Baryon Asymmetry • Grand Unified Theories Text: Carroll and Ostlie, Sec
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trinity of Strangeon Matter
Trinity of Strangeon Matter Renxin Xu1,2 1School of Physics and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China, 2State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; [email protected] Abstract. Strangeon is proposed to be the constituent of bulk strong matter, as an analogy of nucleon for an atomic nucleus. The nature of both nucleon matter (2 quark flavors, u and d) and strangeon matter (3 flavors, u, d and s) is controlled by the strong-force, but the baryon number of the former is much smaller than that of the latter, to be separated by a critical number of Ac ∼ 109. While micro nucleon matter (i.e., nuclei) is focused by nuclear physicists, astrophysical/macro strangeon matter could be manifested in the form of compact stars (strangeon star), cosmic rays (strangeon cosmic ray), and even dark matter (strangeon dark matter). This trinity of strangeon matter is explained, that may impact dramatically on today’s physics. Symmetry does matter: from Plato to flavour. Understanding the world’s structure, either micro or macro/cosmic, is certainly essential for Human beings to avoid superstitious belief as well as to move towards civilization. The basic unit of normal matter was speculated even in the pre-Socratic period of the Ancient era (the basic stuff was hypothesized to be indestructible “atoms” by Democritus), but it was a belief that symmetry, which is well-defined in mathematics, should play a key role in understanding the material structure, such as the Platonic solids (i.e., the five regular convex polyhedrons). -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Masse Des Neutrinos Et Physique Au-Delà Du Modèle Standard
œa UNIVERSITE PARIS-SUD XI THESE Spécialité: PHYSIQUE THÉORIQUE Présentée pour obtenir le grade de Docteur de l'Université Paris XI par Pierre Hosteins Sujet: Masse des Neutrinos et Physique au-delà du Modèle Standard Soutenue le 10 Septembre 2007 devant la commission d'examen: MM. Asmaa Abada, Sacha Davidson, Emilian Dudas, rapporteur, Ulrich Ellwanger, président, Belen Gavela, Thomas Hambye, rapporteur, Stéphane Lavignac, directeur de thèse. 2 Remerciements : Un travail de thèse est un travail de longue haleine, au cours duquel se produisent inévitablement beaucoup de rencontres, de collaborations, d'échanges... Voila pourquoi, sans doute, il me semble que la liste des personnes a qui je suis redevable est devenue aussi longue ! Tâchons cependant de remercier chacun comme il le mérite. En relisant ce manuscrit je ne peux m'empêcher de penser a Stéphane Lavignac, que je me dois de remercier pour avoir accepté d'encadrer mon travail de thèse et qui m'a toujours apporté le soutien et les explications nécessaires, avec une patience admirable. Sa grande rigueur d'analyse et sa minutie m'offrent un exemple que je m'évertuerai à suivre avec la plus grande application. Ces travaux n'auraient pas pu voir le jour non plus sans mes autres collaborateurs que sont Carlos Savoy, Julien Welzel, Micaela Oertel, Aldo Deandrea, Asmâa Abada et François-Xavier Josse-Michaux, qui ont toujours été disponibles et avec qui j'ai eu un plaisir certain a travailler. C'est avec gratitude que je remercie Asmâa pour tous les conseils et recommandations qu'elle n'a cessé de me fournir tout au long de mes études au sein de l'Université Paris XL Au cours de ces trois années de travail dans le domaine de la Physique Au-delà de Modèle Standard, j'ai bénéficié du contact de toute la communauté des théoriciens de la région. -
Baryon and Lepton Number Anomalies in the Standard Model
