelli c , A. Colaleo a,c a,b , P. Verwilligen , A. Pompili a a,b , M. Cuffiani , A. Montanari a,b a 2 , M. Maity a,b, 22 , L.M. Pant, P. Shukla 2 , G. Iaselli , M. Hashemi a , P. Giacomelli , A.M. Rossi 24 , Bologna, Italy b , S. Braibant-Giacomelli a,b a,b , N. Pacifico , R. Venditti a,b a,b a,b , S.S. Chhibra , A. Gurtu 2 , F.R. Cavallo 21 , L. Fiore , Politecnico di Bari a,b a,b, b a,b , M. Meneghelli , A. Fahim a 25 , G. Singh , D. Fasanella a , F. Primavera , S. Nuzzo a – 20 – a,b a,c , D. Bonacorsi , A. Castro a a,b , C. Calabria a,b , M. De Palma 2 , G. Masetti a,b a , Universit`adi Bologna , S. My a a,c, , L. Silvestris , A. Fanfani , A. Perrotta a,b a a a,b , Universit`adi Bari a , P. Capiluppi , L. Barbone , F. Fabbri , F. Odorici a , M. Zeinali , S. Marcellini , A.C. Benvenuti a,b a,b a , G. Selvaggi , N. De Filippis 27 a,b , N. Tosi, R. Travaglini a,b , B. Marangelli a,c a,c , H. Bakhshiansohi, S.M. Etesami a a,b 24 a L. Brigliadori G.M. Dallavalle L. Guiducci F.L. Navarria G.P. Siroli M. Maggi G. Pugliese G. Zito INFN Sezione di Bologna G. Abbiendi A. Jafari,B. Safarzadeh M. Khakzad,INFN Sezione M. di Bari MohammadiM. Najafabadi, Abbrescia D. S. Creanza Paktinat Mehdiabadi, Tata Institute of Fundamental ResearchS. - Banerjee, HECR, S. Mumbai, Dugad India Institute for Research in FundamentalH. Sciences Arfaei (IPM), Tehran, Iran A. Abdulsalam, D. Dutta, S. Kailas,Tata V. Institute Kumar, of A.K. Mohanty Fundamental ResearchT. - Aziz, EHEP, Mumbai, R.M. India jumder, Chatterjee, K. S. Mazumdar, Ganguly, G.B. Mohanty, M. B. Guchait Parida, K. Sudhakar, N. Wickramage Saha Institute of Nuclear Physics,S. Kolkata, Banerjee, India S.R. Bhattacharya, Khurana, K. A. Chatterjee, Modak, S. S. Mukherjee, Dutta,Bhabha D. B. Roy, Atomic S. Gomber, Research Sarkar, Centre, M. Sa. Mumbai, Sharan Jain, India Sh. Jain, S.B. Beri, V. Bhatnagar, N. Dhingra,L.K. R. Saini, Gupta, M. A. Kaur, Sharma, M.Z. Mehta, J.B. M. Singh Mittal,University N. Nishu, of Delhi, Delhi, India Ashok Kumar, ArunM. Kumar, Naimuddin, K. S. Ranjan, P. Ahuja, Saxena, V. A. Sharma, Bhardwaj, R.K. Shivpuri B.C. Choudhary, S. Malhotra, N. Beni, S. Czellar, J. Molnar,University J. of Palinkas, Z. Debrecen, Szillasi Debrecen, Hungary J. Karancsi, P. Raics, Z.L. Trocsanyi, B.Panjab Ujvari University, Chandigarh, India Institute of Nuclear Research ATOMKI, Debrecen, Hungary JHEP02(2013)085 , , , , , , , , , , , , , , , a a a a a a 29 a,b a,b a,b a,b a,b a,b a,b a,b a, a,b a,b , Milano, b , A. Venturi , A. Rizzi , A. Kraan , S. Vanini , S. Frosali , A. Ghezzi a a a , R. Castaldi , R. Carlin 2 , N. Redaelli , A. Tricomi a,b , A. Gozzelino 2 a,b a, , Napoli, Italy , M. Menichelli , F. Fabozzi a,c a,b b a,b a,b a,b, , A. Massironi a,b , Universit`a di a,b b , S. Taroni , A.T. Meneguzzo a,b 2 a,b a,b , A. Tropiano a, a,b , F. Palla a , A. Giassi , E. Torassa , G. Tonelli a,b , S. Gennai a , E. Focardi a,c a,b , Catania, Italy a,b , R. Potenza , Perugia, Italy , S. Ragazzi b , Firenze, Italy , Genova, Italy a,b b , G. Broccolo a b b , A. Branca a a,b , U. Gasparini a,b , A. Spiezia , P. Vitulo , G. Mantovani , Pavia, Italy a,b , Scuola Normale Superiore di b , O. Dogangun , A. Martelli b , P. Paolucci 2 a,b a,b a,b , M. Margoni a , L. Fo`a a,b 2 , G. Sguazzoni a,b, a,c a , R. Tenchini 2 , A. Messineo a,b, , S. Fiorendi , S. Costa 2 a, 31 , F. Simonetto , D. Pedrini , T. Boccali a,b a, a a,b, a,b a,b , P. Torre , D. Bisello – 21 – , F. Fabbri, D. Piccolo , Universit`adi Milano-Bicocca , R. D’Alessandro 28 a,b a,b a,b a , F. Gasparini , M. Merola , P. Lariccia a a 30 , A. Santocchia , S. Paoletti a,b , Universit`a di Padova , F. Fiori a, a a a a , I. Lazzizzera , A. De Cosa a , R.A. Manzoni a 29 , S. Tosi , Universit`adi Catania , Universit`adi Perugia , Universit`adi Firenze , Universit`adi Genova , L. Martini a , P. Squillacioti a a a, , Universit`adi Napoli ”Federico II” a a , M. Chiorboli