198 4Apj. . .276. .491H the Astrophysical Journal, 276:491-508
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stellar Clusters in Dwarf Galaxies
A&A 448, 471–478 (2006) Astronomy DOI: 10.1051/0004-6361:20052949 & c ESO 2006 Astrophysics Stellar clusters in dwarf galaxies L. Vanzi1 and M. Sauvage2 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile e-mail: [email protected] 2 CEA/DSM/DAPNIA/Service d’Astrophysique – UMR AIM, CE Saclay, 91191 Gif-sur-Yvette Cedex, France e-mail: [email protected] Received 28 February 2005 / Accepted 13 October 2005 ABSTRACT We present new observations in the Ks (2.2 µm) and L (3.7 µm) infrared bands of a sample of blue dwarf galaxies with the larger aim of studying the population of massive stellar clusters, the occurrence of dust-embedded stellar clusters, and their properties. All Ks images show a rich population of clusters, but only a small fraction of them is bright in L.MostL sources have radio counterparts. We derived the luminosity function in Ks for the galaxies IC 4661 and NGC 5408, finding both to be consistent with those of similar galaxies. We also compared the number of clusters and their luminosities with the star-formation rate of the host galaxies and found no compelling evidence of correlation. We conclude that young clusters and embedded clusters are a common feature of blue dwarf galaxies and possibly of galaxies in general, we suggest that their occurrence is due to purely statistical effects rather than a phenomenon related to specific physical conditions. In this sense we expect these objects to be abundant at high red-shift. Key words. galaxies: dwarf – galaxies: starburst – galaxies: star clusters 1. -
TSP 2004 Telescope Observing Program
THE TEXAS STAR PARTY 2004 TELESCOPE OBSERVING CLUB BY JOHN WAGONER TEXAS ASTRONOMICAL SOCIETY OF DALLAS RULES AND REGULATIONS Welcome to the Texas Star Party's Telescope Observing Club. The purpose of this club is not to test your observing skills by throwing the toughest objects at you that are hard to see under any conditions, but to give you an opportunity to observe 25 showcase objects under the ideal conditions of these pristine West Texas skies, thus displaying them to their best advantage. This year we have planned a program called “Starlight, Starbright”. The rules are simple. Just observe the 25 objects listed. That's it. Any size telescope can be used. All observations must be made at the Texas Star Party to qualify. All objects are within range of small (6”) to medium sized (10”) telescopes, and are available for observation between 10:00PM and 3:00AM any time during the TSP. Each person completing this list will receive an official Texas Star Party Telescope Observing Club lapel pin. These pins are not sold at the TSP and can only be acquired by completing the program, so wear them proudly. To receive your pin, turn in your observations to John Wagoner - TSP Observing Chairman any time during the Texas Star Party. I will be at the outside door leading into the TSP Meeting Hall each day between 1:00 PM and 2:30 PM. If you finish the list the last night of TSP, or I am not available to give you your pin, just mail your observations to me at 1409 Sequoia Dr., Plano, Tx. -
Annual Report 2009-2010
ICRAR AnnuAl RepoRt 2009-2010 Annual Report 2009/10 Document ICRAR-DOC-0016 ICRAR Annual Report 2009/10 11 August 2010 FRONT COVER: Top Left: A group photo of some members of the ICRAR Board, ICRAR Executive and Professor Richard Schilizzi (Director SKA Program Development Office) at the launch of ICRAR, 1 September 2009 – photo Jurgen Lunsmann Top Right: The Murchison Wide-field Array 32 tile system on the Murchison Radio- astronomy Observatory June 2010 – photo Paul Bourke and Jonathan Knispel, WASP Middle Left: Three-dimensional supercomputer model of supernovae 1987a – image Toby Potter, ICRAR Middle: Year 10 students attending the “Out There” SKA event in March 2009 - photo Paul Ricketts, Centre for Learning Technology UWA Middle Right: Supercomputer