Appendix A Baryon and Lepton Number Anomalies in the Standard Model A.1 Baryon Number Anomalies The introduction of a gauged baryon number leads to the inclusion of quantum anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current, are given by the following, 2 For SU(3) U(1)B , ⎛ ⎞ 3 A (SU(3)2U(1) ) = Tr[λaλb B]=3 × ⎝ B − B ⎠ = 0. (A.1) 1 B 2 i i lef t right 2 For SU(2) U(1)B , 3 × 3 3 A (SU(2)2U(1) ) = Tr[τ aτ b B]= B = . (A.2) 2 B 2 Q 2 ( )2 ( ) For U 1 Y U 1 B , 3 A (U(1)2 U(1) ) = Tr[YYB]=3 × 3(2Y 2 B − Y 2 B − Y 2 B ) =− . (A.3) 3 Y B Q Q u u d d 2 ( )2 ( ) For U 1 BU 1 Y , A ( ( )2 ( ) ) = [ ]= × ( 2 − 2 − 2 ) = . 4 U 1 BU 1 Y Tr BBY 3 3 2BQYQ Bu Yu Bd Yd 0 (A.4) ( )3 For U 1 B , A ( ( )3 ) = [ ]= × ( 3 − 3 − 3) = . 5 U 1 B Tr BBB 3 3 2BQ Bu Bd 0 (A.5) © Springer International Publishing AG, part of Springer Nature 2018 133 N. D. Barrie, Cosmological Implications of Quantum Anomalies, Springer Theses, https://doi.org/10.1007/978-3-319-94715-0 134 Appendix A: Baryon and Lepton Number Anomalies in the Standard Model 2 Fig. A.1 1-Loop corrections to a SU(2) U(1)B , where the loop contains only left-handed quarks, ( )2 ( ) and b U 1 Y U 1 B where the loop contains only quarks For U(1)B , A6(U(1)B ) = Tr[B]=3 × 3(2BQ − Bu − Bd ) = 0, (A.6) where the factor of 3 × 3 is a result of there being three generations of quarks and three colours for each quark. -
Properties of Baryons in the Chiral Quark Model
Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results. -
Introduction to Flavour Physics
Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section. -
Lecture 5: Quarks & Leptons, Mesons & Baryons
Physics 3: Particle Physics Lecture 5: Quarks & Leptons, Mesons & Baryons February 25th 2008 Leptons • Quantum Numbers Quarks • Quantum Numbers • Isospin • Quark Model and a little History • Baryons, Mesons and colour charge 1 Leptons − − − • Six leptons: e µ τ νe νµ ντ + + + • Six anti-leptons: e µ τ νe̅ νµ̅ ντ̅ • Four quantum numbers used to characterise leptons: • Electron number, Le, muon number, Lµ, tau number Lτ • Total Lepton number: L= Le + Lµ + Lτ • Le, Lµ, Lτ & L are conserved in all interactions Lepton Le Lµ Lτ Q(e) electron e− +1 0 0 1 Think of Le, Lµ and Lτ like − muon µ− 0 +1 0 1 electric charge: − tau τ − 0 0 +1 1 They have to be conserved − • electron neutrino νe +1 0 0 0 at every vertex. muon neutrino νµ 0 +1 0 0 • They are conserved in every tau neutrino ντ 0 0 +1 0 decay and scattering anti-electron e+ 1 0 0 +1 anti-muon µ+ −0 1 0 +1 anti-tau τ + 0 −0 1 +1 Parity: intrinsic quantum number. − electron anti-neutrino ν¯e 1 0 0 0 π=+1 for lepton − muon anti-neutrino ν¯µ 0 1 0 0 π=−1 for anti-leptons tau anti-neutrino ν¯ 0 −0 1 0 τ − 2 Introduction to Quarks • Six quarks: d u s c t b Parity: intrinsic quantum number • Six anti-quarks: d ̅ u ̅ s ̅ c ̅ t ̅ b̅ π=+1 for quarks π=−1 for anti-quarks • Lots of quantum numbers used to describe quarks: • Baryon Number, B - (total number of quarks)/3 • B=+1/3 for quarks, B=−1/3 for anti-quarks • Strangness: S, Charm: C, Bottomness: B, Topness: T - number of s, c, b, t • S=N(s)̅ −N(s) C=N(c)−N(c)̅ B=N(b)̅ −N(b) T=N( t )−N( t )̅ • Isospin: I, IZ - describe up and down quarks B conserved in all Quark I I S C B T Q(e) • Z interactions down d 1/2 1/2 0 0 0 0 1/3 up u 1/2 −1/2 0 0 0 0 +2− /3 • S, C, B, T conserved in strange s 0 0 1 0 0 0 1/3 strong and charm c 0 0 −0 +1 0 0 +2− /3 electromagnetic bottom b 0 0 0 0 1 0 1/3 • I, IZ conserved in strong top t 0 0 0 0 −0 +1 +2− /3 interactions only 3 Much Ado about Isospin • Isospin was introduced as a quantum number before it was known that hadrons are composed of quarks. -
GRAND UNIFIED THEORIES Paul Langacker Department of Physics