a a a , P. Ronchese , Universit`adi Pavia , Universit`adi Pisa , L. Di Matteo , P. Bellan , J. Bernardini a a , M. Paganoni a,b , C. Riccardi , L. Fan`o 2 a , A. Saha , C. Civinini a,b a , S. Meola , U. Dosselli a a,b a, a a a,b a,b a,b a,b , M. Meschini a,b , Padova, Italy , R. Dell’Orso a,b c 2 , S. Lacaprara , R. Musenich , S. Malvezzi , N. Cavallo , P. Spagnolo a,c, , L. Lista a 2 a,c a , J. Pazzini 32 , T. Lomtadze 2 , L. Moroni , G. Cappello , G. Bagliesi , G.M. Bilei , S.P. Ratti , T. Dorigo , V. Ciulli a,b , F. De Guio , F. Romeo a a, a a a a † a, a,c , G. Zumerle a,b a,c a,b a,b , S. Gonzi a,b , N. Bacchetta a a,b a,b a , Pisa, Italy c P. Azzurri R.T. D’Agnolo F. Ligabue A.T. Serban P.G. Verdini INFN Sezione di Perugia M. Biasini A. Nappi INFN Sezione diPisa Pisa M. Nespolo P. Zotto INFN Sezione di Pavia M. Gabusi INFN SezioneTrento (Trento) diP. Padova Azzi P. Checchia K. Kanishchev T. Tabarelli de Fatis INFN Sezione di Napoli S. Buontempo A.O.M. Iorio INFN Sezione diItaly Milano-Bicocca A. Benaglia M.T. Lucchini D. Menasce INFN Laboratori Nazionali diL. Frascati, Benussi, Frascati, Italy S. Bianco, S. Colafranceschi INFN Sezione di Genova P. Fabbricatore S. Albergo C. Tuve INFN Sezione di Firenze G. Barbagli E. Gallo INFN Sezione di Catania JHEP02(2013)085 , , , , , , 2 a a a a,b a,b a,b, a , B. Gobbo , N. Cartiglia a,b a , E. Migliore , M. Grassi a , M. Pelliccioni a,b , G. Organtini a , A. Staiano a,b a,b , C. Biino a,c , S. Maselli , Universit`adel Piemonte 2 b , C. Fanelli , G. Della Ricca a , Trieste, Italy a, 2 b a,b , A. Solano a, , Roma, Italy b , N. Pastrone a,b a,c , S. Nourbakhsh , M. Arneodo a,b a,b , A. Schizzi , M. Diemoz a , C. Mariotti , F. Cossutti , R. Sacchi a – 22 – a a,b a,c a,b , S. Argiro , A. Penzo , M.M. Obertino , F. Micheli a,c , Universit`adi Torino 2 2 a,b , L. Soffi , Universit`adi Trieste a a, a, a , Universit`adi Roma , M. Casarsa , M. Ruspa , D. Del Re , N. Demaria a a,b a a,b a,b a,b , Torino, Italy c , R. Arcidiacono , D. Montanino , M. Musich , S. Rahatlou 2 , A. Romero , M. Costa a , F. Cavallari , P. Meridiani a,b a,b , V. Candelise a,b a,b, a,b a a,b a,b Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla,H.A. Salazar Puebla, Ibarguen Mexico Vilnius University, Vilnius, Lithuania M.J. Bilinskas, I. Grigelionis, M. Janulis, A.Centro de Juodagalvis Investigacion y de EstudiosH. Avanzados del Castilla-Valdez, IPN, E. Mexico City, De Mexico J. Hern´andez,L.M. Mart´ınez-Ortega,A. La Villasenor-Cendejas S´anchez Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, University of Seoul, Seoul, Korea M. Choi, J.H. Kim, C. Park, I.C.Sungkyunkwan Park, University, Suwon, S. Korea Park, G.Y. Ryu Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu J.Y. Kim, Zero J. Kim, S.Korea Song University, Seoul, Korea S. Choi, D. Gyun,Y. B. Roh Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, Kyungpook National University, Daegu, Korea S. Chang, D.H. Kim, G.N. Kim,Chonnam D.J. National Kong, University, H. Institute for Park, Universe D.C.Kwangju, and Son, Korea Elementary T. Particles, Son S. Belforte M. Marone Kangwon National University, Chunchon, Korea T.Y. Kim, S.K. Nam N. Amapane S. Casasso V. Monaco A. Potenza INFN Sezione di Trieste L. Barone E. Longo R. Paramatti INFN Sezione diOrientale Torino (Novara) INFN Sezione di Roma JHEP02(2013)085 – 23 – , L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, 5 , V. Savrin, A. Snigirev † G. Safronov, S. Semenov, I. Shreyber,Moscow V. Stolin, State E. University, Moscow, Vlasov, Russia A.A. Zhokin Belyaev, E.O. Boos, Kodolova, I. M. Lokhtin, A. Dubinin Markina,L. S. Sarycheva Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, Yu. Andreev, A.V. Matveev, Dermenev, A. Pashenkov, S. D. Tlisov, Gninenko, A.Institute Toropin N. for Theoretical Golubev, andV. Experimental M. Physics, Kirsanov, Epshteyn, Moscow, Russia