simulation of hydrogen gas in the early Universe – image Dr Alan Duffy, ICRAR Bottom Left: Radio emission from the inner core of the galaxy Centaurus A as seen by the first disk of the ASKAP telescope coupled to a dish in New Zealand 5500 km away – image Prof Steven Tingay (ICRAR) / ICRAR, CSIRO and AUT Bottom Right: Stars and gas in the colliding galaxy NGC 922 – image Prof Gerhardt Meurer (ICRAR) and Dr Kenji Bekki (ICRAR) 2 ICRAR Annual Report 2009/10 11 August 2010 Table of Contents 1.0 Executive Summary ..............................................................................................5! 1.1 Major Developments and Highlights of 2009/10 ................................................5! 1.2 National and International Collaborations..........................................................6! -
NGC 3125−1: the Most Extreme Wolf-Rayet Star Cluster Known in the Local Universe1
NGC 3125−1: The Most Extreme Wolf-Rayet Star Cluster Known in the Local Universe1 Rupali Chandar and Claus Leitherer Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218 [email protected] & [email protected] and Christy A. Tremonti Steward Observatory, 933 N. Cherry Ave., Tucson, AZ, 85721 [email protected] ABSTRACT We use Space Telescope Imaging Spectrograph long-slit ultraviolet spec- troscopy of local starburst galaxies to study the massive star content of a represen- tative sample of \super star" clusters, with a primary focus on their Wolf-Rayet (WR) content as measured from the He II λ1640 emission feature. The goals of this work are three-fold. First, we quantify the WR and O star content for selected massive young star clusters. These results are compared with similar estimates made from optical spectroscopy and available in the literature. We conclude that the He II λ4686 equivalent width is a poor diagnostic measure of the true WR content. Second, we present the strongest known He II λ1640 emis- sion feature in a local starburst galaxy. This feature is clearly of stellar origin in the massive cluster NGC 3125-1, as it is broadened (∼ 1000 km s−1). Strong N IV] λ1488 and N V λ1720 emission lines commonly found in the spectra of individual Wolf-Rayet stars of WN subtype are also observed in the spectrum of NGC 3125-1. Finally, we create empirical spectral templates to gain a basic understanding of the recently observed strong He II λ1640 feature seen in Lyman Break Galaxies (LBG) at redshifts z ∼ 3. -
Neutral Hydrogen in Nearby Dwarf Galaxies B¨Arbel S
Dwarf Galaxies: From the Deep Universe to the Present Proceedings IAU Symposium No. 344, 2018 c 2018 International Astronomical Union K. McQuinn & S. Stierwalt, eds. DOI: 00.0000/X000000000000000X Neutral Hydrogen in Nearby Dwarf Galaxies B¨arbel S. Koribalski CSIRO Astronomy and Space Science, Australia Telescope National Facility PO Box 76, Epping, NSW 1710, Australia email: [email protected] Abstract. Here I briefly highlight our studies of the gas content, kinematics and star formation in nearby dwarf galaxies (D < 10 Mpc) based on the `Local Volume H i Survey' (LVHIS, Koribalski et al. 2018), which was conducted with the Australia Telescope Compact Array (ATCA). The LVHIS sample consists of nearly 100 galaxies, including new discoveries, spanning a large diversity in size, shape, mass and degree of peculiarity. The hydrogen properties of dwarf galaxies in two nearby groups, Sculptor and CenA / M83, are analysed and compared with many rather isolated dwarf galaxies. Around 10% of LVHIS galaxies are transitional or mixed-type dwarf galaxies (dIrr/dSph), the formation of which is explored. | I also provide a brief update on WALLABY Early Science, where we focus on studying the H i properties of galaxies as a function of environment. WALLABY (Dec < +30 degr, z < 0:26) is conducted with the Australian SKA Pathfinder (ASKAP), a ∼6-km diameter array of 36 × 12-m dishes, each equipped with wide-field (30 sq degr) Chequerboard Phased Array Feeds. Keywords. galaxies: kinematics and dynamics | galaxies: structure | radio lines: galaxies | surveys 1. LVHIS { The Local Volume H i Survey The LVHIS project provides high-resolution H i spectral line and 20-cm radio contin- uum data products for nearly 100 nearby galaxies, based on over 2500 hours of ATCA observations. -