GRAND UNIFIED THEORIES Paul Langacker Department of Physics, University of Pennsylvania Philadelphia, Pennsylvania, 19104-3859, U.S.A. I. Introduction One of the most exciting advances in particle physics in recent years has been the develcpment of grand unified theories l of the strong, weak, and electro magnetic interactions. In this talk I discuss the present status of these theo 2 ries and of thei.r observational and experimenta1 implications. In section 11,1 briefly review the standard Su c x SU x U model of the 3 2 l strong and electroweak interactions. Although phenomenologically successful, the standard model leaves many questions unanswered. Some of these questions are ad dressed by grand unified theories, which are defined and discussed in Section III. 2 The Georgi-Glashow SU mode1 is described, as are theories based on larger groups 5 such as SOlO' E , or S016. It is emphasized that there are many possible grand 6 unified theories and that it is an experimental problem not onlv to test the basic ideas but to discriminate between models. Therefore, the experimental implications are described in Section IV. The topics discussed include: (a) the predictions for coupling constants, such as 2 sin sw, and for the neutral current strength parameter p. A large class of models involving an Su c x SU x U invariant desert are extremely successful in these 3 2 l predictions, while grand unified theories incorporating a low energy left-right symmetric weak interaction subgroup are most likely ruled out. (b) Predictions for baryon number violating processes, such as proton decay or neutron-antineutnon 3 oscillations. -
THE STANDARD MODEL and BEYOND: a Descriptive Account of Fundamental Particles and the Quest for the Unification of Their Interactions
THE STANDARD MODEL AND BEYOND: A descriptive account of fundamental particles and the quest for the uni¯cation of their interactions. Mesgun Sebhatu ([email protected]) ¤ Department of Chemistry, Physics and Geology Winthrop University, Rock Hill SC 29733 Abstract fundamental interactions|gravity, electroweak, and the strong nuclear|into one. This will be In the last three decades, signi¯cant progress has equivalent to having a complete theory of every- been made in the identi¯cation of fundamental thing (TOE). Currently, a contender for a TOE particles and the uni¯cation of their interactions. is the so called superstring theory. The theoret- This remarkable result is summarized by what ical extensions of the Standard Model and the is con¯dently called the Standard Model (SM). experimental tests of their predictions is likely This paper presents a descriptive account of the to engage high energy physicists of the 21st cen- Standard Model and its possible extensions. Ac- tury. cording to SM, all matter in the universe is made up of a dozen fermions|six quarks and six lep- tons. The quarks and leptons interact by ex- 1 HISTORICAL INTRO- changing a dozen gauge (spin|one) bosons| DUCTION eight gluons and four electroweak bosons. The Standard Model provides a framework for the Our job in physics is to see things sim- uni¯cation of the electroweak and strong nu- ply, to understand a great many com- clear forces. A major de¯ciency of the Standard plicated phenomena in a uni¯ed way, in Model is its exclusion of gravity. The ultimate terms of a few simple principles. -
Physics Beyond the Standard Model
SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Physics beyond the Standard Model Ulrich Nierste Karlsruhe Institute of Technology KIT Center Elementary Particle and Astroparticle Physics LHCb Workshop Neckarzimmern 13-15 February 2013 SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Scope The lecture gives an introduction to physics beyond the Standard Model associated with new particles in the 100 GeV– 10 TeV range. The concept is bottom-up, starting from the Standard Model and its problems, with emphasis on the standard way beyond the Standard Model: Grand unification (and supersymmetry). SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Scope The lecture gives an introduction to physics beyond the Standard Model associated with new particles in the 100 GeV– 10 TeV range. The concept is bottom-up, starting from the Standard Model and its problems, with emphasis on the standard way beyond the Standard Model: Grand unification (and supersymmetry). Not covered: Search strategies for new particles at colliders, theories of gravitation, large extra dimensions, strongly interacting Higgs sectors, ... SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Contents Standard Model Generalities Symmetries Electroweak interaction Yukawa interaction Methodology of new physics searches Beyond the Standard Model Towards unification of forces SU(5) SO(10) Probing new physics with flavour Conclusions SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions The theorist’s toolbox A theory’s particles and their interactions are encoded in the Lagrangian . -
Baryon Asymmetry, Dark Matter and Local Baryon Number
Baryon Asymmetry, Dark Matter and Local Baryon Number Pavel Fileviez P´erez∗ and Hiren H. Patel† Particle and Astro-Particle Physics Division Max-Planck Institute for Nuclear Physics (MPIK) Saupfercheckweg 1, 69117 Heidelberg, Germany We propose a new mechanism to understand the relation between baryon and dark matter asym- metries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B −L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature. I. INTRODUCTION The existence of the baryon asymmetry and cold dark Initial Asymmetry matter density in the Universe has motivated many stud- ies in cosmology and particle physics. Recently, there has been focus on investigations of possible mechanisms that relate the baryon asymmetry and dark matter density, i.e. Ω ∼ 5Ω . These mechanisms are based on the DM B Sphalerons idea of asymmetric dark matter (ADM). See Ref. [1] for 3 a recent review of ADM mechanisms and Ref. [2] for a (QQQL ) ψ¯RψL review on Baryogenesis at the low scale. Crucial to baryogenesis in any theory is the existence of baryon violating processes to generate the observed baryon asymmetry in the early universe. -
10. Other Extensions of the Standard Model
10. Other Extensions of the Standard Model 10.1 Introduction to Grand Unified Theories 10.2 Leptoquarks 10.3 Additional Gauge bosons, W’ and Z’ searches 10.4 Compositeness and excited quarks 10.5 Extra Space dimensions Why Physics Beyond the Standard Model ? 1. Gravity is not yet incorporated in the Standard Model 2. Dark Matter not accomodated 3. Many open questions in the Standard Model 19 - Hierarchy problem: mW (100 GeV) → mPlanck (10 GeV) - Unification of couplings - Flavour / family problem - ….. All this calls for a more fundamental theory of which the Standard Model is a low energy approximation → New Physics Candidate theories: Supersymmetry Many extensions predict new Extra Dimensions physics at the TeV scale !! New gauge bosons ……. Strong motivation for LHC, mass reach ~ 3 TeV 10.1 Introduction to Grand Unified Theories (GUT) • The SU(3) x SU(2) x U(1) gauge theory is in impressive agreement with experiment. • However, there are still three gauge couplings (g, g’, and αs) and the strong interaction is not unified with the electroweak interaction • Is a unification possible ? Is there a larger gauge group G, which contains the SU(3) x SU(2) x U(1) ? Gauge transformations in G would then relate the electroweak couplings g and g’ to the strong coupling αs. For energy scales beyond MGUT, all interactions would then be described by a grand unified gauge theory (GUT) with a single coupling gG, to which the other couplings are related in a specific way. • Gauge couplings are energy-dependent, g2 and g3 are asymptotically free, i.e.