N. M. Krasnikov, Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, V. Smirnov, A. Volodko, A. Zarubin Petersburg Nuclear Physics Institute, GatchinaS. (St. Evstyukhin, Petersburg), V. Golovtsov,I. Y. Russia Smirnov, Ivanov, V. V. Sulimov, Kim, L. P. Uvarov, Levchenko, S.Institute V. Vavilov, for Murzin, A. Vorobyev, Nuclear V. An. Oreshkin, Research, Vorobyev Moscow, Russia J. Seixas, J. Varela, P. Vischia Joint Institute for Nuclear Research,I. Belotelov, Dubna, P. Russia Bunin, M. Gavrilenko,G. I. Kozlov, Golutvin, I. A. Gorbunov, Lanev, A. Kamenev, A. V. Malakhov, Karjavin, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, G. Brona, K. Bunkowski, M.J. Cwiok, Krolikowski, W. M. Dominik, Misiura, K. W. Doroba, Wolszczak A.Laborat´oriode Kalinowski, F´ısicaExperimental M. Instrumenta¸c˜aoe Konecki, de Lisboa, Part´ıculas, Portugal N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, H. Bialkowska,K. B. Romanowska-Rybinska, M. Boimska, Szleper, G. Wrochna, T. P.Institute Zalewski Frueboes, of Experimental M. Physics,Warsaw, Poland Faculty G´orski, of M. Physics, Kazana, University of K. Warsaw, Nawrocki, A.J. Bell, P.H. Butler, R. Doesburg, S.National Reucroft, Centre H. for Silverwood Physics, Quaid-I-AzamM. University, Ahmad, Islamabad, M.I. Pakistan S. Asghar, Qazi, J. M.A. Butt, Shah, M. H.R. Shoaib Hoorani,National Centre S. for Khalid, Nuclear W.A. Research, Swierk, Khan, Poland T. Khurshid, E. Casimiro Linares, A. Morelos Pineda,University M.A. of Reyes-Santos Auckland, Auckland, NewD. Zealand Krofcheck University of Canterbury, Christchurch, New Zealand Universidad Aut´onomade San Luis Potos´ı, San Luis Potos´ı, Mexico JHEP02(2013)085 , V. Kachanov, D. Konstantinov, 2 , J. Milosevic 33 – 24 – , G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, 6 , M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, 34 , M. Djordjevic, M. Ekmedzic, D. Krpic 33 A. Dabrowski, A.Peisert, De Roeck, B. S. Frisch,M. W. Di Girone, M. Guida, Funk, Giunta, G. F. M. Glege,J. Dobson, Georgiou, R. Gomez-Reino Hammer, N. M. Garrido, P. Dupont-Sagorin, Giffels, M. Govoni,V. S. A. Gowdy, D. Hansen, Innocente, R. Elliott- Guida, Gigi, P. P. Janot, K. Harris, Gill, K. C. Kaadze, D. Hartl, E. Giordano, Karavakis, J. K. Harvey, Kousouris, B. P. Hegner, Lecoq, Y.-J. A. Lee, Hinzmann, Cortabitarte CERN, European Organization forD. Nuclear Research, Abbaneo, Geneva, E. Switzerland J.F. Auffray, Benitez, C. G. Bernet Auzinger,T. M. Camporesi, Bachtis, G. P. Baillon, Cerminara, A.H. T. Ball, Christiansen, D. Barney, J.A. Coarasa Perez, D. D’Enterria, Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo,M. A. Felcini Calderon, S.H.A. Chuang, Lopez J. Virto, Duarte J. Campderros, Marco, R.T. Marco, C. Rodrigo, Martinez Rivero, A.Y. F. Matorras, Rodr´ıguez-Marrero, A. F.J. Munoz Ruiz-Jimeno, Sanchez, L. Scodellaro, I. Vila, R. Vilar C. Albajar, G. Codispoti, J.F. deUniversidad Troc´oniz de Oviedo, Oviedo,H. Spain Brun, J. Cuevas, J.Iglesias, Fernandez Menendez, J. S. Piedra Folgueras, Gomez I. Gonzalez Caballero,Instituto L. Lloret de de F´ısica Cantabria (IFCA), CSIC-Universidad de Cantabria, Abia, O. Gonzalez Lopez, S.Pelayo, Goy Lopez, A. J.M. Quintario Hernandez,C. M.I. Willmott Olmeda, Josa, G. I. Merino, J. Redondo, Puerta Universidad Aut´onomade L. Madrid, Madrid, Romero, Spain J. Santaolalla, M.S. Soares, Centronol´ogicas(CIEMAT), de Madrid, Spain M. Investigaciones Aguilar-Benitez, J.M. Alcaraz Chamizo Energ´eticas Maestre, Llatas, N. P. Colino,C. Arce, Medioambientales B. Fernandez Bedoya, C. De J.P. La Battilana, Fern´andezRamos, A. Cruz, Ferrando, E. A. y J. Delgado Calvo, Flix, Peris, M.C. M. D. V´azquez, Fouz, Dom´ınguez Cerrada, P. Garcia- Tec- V. Krychkine, V. Petrov, R.A. Ryutin, Uzunian, A. A. Sobol, Volkov L. Tourtchanovitch, S.University Troshin, N. of Tyurin, Belgrade,Sciences, Belgrade, Faculty Serbia ofP. Physics Adzic and Vinca Institute of Nuclear