MEMORIA IAC 2013 Pero No Todo Son Balances Positivos
MEMORIA 2013 “INSTITUTO DE ASTROFÍSICA DE CANARIAS” EDITA: Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias (IAC) MAQUETA E IMPRIME: Printisur DEPÓSITO LEGAL: 7- PRESENTACIÓN Índice general 8- CONSORCIO PÚBLICO IAC 12- LOS OBSERVATORIOS DE CANARIAS 14- - Observatorio del Teide (OT) 15- - Observatorio del Roque de los Muchachos (ORM) 16- COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 20- ACUERDOS 22- GRAN TELESCOPIO CANARIAS (GTC) 26- ÁREA DE INVESTIGACIÓN 29- - Estructura del Universo y Cosmología 47- - El Universo Local 80- - Física de las estrellas, Sistemas Planetarios y Medio Interestelar 107- - El Sol y el Sistema Solar 137- - Instrumentación y Espacio 161- - Otros 174- ÁREA DE INSTRUMENTACIÓN 174- - Ingeniería 188- - Producción 192- - Oficina de Proyectos Institucionales y Transferencia de Resultados de Investigación (OTRI) 201- ÁREA DE ENSEÑANZA 201- - Cursos de doctorado 203- - Seminarios científicos 207- - Coloquios 207- - Becas 209- - Tesis doctorales 209- - XXIV Escuela de Invierno: ”Aplicaciones astrofísicas de las lentes gravitatorias” 211- ADMINISTRACIÓN DE SERVICIOS GENERALES 211- - Instituto de Astrofísica 213- - Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) 216- - Observatorio del Teide 216- - Observatorio del Roque de los Muchachos 217- - Centro de Astrofísica de la Palma 218- - Ejecución del Presupuesto 2013 219- GABINETE DE DIRECCIÓN 219- - Ediciones 220- - Carteles 220- - Comunicación y divulgación 232- - Web 234- - Visitas a las instalaciones del IAC 237- -
The Large Scale Distribution of Radio Continuum in Ε and So Galaxies
THE LARGE SCALE DISTRIBUTION OF RADIO CONTINUUM IN Ε AND SO GALAXIES R.D. Ekers, Kapteyn Astronomical Institute, University of Groningen If we look at the radio properties of the nearby ellipticals we find a situation considerably different from that just described by van der Kruit for the spiral galaxies. For example NGC 5128 (Cen A), the nearest giant elliptical galaxy, is a thousand times more powerful a radio source than the brightest spiral galaxies and furthermore its radio emission comes from a multiple lobed radio structure which bears no resemblance to the optical light distribution (e.g. Ekers, 1975). The other radio emitting elliptical galaxies in our neighbourhood, NGC 1316 (Fornax A), IC 4296 (1333-33), have similar morphology. A question which then arises is whether at lower levels we can detect radio emission coming from the optical image of the elliptical galaxies and which may be more closely related to the kind of emission seen in the spiral galaxies. Since elliptical galaxies are less numerous than spiral galaxies we have to search out to the Virgo cluster to obtain a good sample. Some results from a Westerbork map of the central region of the Virgo cluster at 1.4 GHz (Kotanyi and Ekers, in preparation) is given in the Table. Radio Emission from Galaxies in the core of the Virgo Cluster Name Hubble m Flux density NGC Type Ρ (JO"29 W m-2 Hz-1) 4374 El 10.8 6200 3C 272.1 4388 Sc 12.2 140 4402 Sd 13.6 60 4406 E3 10.9 < 4 4425 SO 13.3 < 4 4435 SO 1 1.9 < 5 4438 S pec 12.0 150 This result is typical for spiral and elliptical galaxies and illustrates the different properties quite well. -
X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission. -
The 13Th HEAD Program Book
13th Meeting of the High Energy Astrophysics Division Program Book Monterey CA 7-11 April 2013 13th Meeting of the American Astronomical Society’s High Energy Astrophysics Division (HEAD) 7-11 April 2013 Monterey, California Scientific sessions will be held at the: Portola Hotel and Spa 2 Portola Plaza ATTENDEE Monterey, CA 93940 SERVICES.......... 4 HEAD Paper Sorters SCHEDULE......... 6 Keith Arnaud Joshua Bloom MONDAY............ 12 Joel Bregman Paolo Coppi Rosanne Di Stefano POSTERS........... 17 Daryl Haggard Chryssa Kouveliotou TUESDAY........... 43 Henric Krawczynski Stephen Reynolds WEDNESDAY...... 48 Randall Smith Jan Vrtilek THURSDAY......... 52 Nicholas White AUTHOR INDEX.. 56 Session Numbering Key 100’s Monday and posters NASA PCOS X-RAY SAG 200’s Tuesday 300’s Wednesday HEAD DISSERTATIONS 400’s Thursday Please Note: All posters are displayed Monday-Thursday. Current HEAD Officers Current HEAD Committee Joel Bregman Chair Daryl Haggard 2013-2016 Nicholas White Vice-Chair Henric Krawczynski 2013-2016 Randall Smith Secretary Rosanne DiStefano 2011-2014 Keith Arnaud Treasurer Stephen Reynolds 2011-2014 Megan Watzke Press Officer Jan Vrtilek 2011-2014 Chryssa Kouveliotou Past Chair Joshua Bloom 2012-2015 Paolo Coppi 2012-2015 1 2 Peter B’s Entrance Cottonwood Plaza Jacks Restaurant Brew Pub s p o h S Cottonwood Bonsai III e Lower Atrium Bonsai II ung Restrooms o e nc cks L Ironwood Redwood Bonsai I a a J Entr Elevators Elevators a l o rt o P Restrooms s De Anza De Anza p Ballroom II-III Ballroom I o De Anza Sh Foyer Upper Atrium Entrance OOMS R Entrance BONZAI Entrance De ANZA BALLROOM FA ELEVATORS TO BONZAI ROOMS Y B OB L TEL O General eANZA D A H O Z T Session ANCE R OLA PLA T ENT R PO FA FA STORAGE A UP F ENTRANCE TO 3 De ANZA FOYER ATTENDEE SERVICES Registration De Anza Foyer Sunday: 1:00pm-7:00pm Monday-Wednesday: 7:30am-6:00pm Thursday: 8:00am-5:00pm Poster Viewing Monday-Wednesday: 7:30am-6:45pm Thursday: 7:30am-5:00pm Please do not leave personal items unattended. -
The Mass of the Centaurus a Group of Galaxies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Mass of the Centaurus A Group of Galaxies Sidney van den Bergh Dominion Astrophysical Observatory National Research Council 5071 West Saanich Road Victoria, British Columbia, V8X 4M6 Canada [email protected] ABSTRACT The mass M, and the radius Rh, of the Centaurus A group are estimated from the positions and radial velocities of 30 probable cluster members. For an assumed distance of 3.9 Mpc it is found that Rh 640 kpc. The velocity 1 ∼ dispersion in the Cen A group is 114 21 km s− . From this value, and ± R = 640 kpc, the virial theorem yields a total mass of 1:4 1013 M for the h × Cen A group. The projected mass method gives a mass of 1:8 1013 M .These × values suggest that the Cen A group is about seven times as massive as the Local Group. The Cen A mass-to-light ratio is found to be M/L = 155 200 B − in solar units. The cluster has a zero-velocity radius R0 =2:3Mpc. Subject headings: Galaxies: clusters: individual (Centaurus A) 1. Introduction The loose clustering of galaxies surrounding Centaurus A was called the NGC 5128 Group by de Vaucouleurs (1975), who designated it G4 because it was the fourth closest group of galaxies in his compilation. This group is primarily of interest because its brightest member is the galaxy NGC 5128, which contains the radio source Centaurus A. This object is also [with the exception of Maffei 1 (van den Bergh 1971, Huchtmeier, Karachentsev & Karachentsev 1999)] the nearest early-type giant galaxy. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
A MODEST Review
Varri et al. MEETING REPORT A MODEST review Anna Lisa Varri1*, Maxwell Xu Cai2, Francisca Concha-Ram´ırez2, Frantiˇsek Dinnbier3, Nora L¨utzgendorf4, V´aclav Pavl´ık5,6, Sara Rastello7, Antonio Sollima8, Long Wang9 and Alice Zocchi10,11 *Correspondence: [email protected] 1Institute for Astronomy, Abstract University of Edinburgh, Royal Observatory, Blackford Hill, EH9 We present an account of the state of the art in the fields explored by the 3HJ Edinburgh, United Kingdom research community invested in “Modeling and Observing DEnse STellar Full list of author information is systems” . For this purpose, we take as a basis the activities of the MODEST-17 available at the end of the article conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites, and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.