V. Andreev,S.V. M. Rusakov, A. Vinogradov Azarkin, I.State Research Dremin,Physics, Center M. Protvino, of Russia Kirakosyan, RussianI. A. Azhgirey, Federation, Leonidov, I. Institute Bayshev, G. for S. Mesyats, High Bitioukov, Energy V. Grishin P.N. Lebedev Physical Institute, Moscow, Russia JHEP02(2013)085 , 43 , A. Kayis , D. Spiga, , B. Stieger, 44 37 40 , D. Sunar Cerci 46 , W.D. Zeuner 38 , A. Polatoz, K. Sogut 45 – 25 – , C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, 43 , P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, 39 , S. Cerci , A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, 42 † , M. Rovere, H. Sakulin, F. Santanastasio, C. Schwick, Sch¨afer,C. 36 , J.R. Vlimant, H.K. W¨ohri,S.D. Worm , L.N. Vergili, M. Vergili 20 42 , C. Rovelli , V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Kilminster, 35 41 , H. Topakli 43 Topaksu, G. Onengut, K. Ozdemir,B. S. Tali Ozturk Middle East Technical University, PhysicsI.V. Department, Akin, Ankara, T. Turkey Aliev, B.A. Bilin, Ozpineci, S. M. Bilmis, Serin, R. M. Sever, Deniz, U.E. H. Surat, Gamsizkan, A.M. M. Guler, Yalvac, E. K. Yildirim, Ocalan, M. Zeyrek B. Asavapibhop, E. Simili, N. Srimanobhas, N.Cukurova Suwonjandee University, Adana, Turkey A. Adiguzel, M.N.G. Bakirci Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar National Taiwan University (NTU),P. Taipei, Taiwan Bartalini, P.U. Chang, Grundler, Y.H. W.-S.E. Chang, Petrakou, Hou, X. Y.W. Shi, Y. J.G. Chang, Shiu, Hsiung, Y.M. Y.Chulalongkorn Tzeng, University, K.Y. Bangkok, Chao, X. Thailand Kao, Wan, M. K.F. Wang Y.J. Chen, Lei, C. R.-S. Dietz, Lu, D. Majumder, B. Millan Mejias, P. Otiougova, P. Robmann,National H. Central Snoek, University, S. Chung-Li, Tupputi, Taiwan M.Y.H. Verzetti Chang, K.H.R. Chen, Volpe, C. S.S. Yu Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, A.P. Singh, M. Takahashi, L. Tauscher H.A. Weber, L. Wehrli Zurich, Switzerland Universit¨atZ¨urich, C. Amsler F. Bachmair, L. B¨ani,P. Bortignon,G. M.A. Dissertori, Buchmann, M. B. Dittmar,C. Casal, M. Grab, Doneg`a,M. N. D. D¨unser,P. Eller, Chanon, Hits, J. A.N. P. Eugster, Mohr, Deisher, Lecomte, F. K. W. Moortgat, Lustermann, Freudenreich, C. N¨ageli A.C.M. Marini, Peruzzi, P. F.J. Martinez Ronga, Ruiz M. del Rossini, Arbol, L. Sala, A.K. Sanchez, A. Starodumov A. Tsirou, G.I. Veres Paul Scherrer Institut, Villigen, Switzerland W. Bertl,H.C. K. Kaestli, S. Deiters, K¨onig,D. Kotlinski, U. W. Langenegger,Institute F. Erdmann, for Meier, Particle D. Physics, Renker, K. T. ETH Rohe Zurich, Gabathuler, Zurich, Switzerland R. Horisberger, Q. Ingram, L. Masetti, F. Meijers, S.L. Mersi, Orsini, E. Meschi, E. R. Palencia Moser,M. Cortezon, Piparo, Pimi¨a,D. M. E. G. Mulders, Polese, Perez, P. L. Musella, L. Quertenmont,G. E. A. Perrozzi, Rolandi Racz, Nesvold, A. W. Reece, Petrilli, J. A. RodriguesI. Antunes, Pfeiffer, Segoni, M. S. Pierini, Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas P. Lenzi, C. Louren¸co, N. Magini, T. M¨aki, M. Malberti, L. Malgeri, M. Mannelli, JHEP02(2013)085 50 , N. Sonmez , K. Nirunpong, A. Poll, 49 38 , D.M. Raymond, S. Rogerson, 54 , F.I. Vardarlı, M. Y¨ucel 52 , S. Ozkorucuklu 48 – 26 – , C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Cough- , O. Kaya 53 48 , A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, † , M. Kaya 47 , J. Pela, M. Pesaresi, K. Petridis, M. Pioppi , E. Barlas, K. Cankocak, Y.O. G¨unaydin 40 51 , K.W. Bell, A. Belyaev 53 D. Sperka, L. Sulak Brown University, Providence, USA J. Alimena, S.A. Bhattacharya, Garabedian, G. U. Christopher,M. Heintz, D. Narain, S. M. Cutts, Jabeen, Segala, Z. T. G. Sinthuprasith, Demiragli, T. Kukartsev, Speer A. E. Ferapontov, Laird, G. Landsberg, M. Luk, The University of Alabama, Tuscaloosa,O. USA Charaf, S.I. Cooper, C. Henderson,Boston P. Rumerio University, Boston, USA A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, M. Chadwick, J.E.W. Martin, Cole, I.D. Reid, P.R. P. Hobson, Symonds, L.Baylor A. Teodorescu, University, M. Waco, Khan, Turner USA P.K. Hatakeyama, Kyberd, H. Liu, D. T. Scarborough Leggat, D. Leslie, M. Kenzie, L.A. Lyons, Nikitenko A.-M. Magnan,A. J. Rose, Marrouche, C.T. B. Seez, Virdee, S. Mathias, P. Wakefield, Sharp N. R. Wardle, Nandi, T.Brunel Whyntie J. University, Uxbridge, Nash, United Kingdom Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley Imperial College, London, UnitedR. Kingdom Bainbridge, G. Ball, R.P. Dauncey, Beuselinck, G. O. Buchmuller, Davies, D. M.A. Colling, Della Guneratne N. Negra, Bryer, Cripps, W. M. G. Ferguson, Cutajar, Hall, J. Z. Fulcher, D. Hatherell, Futyan, J. A. Gilbert, Hays, G. Iles, M. Jarvis, G. Karapostoli, S. Senkin, V.J. Smith, T. Williams Rutherford Appleton Laboratory, Didcot, UnitedL. Basso Kingdom lan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn- Kharkov, Ukraine L. Levchuk University of Bristol, Bristol, UnitedJ.J. Kingdom Brooke, E. Clement,G.P. Heath, D. H.F. Cussans, Heath, L. H. Kreczko, Flacher, S. R. Metson, D.M. Frazier, Newbold J. Goldstein, M. Grimes, E. G¨ulmez,B. Isildak Istanbul Technical University, Istanbul, Turkey H. Bahtiyar National Scientific Center, Kharkov Institute of Physics and Technology, Bogazici University, Istanbul, Turkey JHEP02(2013)085 , P. Traczyk, V. Valuev, M. Weber † – 27 – , F. A. W¨urthwein, Yagil, J. Yoo 55 naishvili, B. Kreis, N.W. Mirman, Sun, G. W.D. Teo, Nicolas J. Kaufman, Thom,P. J. Wittich J.R. Thompson, Patterson, J. A. Tucker, J. Ryd, Vaughan, Y. E.Fairfield Weng, Salvati, University, L. Fairfield, Winstrom, USA D. Winn University of Colorado atJ.P. Boulder, Cumalat, Boulder, B.R. USA Drell,K.A. W.T. Ulmer, Ford, S.R. A. Wagner Gaz, E.Cornell Luiggi University, Lopez, Ithaca, J.G. USA Smith,J. Alexander, K. A. Stenson, Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, W. Hopkins, A. Khukhu- Y. Yang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA V. Azzolini, A.M. Calamba, Paulini, H. R. Vogel, I. Carroll, Vorobiev T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, S. Lowette, R. Maga˜naVillalba, N. Mccoll,D. V. Stuart, Pavlunin, J. W. Ribnik, To, J. C. Richman, West R.California Rossin, Institute of Technology, Pasadena,A. USA Apresyan, A. Bornheim, Y. Chen,H.B. E. Di Newman, Marco, J. C. Duarte, M. Rogan, Gataullin, Y. M. Ma, A. Spiropulu, Mott, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, M. Pieri, M.S. Wasserbaech Sani, V. Sharma,University S. of California, Simon, Santa Barbara,D. E. Barge, Santa Sudano, R. Barbara, Bellan, USA M.C. C. Tadel, Campagnari, George, M. Y. F. D’Alfonso, T. Golf, Tu, Danielson, J. A. K. Incandela, Flowers, Vartak, P. C. Geffert, Justus, P. Kalavase, D. Kovalskyi, V. Krutelyov, S. Wimpenny University of California, SanW. Diego, La Andrews, Jolla, J.G. USA M. Branson, Lebourgeois, G.B. J. Cerati, Letts, S. I. Cittolin, Macneill, D. B. Mangano, Evans, S. A. Padhi, Holzner, C. R. Palmer, Kelley, G. Petrucciani, V. Andreev, D. Cline,M. R. Ignatenko, Cousins, C. J. Jarvis, Duris, G. S. Rakness, Erhan,University P. P. of Schlein Everaerts, California, C. Riverside, Farrell, Riverside,J. J. USA Babb, Hauser, R. Clare,O.R. M.E. Long, Dinardo, A. J. Luthra, H. Ellison, Nguyen, J.W. S. Paramesvaran, Gary, J. F. Sturdy, S. Giordano, Sumowidagdo, R. G. Wilken, Hanson, H. Liu, R. Breedon, G.J. Breto, Conway, R. M. Conway, P.T. CalderonA. Cox, Kopecky, De J. R. Lander, Dolen, La O. R. Mall,ford, Barca Erbacher, T. M. Miceli, M. Sanchez, Searle, R. Gardner, J. Nelson, S. R. Smith, D. Chauhan, Pellett, Houtz, M.University F. Squires, W. M. Ricci-Tam, of M. B. Ko, California, Ruther- Tripathi, Chertok, R. Los Vasquez Angeles, Sierra, Los R. Angeles, Yohay USA University of California, Davis, Davis, USA JHEP02(2013)085 , C. Newman-Holmes, V. O’Dell, 57 – 28 – , J. Linacre, D. Lincoln, R. Lipton, J. Lykken, 56 , W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo, 59 , G. Mitselmakher, L. Muniz, M. Park, R. Remington, 58 , S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi , A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, 51 60 B.A. Barnett, B. Blumenfeld, S. Bolognesi,G. D. Hu, Fehling, P. G. Maksimovic, Giurgiu, M. A.V. Gritsan, Swartz,The Z.J. A. Guo, University Whitbeck of Kansas,P. Lawrence, USA Baringer, A. Bean,R. Stringer, G. G. Benelli, Tinti, J.S. R.P. Wood Kenny Iii, M. Murray, D. Noonan, S. Sanders, The University of Iowa, IowaU. City, Akgun, USA E.A.H. Albayrak, Mermerkaya B. Bilki Y. Onel, F. Ozok Johns Hopkins University, Baltimore, USA University of Illinois atM.R. Chicago Adams, (UIC), L. Apanasevich, Y. Chicago, Bai,R. USA V.E. Cavanaugh, Bazterra, R.R. O. Betts, I.F. Evdokimov, Bucinskaite, Lacroix, J. L. Callner, C. Gauthier, O’Brien, C. C.E. Silkworth, Gerber, D. Strom, D.J. P. Turner, Hofman, N. S. Varelas Khalatyan, T. Adams, A.S. Hagopian, Askew, V. J.M. Hagopian, Weinberg Bochenek, M. J. Jenkins, K.F. Chen,Florida Institute Johnson, B. of H. Technology, Diamond, Melbourne, Prosper,M.M. USA Baarmand, S.V. V. B. Dorney, Veeraraghavan, Gleyzer, M. Hohlmann, J. H. Kalakhety, Haas, I. Vodopiyanov, F. Yumiceva A. Rinkevicius, P. Sellers, N. Skhirtladze,Florida M. International Snowball, University, J. Miami, Yelton, M. USA V. Zakaria Gaultney, S. Hewamanage, L.M.driguez Lebolo, S. Linn, P. Markowitz,Florida G. State Martinez, University, J.L. Tallahassee, Ro- USA University of Florida, Gainesville,D. USA Acosta, P.G.P. Di Avery, Giovanni, D. D.J. Bourilkov, Dobur, Gartner, J. A. M. Hugon, Drozdetskiy, B.J.F. Chen, R.D. Kim, Low, K. J. Field, T. Matchev, Konigsberg, P. M. A. Milenovic Cheng, Korytov, Fisher, A. Y. S. Kropivnitskaya, T. Fu, Das, Kypreos, I.K. Furic, M. De Gruttola, K. Maeshima, J.M.P. Marraffino, McBride, V.I. K.O. Martinez Mishra, Prokofyev, Outschoorn, S. E. S.S. Mrenna, Sexton-Kennedy, Tkaczyk, Maruyama, Y. N.V. S. D. Tran, Musienko F. Sharma, L. Mason, Yang, Uplegger, J.C. W.J. Yun E.W. Spalding, Vaandering, R. L. Vidal, Spiegel, J. Whitmore, L. W. Taylor, Wu, S. Abdullin, M.P.C. Albrow, Bhat, J. K.V.D. Anderson, Elvira, Burkett, I. L.A.T. Fisk,ris, J.N. Bauerdick, J. J. Butler, Freeman, A. Y. Hirschauer,S. V. Beretvas, Gao, Kunori, B. D. J. Chetluru, S. Green, Hooberman, Kwan, Berryhill, O. H.W.K. C. Gutsche, S. Leonidopoulos Cheung, J. Jindariani, Hanlon, F. R.M. M. Har- Chlebana, Johnson, U. Joshi, B. Klima, Fermi National Accelerator Laboratory, Batavia, USA JHEP02(2013)085 , A. Levin, 61 – 29 – K. Lannon, W. Luo, S. Lynch,J. N. Slaunwhite, Marinelli, N. D.M. Valls, Morse, M. T. Pearson, Wayne, M. M.The Planer, Wolf Ohio R. Ruchti, State University, Columbus,L. USA Antonelli, B. Bylsma, L.S.M. Durkin, Rodenburg, C. C. Hill, Vuosalo, G. R. Williams, Hughes, B.L. K. Winer Kotov, T.Y. Ling, D. Puigh, Northwestern University, Evanston, USA A. Anastassov, K.A. Hahn,B. Pollack, A. A. Kubik, Pozdnyakov, M. L. Schmitt, Lusito, S.University N. Stoynev, of M. Mucia, Notre Velasco, N. Dame, S. Won D. Odell, Notre Dame, Berry, R.A. A. USA Ofierzynski, Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, A. Godshalk, I. Iashvili, S. Jain,Northeastern A. University, Kharchilava, Boston, A. USA Kumar, S.G. Rappoccio, Alverson, Z. Wan E.D. Barberis, Trocino, D. D. Wood, Baumgartel, J. M. Zhang Chasco, J. Haley, D. Nash, T. Orimoto, University of Nebraska-Lincoln, Lincoln, USA E. Avdeeva, K.I. Kravchenko, J. Bloom, Lazo-Flores, S. S. Malik,State G.R. Bose, Snow University of D.R. New York Claes, at Buffalo, A. Buffalo, Dominguez, USA M. Eads, J. Keller, University of Minnesota, Minneapolis,B. USA Dahmes, A. De Benedetti,J. G. Mans, N. Franzoni, A. Pastika, R. Gude, Rusack, S.C.University M. Kao, of Sasseville, K. A. Mississippi, Klapoetke, Singovsky, Oxford, Y. N. Kubota,L.M. USA Tambe, Cremaldi, J. R. Turkewitz Kroeger, L. Perera, R. Rahmat, D.A. Sanders A. Apyan, G. Bauer,G. J. Gomez Bendavid, Ceballos,P.D. W. Luckey, Busza, T. M. E. Ma, Goncharov,G.S.F. Butz, S. Stephans, I.A. Nahn, Y. F. Cali, C. K. St¨ockli, Kim,B. Paus, M. Sumorok, Wyslouch, D. Chan, M. K. M. Ralph, Yang, Sung, V. Y. Klute, C. D. Dutta, Yilmaz, Roland, A.S. Velicanu, K. Yoon, E.A. G. M. Wenger, Roland, Krajczar Zanetti, R. M. V. Wolf, Zhukova Rudolph, A. Baden, B.T. Calvert, Kolberg, Y. S.C.J. Lu, Eno, Temple, M. M.B. J.A. Tonjes, Marionneau, S.C. Gomez, A.C. Tonwar Mignerey,Massachusetts N.J. Institute K. Hadley, of Pedro, Technology, R.G. Cambridge, A. USA Kellogg, Peterman, A. M. Skuja, Kirn, A.F. Barfuss, T. Bolton,S. I. Shrestha, Chakaberia, I. A. Svintradze Ivanov, S.Lawrence Khalil, Livermore M. National Makouski, Laboratory, Y. Livermore,J. USA Maravin, Gronberg, D. Lange, F. Rebassoo,University D. of Wright Maryland, College Park, USA Kansas State University, Manhattan, USA JHEP02(2013)085 , V. Khotilovich, R. Montalvo, I. Os- 62 – 30 – ipenkov, Y. Pakhotin, A.A. Perloff, Tatarinov, J. D. Roe, Toback A. Safonov, T.Texas Sakuma, Tech S. University, Sengupta, Lubbock, I. USA Suarez, N. Akchurin, J. Damgov, C.T. Dragoiu, Libeiro, P.R. Dudero, I. C. Volobouev Jeong, K. Kovitanggoon, S.W. Lee, University of Tennessee, Knoxville, USA G. Cerizza, M. Hollingsworth, S. Spanier, Z.C.Texas Yang, A&M A. University, York College Station,R. USA Eusebi, W. Flanagan, J. Gilmore, T. Kamon Rutgers, the State University ofS. New Arora, Jersey, A. Piscataway, Barker, USA gan, J.P. Chou, D. Ferencek, C. Y. Contreras-Campana, Gershtein, E.M. R. Contreras-Campana, Gray, Park, E. D. Halkiadakis, Dug- R. D.S. Hidas, Patel, Somalwar, A. R. V. Lath, Stone, S. Rekovic, S. Panwalkar, Thomas, J. M. Robles, Walker K. Rose, S. Salur, S. Schnetzer, C. Seitz, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J.M. Han, Zielinski A. Harel, D.C. Miner, D. Vishnevskiy, The Rockefeller University, New York,A. USA Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian A. Adair, B. Akgun, C.R. Boulahouache, Redjimi, K.M. J. Ecklund, Roberts, F.J.M. J. Geurts, Zabel W.University Li, of B.P. Padley, Rochester, Rochester, USA B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, Marono, H.D. Yoo, J. Zablocki, Y. Zheng Purdue University Calumet, Hammond, USA S. Guragain, N. Parashar Rice University, Houston, USA Purdue University, West Lafayette, USA E. Alagoz, V.E. Barnes, D.Z. Benedetti, Hu, G. Bolla, M. D.P. Jones, Bortoletto, Merkel, M. O. D.H. De Miller, Koybasi, Mattia, N. A. M. Neumeister, Everett, Kress, I. A.T. Shipsey, D. Laasanen, Silvers, N. A. Leonardo, Svyatkovskiy, M. V. Vidal Maroussov, E. Berry, P. Elmer,D. V. Lopes Pegna, Halyo, P. P.X. Lujan, Quan, Hebda, A. D. J. Raval, Marlow, H. Hegeman, T. Saka, D. A. Medvedeva,University Stickland, M. Hunt, of C. Mooney, Puerto P. Tully, J.S. J. Rico, Jindal, Werner, Olsen, Mayaguez, S.C.E. S.A. USA Zenz, P. Brownson, Koay, A. Pirou´e, A. Zuranski Lopez, H. Mendez, J.E. Ramirez Vargas Princeton University, Princeton, USA JHEP02(2013)085 – 31 – University, Tehran, Iran Also at California InstituteAlso of at Technology, Pasadena, Laboratoire USA Leprince-Ringuet, EcoleAlso Polytechnique, at IN2P3-CNRS, Suez Palaiseau, France CanalAlso University, Suez, at Egypt Zewail City ofAlso Science at and Cairo Technology, University, Zewail, Cairo, Egypt Egypt Also at Vienna University ofAlso Technology, at Vienna, CERN, Austria EuropeanAlso Organization at for National Nuclear Institute Research,Also of Geneva, Switzerland at Chemical Universidade Physics Federal and do Biophysics, ABC, Tallinn, Estonia Santo Andre, Brazil Deceased Also at University of Visva-Bharati,Also Santiniketan, at India Sharif University ofAlso Technology, at Tehran, Isfahan Iran University ofAlso Technology, at Isfahan, Shiraz Iran University, Shiraz,Also Iran at Plasma Physics Research Center, Science and Research Branch, Islamic Azad Also at Brandenburg University ofAlso Technology, at Cottbus, The Germany University ofAlso Kansas, at Lawrence, Institute USA of University,Also Nuclear Budapest, at Research Hungary ATOMKI, E¨otv¨osLor´and Debrecen, Hungary Also at Tata Institute ofNow Fundamental at Research King - Abdulaziz HECR, University, Mumbai, Jeddah, India Saudi Arabia Also at British University inNow Egypt, at Cairo, Ain Egypt Shams University,Also Cairo, at Egypt National Centre forAlso Nuclear at Research, Universit´ede Haute-Alsace, Swierk, Mulhouse, Poland Also France at Joint Institute forAlso Nuclear at Research, Moscow Dubna, State Russia University, Moscow, Russia Also at Fayoum University, El-Fayoum, Egypt : † 5: 6: 7: 8: 9: 1: 2: 3: 4: 23: 24: 25: 26: 27: 17: 18: 19: 20: 21: 22: 11: 12: 13: 14: 15: 16: 10: M. Anderson, Donald A. Belknap,L. L. Borrello, Gray, D. K.S. Carlsmith, Grogg, M.J. Cepeda, M. Klukas, S. Dasu, A. Grothe, E. Lanaro, R.F. Friis, C. Palmonari, Hall-Wilton, G.A. Lazaridis, M. Pierro, R. I. Herndon, Loveless, Ross, A. A. A. Herv´e,P. Savin, Mohapatra, Klabbers, W.H. M.U. Smith, J. Mozer, Swanson I. Ojalvo, Wayne State University, Detroit, USA S. Gollapinni, R. Harr,A. Sakharov P.E. Karchin, C. Kottachchi KankanamgeUniversity of Don, Wisconsin, P. Madison, Lamichhane, USA E. Appelt, A.G. Delannoy, C. Florez, S.A. Greene, Melo, A. M. Gurrola, W. Sharma, Johns, P. P. Kurt, Sheldon, C. B.University Maguire, Snook, of S. Virginia, Tuo, Charlottesville, J. USA M.W. Velkovska Arenton, M.A. Ledovskoy, Balazs, C. Lin, S. C. Neu, Boutle, J. Wood B. Cox, B. Francis, J. Goodell, R. Hirosky, Vanderbilt University, Nashville, USA JHEP02(2013)085 – 32 – Belgrade, Serbia Kingdom Also at University of Belgrade, Faculty of PhysicsAlso and at Vinca Argonne Institute National ofAlso Laboratory, Argonne, at Nuclear USA Erzincan Sciences, University, Erzincan,Also Turkey at KFKI Research InstituteAlso for at Particle Kyungpook and National Nuclear University, Daegu, Physics, Korea Budapest, Hungary Also at School of Physics and Astronomy, University of Southampton,Also Southampton, at United INFN SezioneAlso di at Perugia; Universit`adi Utah Perugia, Valley Perugia, University,Now Italy Orem, at USA University of Edinburgh,Also Scotland, at Edinburgh, Institute United for Kingdom Nuclear Research, Moscow, Russia Also at Ozyegin University, Istanbul,Also Turkey at Kafkas University, Kars,Also Turkey at Suleyman DemirelAlso University, Isparta, at Turkey Ege University, Izmir,Also Turkey at Mimar SinanAlso University, Istanbul, at Istanbul, University, Kahramanmaras Turkey Kahramanmaras, S¨utc¨uImam Turkey Also at Albert EinsteinAlso Center at for Gaziosmanpasa Fundamental Physics, University, Tokat, Bern,Also Turkey Switzerland at Adiyaman University, Adiyaman,Also Turkey at Izmir InstituteAlso of at Technology, Izmir, The Turkey University ofAlso Iowa, at Iowa Mersin City, University, USA Mersin, Turkey Also at Scuola NormaleAlso e at Sezione INFN dell’INFN, Sezione Pisa,Also di Italy at Roma, University Roma, of Italy Athens,Also Athens, at Greece Rutherford AppletonAlso Laboratory, Didcot, at United Paul Kingdom Scherrer Institut,Also Villigen, at Switzerland Institute for Theoretical and Experimental Physics, Moscow, Russia Also at Universit`adella Basilicata, Potenza,Also Italy at Universit`adegli Studi GuglielmoAlso Marconi, at Roma, Universit`adegli Studi Italy diAlso Siena, at Siena, University Italy of Bucharest,Also Faculty at of Faculty Physics, of Bucuresti-Magurele, PhysicsAlso Romania of at University University of of Belgrade, California, Belgrade, Los Serbia Angeles, Los Angeles, USA Also at Facolt`aIngegneria, Universit`adi Roma, Roma, Italy 58: 59: 60: 61: 62: 53: 54: 55: 56: 57: 47: 48: 49: 50: 51: 52: 41: 42: 43: 44: 45: 46: 35: 36: 37: 38: 39: 40: 29: 30: 31: 32: 33: 34: 28: