Effects of Tiaprofenic Acid (Surgam) on Cartilage

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Tiaprofenic Acid (Surgam) on Cartilage 448 Annals ofthe Rheumatic Diseases 1992; 51: 448-455 Effects of tiaprofenic acid (Surgam) on cartilage proteoglycans in the rabbit joint immobilisation Ann Rheum Dis: first published as 10.1136/ard.51.4.448 on 1 April 1992. Downloaded from model Isabelle Meyer-Carrive, Peter Ghosh Abstract pressive deformation.4 5 Biochemical and histo- A well established model of arthritis induced chemical studies of cartilage from osteoarthritic in rabbit knee joints by immobilisation in full joints have shown that proteoglycans are lost extension for 30 days was used to evaluate the from the matrix in the more advanced stages of in vivo effects of 2-5, 5-0, and 10-0 mg/kg body the disease."8 The depletion of these macro- weight oftiaprofenic acid on articular cartilage molecules results in a decline in the resilience of proteoglycans. The drug was given sub- the tissue, and the mechanical stresses trans- cutaneously every 24 hours during the entire mitted across the joint may contribute to the immobilisation period. Immobilised animals progression of pathological changes in cartilage not treated with drugs and normal animals and subchondral bone. were used as controls. In the non-drug treated Non-steroidal anti-inflammatory drugs immobilised animals articular cartilage showed (NSAIDs) are extensively used in the manage- evidence of surface damage accompanied ment of osteoarthritis, but there is continuing by synovial hypertrophy and effusion. Proteo- debate about their beneficial or adverse effects glycan concentrations were reduced in on cartilage integrity."' Some laboratory and cartilages of these joints and the incorporation clinical evidence9 11-14 suggests that several of of 35SO24 into macromolecular proteoglycans the older NSAIDs may suppress the biosynthesis was higher than in cartilages of non-im- of proteoglycans in cartilage, thereby accel- mobilised controls. Gel filtration chroma- erating its failure rate. On the other hand, other tographic studies of both resident and 35S data indicate that the effect of certain NSAIDs labelled proteoglycans isolated from im- on cartilage is innocuous at therapeutically used mobilised joint cartilage showed reduced concentrations,'5 16 or that these drugs may aggregation and the presence of degraded even provide a protective role by support- proteoglycan subunit species. Whereas the ing macromolecule biosynthesis within joint administration of 10,0 mg/kg tiaprofenic acid tissues.'5 17 These latter studies have generally every 24 hours to immobilised animals focused on diclofenac, piroxicam, and tiapro- http://ard.bmj.com/ exacerbated the degradation and loss of fenic acid and, for the most part, have been proteoglycans from joint cartilages, 5-0 mg/kg confined to in vitro investigation. tiaprofenic acid provided some protection of In this study we considered the in vivo these macromolecules, as shown by the con- effects of various doses of tiaprofenic acid on centrations and extractability ofproteoglycans cartilage proteoglycans in a rabbit experimental from cartilages, which were comparable with osteoarthritis. The results obtained indicated, those from non-immobilised controls. A in this model at least, that the loss or preservation on September 27, 2021 by guest. Protected copyright. high incorporation of 35S into proteoglycans of proteoglycans in articular cartilage is was demonstrated, together with reduced dependent on the amount of drug given. catabolism of proteoglycans, indicating pre- servation of chondrocyte anabolic activity. At a tiaprofenic acid dose of 2.5 mg/kg, however, Materials and methods no beneficial effects on cartilage proteoglycans COMPOUNDS could be shown. Carrier free H235SO4 (specific activity 1-6 TBq/mg) was obtained from Du Pont Medical Products (Wilmington, DE, USA). Guanidine hydrochloride (grade 1), trizma base (reagent Although the cause of osteoarthritis is presently grade (TRIS)), bovine serum albumin, phenyl- unknown, there is general agreement`3 that methylsulphonyl fluoride, benzamidine hydro- failure of articular cartilage represents an early chloride, L-hydroxyproline, L-cysteine free and critical step in the progression of this base, D-glucuronolactone and hyaluronic acid disorder. Articular consists (grade 1, from human umbilical cord), whale Raymond Purves cartilage essentially Research Laboratories, of chondrocytes embedded in a hydrated gel of and shark chondroitin-4-sulphate and chon- (University of Sydney), proteoglycans which are constrained by an droitin-6-sulphate, Coomassie brilliant blue G, Royal North Shore integrated network of collagen fibrils. The and calf thymus DNA were purchased from Hospital of Sydney, St Leonards, NSW 2065, macromolecular organisation of the cartilage Sigma Chemical (St Louis, MO, USA). N- Australia extracellular matrix is complex and is still Ethylmaleimide was obtained from Calbiochem- I Meyer-Carrive the subject of investigation, but it has been Behring Australia (Sydney, Australia), papain P Ghosh established that the entrapment of the hydro- (papainase [EC 3.4.22.2] (puriss) from Fluka Correspondence to: philic proteoglycans within the collagen AG (Buchs, Switzerland), and Sepharose CL- Professor Ghosh. 2B was Pharmacia Accepted for publication meshwork confers to cartilage its hydroelastic supplied by (South Seas) 18 June 1991 properties and ability to recover from com- (Sydney, Australia). All other chemicals and Effects oftiaprofenic acid on cartilage proteoglycans 449 reagents were analytical grade or the highest Group 6: the immobilised joints of six rabbits grade available, unless specified. that received 5 mg/kg tiaprofenic acid sub- cutaneously every 24 hours during the im- Ann Rheum Dis: first published as 10.1136/ard.51.4.448 on 1 April 1992. Downloaded from mobilisation period (5 0 mg treated group). PROCEDURES Group 7: the contralateral joints of the six Induction of cartilage degeneration in the rabbit group 6 animals. knee joint by immobilisation Group 8: the immobilised joints of three The experimental series comprised 31 mature rabbits given 2-5 mg/kg tiaprofenic acid sub- (9-12 months old) New Zealand white rabbits. cutaneously during the immobilisation period Rabbit joints were immobilised by a modifica- (2-5 mg treated group). tion of published techniques.8 19 Briefly, two Group 9: the contralateral joints of the three plastic concave splints (220x25x2 mm; 200x group 8 animals. 20x2 mm) were used. The larger splint was applied to the ventral aspect of the left leg of the rabbits from the thigh to the distal end of the DISSECTION AND ANALYSIS OF TISSUES limb, which was maintained in full extension. Rabbit joints were opened and the articular The splint was attached to the limb by wrapping cartilage was removed from femoral condyles, five turns of leucoplast bandage (Johnson and suprapatellar groove, and tibial plateaux with a Johnson, Sydney, Australia) around the splint surgical blade. The cartilage from each of these and leg. The second splint was similarly fixed regions was pooled, finely diced, transferred to but to the dorsal aspect of the limb. The tension preweighed stoppered tubes, and lyophilised. in the bandage did not impair the blood supply Aliquots of the pooled anhydrous cartilage were to the leg. This procedure allowed ± 5° of analysed for hexuronic acid content, after movement of the joint within the splint. The papain digestion20 by the method of Blumen- rabbits were allowed to move freely during the krantz and Asboe-Hansen,21 using glucurono- immobilisation period, checked daily, and the lactone as a standard. The sulphated glyco- bandage replaced if damaged. saminoglycans of column fractions were measured by the methods of Farndale et a122 Drug administration and isotopic labelling of with chondroitin-6-sulphate as a standard. The articular cartilage proteoglycans radioactivity of proteoglycan samples, or The rabbits were treated prophylactically with column fractions, was determined by liquid 10-0, 5-0, or 2-5 mg/kg tiaprofenic acid during scintillation spectrometry. All analyses were the entire immobilisation period. The drug as conducted in triplicate. the trometamol salt injectable form (Roussel UCLAF, Sydney, Australia) was given sub- cutaneously every 24 hours over the 30 day EXTRACTION AND PURIFICATION OF immobilisation period, so that each animal PROTEOGLYCANS received a total of 29 injections. Twenty four Proteoglycans were dissociatively extracted http://ard.bmj.com/ hours before they were killed the drug treated from aliquots of diced wet articular cartilage immobilised group, the immobilised group not with 10 volumes of freshly prepared buffered treated with drugs, and the non-immobilised 4 M guanidine hydrochloride containing the control group not treated with drugs were protease inhibitors 25 mM EDTA, 10 mM N- injected intravenously with H235SO4 in physio- ethylmaleimide, and 1 mM benzamidine HC1 in logical saline (1-0 ml) (92-5 MBq/kg) through 50 mM TRIS at pH 7*4 for 48 hours at 4°C, as the marginal ear vein. The animals were killed described by Oegema etal.23 After centrifugation on September 27, 2021 by guest. Protected copyright. by an intravenous injection of sodium pento- (20 minutes at 2000 g) the residues were washed barbitone (75 mg/kg) into the marginal ear vein. twice with a small volume (-0 5 ml) ofextraction buffer, and the supernatants and washings were pooled. The residues were washed thoroughly EXPERIMENTAL GROUPS EXAMINED (48 hours extraction) with distilled water and The following groups were examined: lyophilised before papain digestion.20
Recommended publications
  • Nsaids: Dare to Compare 1997
    NSAIDs TheRxFiles DARE TO COMPARE Produced by the Community Drug Utilization Program, a Saskatoon District Health/St. Paul's Hospital program July 1997 funded by Saskatchewan Health. For more information check v our website www.sdh.sk.ca/RxFiles or, contact Loren Regier C/O Pharmacy Department, Saskatoon City Hospital, 701 Queen St. Saskatoon, SK S7K 0M7, Ph (306)655-8506, Fax (306)655-8804; Email [email protected] We have come a long way from the days of willow Highlights bark. Today salicylates and non-steroidal anti- • All NSAIDs have similar efficacy and side inflammatory drugs (NSAIDs) comprise one of the effect profiles largest and most commonly prescribed groups of • In low risk patients, Ibuprofen and naproxen drugs worldwide.1 In Saskatchewan, over 20 may be first choice agents because they are different agents are available, accounting for more effective, well tolerated and inexpensive than 300,000 prescriptions and over $7 million in • Acetaminophen is the recommended first line sales each year (Saskatchewan Health-Drug Plan agent for osteoarthritis data 1996). Despite the wide selection, NSAIDs • are more alike than different. Although they do Misoprostol is the only approved agent for differ in chemical structure, pharmacokinetics, and prophylaxis of NSAID-induced ulcers and is to some degree pharmacodynamics, they share recommended in high risk patients if NSAIDS similar mechanisms of action, efficacy, and adverse cannot be avoided. effects. week or more to become established. For this EFFICACY reason, an adequate trial of 1-2 weeks should be NSAIDs work by inhibiting cyclooxygenase (COX) allowed before increasing the dose or changing to and subsequent prostaglandin synthesis as well as another NSAID.
    [Show full text]
  • Product Monograph
    PRODUCT MONOGRAPH NOVO–KETOROLAC (ketorolac tromethamine) 10 mg Tablets NSAID Analgesic Agent Novopharm Limited Date of Revision: Toronto, Canada August 02, 2007 Control Number 112565 PRODUCT MONOGRAPH NOVO–KETOROLAC (ketorolac tromethamine) 10 mg Tablets THERAPEUTIC CLASSIFICATION NSAID Analgesic Agent ACTION AND CLINICAL PHARMACOLOGY NOVO-KETOROLAC (ketorolac tromethamine) is a non-steroidal anti-inflammatory drug (NSAID) that has analgesic activity. It is considered to be a peripherally acting analgesic. It is thought to inhibit the cyclo-oxygenase enzyme system, thereby inhibiting the synthesis of prostaglandins. At analgesic doses it has minimal anti-inflammatory and antipyretic activity. The peak analgesic effect occurs at 2 to 3 hours post-dosing with no evidence of a statistically significant difference over the recommended dosage range. The greatest difference between large and small doses of administered ketorolac is in the duration of analgesia. Following oral administration, ketorolac tromethamine is rapidly and completely absorbed, and pharmacokinetics are linear following single and multiple dosing. Steady state plasma levels are achieved after one day of q.i.d. dosing. - 2 - Peak plasma concentrations of 0.7 to 1.1 µg/mL occurred at 44 minutes following a single oral dose of 10 mg. The terminal plasma elimination half-life ranged between 2.4 and 9 hours in healthy adults, while in the elderly subjects (mean age: 72 years) it ranged between 4.3 and 7.6 hours. A high fat meal decreased the rate but not the extent of absorption of oral ketorolac tromethamine, while antacid had no effect. In renally impaired patients there is a reduction in clearance and an increase in the terminal half- life of ketorolac tromethamine (See Table 1).
    [Show full text]
  • Of 20 PRODUCT MONOGRAPH FLURBIPROFEN Flurbiprofen Tablets BP 50 Mg and 100 Mg Anti-Inflammatory, Analgesic Agent AA PHARM
    PRODUCT MONOGRAPH FLURBIPROFEN Flurbiprofen Tablets BP 50 mg and 100 mg Anti-inflammatory, analgesic agent AA PHARMA INC. DATE OF PREPARATION: 1165 Creditstone Road, Unit #1 April 16, 1991 Vaughan, Ontario L4K 4N7 DATE OF REVISION: February 7, 2019 Submission Control No. 223098 Page 1 of 20 PRODUCT MONOGRAPH NAME OF DRUG FLURBIPROFEN Flurbiprofen Tablets BP 50 mg and 100 mg PHARMACOLOGICAL CLASSIFICATION Anti-inflammatory, analgesic agent ACTIONS AND CLINICAL PHARMACOLOGY FLURBIPROFEN (flurbiprofen), a phenylalkanoic acid derivative, is a non-steroidal anti- inflammatory agent which also possesses analgesic and antipyretic activities. Its mode of action, like that of other non-steroidal anti-inflammatory agents, is not known. However, its therapeutic action is not due to pituitary adrenal stimulation. Flurbiprofen is an inhibitor of prostaglandin synthesis. The resulting decrease in prostaglandin synthesis may partially explain the drug's anti-inflammatory effect at the cellular level. Pharmacokinetics: Flurbiprofen is well absorbed after oral administration, reaching peak blood levels in approximately 1.5 hours (range 0.5 to 4 hours). Administration of flurbiprofen with food does not alter total drug availability but delays absorption. Excretion of flurbiprofen is virtually complete 24 hours after the last dose. The elimination half-life is 5.7 hours with 90% of the half-life values from 3-9 hours. There is no evidence of drug accumulation and flurbiprofen does not induce enzymes that alter its metabolism. Flurbiprofen is rapidly metabolized and excreted in the urine as free and unaltered intact drug (20-25%) and hydroxylated metabolites (60-80%). In animal models of inflammation the metabolites showed no activity.
    [Show full text]
  • Patient Information Leaflet: Information for the User <Invented Name> 30
    Patient Information Leaflet: Information for the user <Invented name> 30 mg/ml solution for injection ketorolac trometamol Read all of this leaflet carefully before you start using this medicine because it contains important information for you. • Keep this leaflet. You may need to read it again. • If you have any further questions, ask your doctor or nurse. • If you get any side effects, talk to your doctor or nurse. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet 1. What <Invented name> is and what it is used for 2. What you need to know before you are given <Invented name> 3. How <Invented name> is given 4. Possible side effects 5. How to store <Invented name> 6. Contents of the pack and other information 1. What <Invented name> is and what it is used for <Invented name> contains an active substance called ketorolac trometamol and belongs to a group of medicines called non-steroidal anti-inflammatory drugs (NSAIDs). Ketorolac is used in hospital, for short-term relief of moderate to severe pain after operations and in the case of acute kidney stone pain, in adults and adolescents ≥16 years. 2. What you need to know before you are given <Invented name> <Invented name> should not be used before or during surgery due to increased risk of bleeding. <Invented name> must not be given by epidural or intrathecal administration . Severe anaphylactic-like reactions have been observed in patients with a history of allergic reactions (symptoms of asthma, inflammation of the nasal mucosa or skin reactions) to the use of acetylsalicylic acid (e.g.
    [Show full text]
  • 2 Inhibitors and Non-Steroidal Anti-Inflammatory Drugs (Nsaids)
    Drug Class Review on Cyclo-oxygenase (COX)-2 Inhibitors and Non-steroidal Anti-inflammatory Drugs (NSAIDs) Final Report Update 3 Evidence Tables November 2006 Original Report Date: May 2002 Update 1 Report Date: September 2003 Update 2 Report Date: May 2004 A literature scan of this topic is done periodically The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Roger Chou, MD Mark Helfand, MD, MPH Kim Peterson, MS Tracy Dana, MLS Carol Roberts, BS Produced by Oregon Evidence-based Practice Center Oregon Health & Science University Mark Helfand, Director Copyright © 2006 by Oregon Health & Science University Portland, Oregon 97201. All rights reserved. Note: A scan of the medical literature relating to the topic is done periodically(see http://www.ohsu.edu/ohsuedu/research/policycenter/DERP/about/methods.cfm for scanning process description). Upon review of the last scan, the Drug Effectiveness Review Project governance group elected not to proceed with another full update of this report. Some portions of the report may not be up to date. Prior versions of this report can be accessed at the DERP website. Final Report Update 3 Drug Effectiveness Review Project TABLE OF CONTENTS Evidence Table 1. Systematic reviews…………………………………………………………………3 Evidence Table 2. Randomized-controlled trials………………………………………………………9 Evidence Table 3.
    [Show full text]
  • Annrheumd00427-0020.Pdf
    Annals of the Rheumatic Diseases, 1989; 48, 372-381 Evaluation of the effects of antiarthritic drugs on the secretion of proteoglycans by lapine chondrocytes using a novel assay procedure SIMON COLLIER AND PETER GHOSH From the Raymond Purves Research Laboratories (The University of Sydney) at the Royal North Shore Hospital of Sydney, St Leonards, NSW 2065, Australia SUMMARY A new method is described for separating free 35SO4- from 35SO4 labelled groteoglycans synthesised by rabbit articular chondrocytes cultured in the presence of excess 4 The procedure uses the low solubility product of barium sulphate to remove, by precipitation, free 35SO4- from culture medium. Optimum recovery of 35so4 labelled proteoglycans was achieved after papain digestion to release 35SO4-glycosaminoglycans, and addition of chondroitin sulphate before the precipitation step. Using this assay, we studied the effect of six drugs-indomethacin, diclofenac, sodium pentosan polysulphate, glycosaminoglycan polysulphate ester, tiaprofenic acid, and ketoprofen-on the secretion into the medium of labelled proteoglycans by lapine chondrocytes. The six drugs were tested at 0< 1, 1, 10, 50, and 100 I.g/ml over four consecutive 48 hour culture periods. A consistent concentration-response pattern was found for the four non-steroidal anti-inflammatory drugs (NSAIDs) studied. Generally they inhibited proteoglycan secretion at 50 and 100 [ig/ml but had no effect at lower concentrations. Inhibition of secretion was strongest with indomethacin and diclofenac at 50 and 100 ig/ml. In contrast with the NSAIDs studied, the two sulphated polysaccharides (sodium pentosan polysulphate and glycosaminoglycan polysulphate ester) at low concentrations increased proteoglycan secretion by chondrocytes, with maximal stimulation occurring at 1 [ig/ml.
    [Show full text]
  • Read This for Safe and Effective Use of Your Medicine
    PATIENT MEDICATION INFORMATION READ THIS FOR SAFE AND EFFECTIVE USE OF YOUR MEDICINE VIMOVO® naproxen/esomeprazole modified release tablets Read this carefully before you start taking VIMOVO and each time you get a refill. This leaflet is a summary and will not tell you everything about this drug. Talk to your healthcare professional about your medical condition and treatment and ask if there is any new information about VIMOVO. Serious Warnings and Precautions If you have, or previously had, any of the following medical conditions, see your health care provider to discuss treatment options other than VIMOVO: • Heart Attack or Angina • Stroke or Mini-stroke • Loss of Vision • Current Pregnancy (less than 28 weeks) • Congestive Heart Failure What is VIMOVO used for? VIMOVO is used in adults to treat the signs and symptoms of: • Osteoarthritis • Rheumatoid arthritis • Ankylosing spondylitis VIMOVO helps to reduce pain, swelling, redness and heat (inflammation). It is used for people who: • need to take an anti-inflammatory medicine. • and are at risk of getting a stomach ulcer (sore) or an ulcer in the small intestine (gut). How does VIMOVO work? VIMOVO contains 2 drugs which work together. • Naproxen belongs to a group of medicines called “nonsteroidal anti-inflammatory drugs” (NSAIDs). It reduces the substances in your body which cause pain and swelling. • Esomeprazole belongs to a group of medicines called “proton pump inhibitors” (PPIs). It reduces the amount of acid produced by your stomach. • Naproxen can damage the stomach but esomeprazole helps reduce this damage. • VIMOVO only treats the symptoms of pain and inflammation of the illness as long as you use it.
    [Show full text]
  • Inflammatory Drugs (Nsaids) for People with Or at Risk of COVID-19
    Evidence review Acute use of non-steroidal anti- inflammatory drugs (NSAIDs) for people with or at risk of COVID-19 Publication date: April 2020 This evidence review sets out the best available evidence on acute use of non- steroidal anti-inflammatory drugs (NSAIDs) for people with or at risk of COVID-19. It should be read in conjunction with the evidence summary, which gives the key messages. Evidence review commissioned by NHS England Disclaimer The content of this evidence review was up-to-date on 24 March 2020. See summaries of product characteristics (SPCs), British national formulary (BNF) or the MHRA or NICE websites for up-to-date information. For details on the date the searches for evidence were conducted see the search strategy. Copyright © NICE 2020. All rights reserved. Subject to Notice of rights. ISBN: 978-1-4731-3763-9 Contents Contents ...................................................................................................... 1 Background ................................................................................................. 2 Intervention .................................................................................................. 2 Clinical problem ........................................................................................... 3 Objective ...................................................................................................... 3 Methodology ................................................................................................ 4 Summary of included studies
    [Show full text]
  • Cyclooxygenase
    COX Cyclooxygenase Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme that is responsible for formation of important biological mediators called prostanoids, including prostaglandins, prostacyclin and thromboxane. Pharmacological inhibition of COX can provide relief from the symptoms of inflammation and pain. Drugs, like Aspirin, that inhibit cyclooxygenase activity have been available to the public for about 100 years. Two cyclooxygenase isoforms have been identified and are referred to as COX-1 and COX-2. Under many circumstances the COX-1 enzyme is produced constitutively (i.e., gastric mucosa) whereas COX-2 is inducible (i.e., sites of inflammation). Non-steroidal anti-inflammatory drugs (NSAID), such as aspirin and ibuprofen, exert their effects through inhibition of COX. The main COX inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs). www.MedChemExpress.com 1 COX Inhibitors, Antagonists, Activators & Modulators (+)-Catechin hydrate (-)-Catechin Cat. No.: HY-N0355 ((-)-Cianidanol; (-)-Catechuic acid) Cat. No.: HY-N0898A (+)-Catechin hydrate inhibits cyclooxygenase-1 (-)-Catechin, isolated from green tea, is an (COX-1) with an IC50 of 1.4 μM. isomer of Catechin having a trans 2S,3R configuration at the chiral center. Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Purity: 99.59% Purity: 98.78% Clinical Data: Phase 4 Clinical Data: No Development Reported Size: 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg (-)-Catechin gallate (-)-Epicatechin ((-)-Catechin 3-gallate; (-)-Catechin 3-O-gallate) Cat. No.: HY-N0356 ((-)-Epicatechol; Epicatechin; epi-Catechin) Cat. No.: HY-N0001 (-)-Catechin gallate is a minor constituent in (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) green tea catechins.
    [Show full text]
  • Ketorolac Tromethamine Injection, USP
    PRODUCT MONOGRAPH Pr Ketorolac Tromethamine Injection, USP 30 mg / mL single-dose vials 30 mg / mL in SimplistTM prefilled single use syringes For Intramuscular Administration Non-Steroidal Anti-Inflammatory Analgesic Agent Fresenius Kabi Canada Ltd. Date of Revision: 165 Galaxy Blvd, Suite 100 July 18, 2019 Toronto, ON M9W 0C8 Submission Control No.: 227928 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ..........................................................3 SUMMARY PRODUCT INFORMATION ................................................................................3 INDICATIONS AND CLINICAL USE .....................................................................................3 CONTRAINDICATIONS ...........................................................................................................4 WARNINGS AND PRECAUTIONS .........................................................................................5 ADVERSE REACTIONS .........................................................................................................14 DRUG INTERACTIONS..........................................................................................................16 DOSAGE AND ADMINISTRATION .....................................................................................18 OVERDOSAGE ........................................................................................................................22 ACTION AND CLINICAL PHARMACOLOGY ....................................................................23 STORAGE
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of - Medicines belonging to the ATC group M01 (Antiinflammatory and antirheumatic products) Table of Contents Page INTRODUCTION 6 DISCLAIMER 8 GLOSSARY OF TERMS USED IN THIS DOCUMENT 9 ACTIVE SUBSTANCES Phenylbutazone (ATC: M01AA01) 11 Mofebutazone (ATC: M01AA02) 17 Oxyphenbutazone (ATC: M01AA03) 18 Clofezone (ATC: M01AA05) 19 Kebuzone (ATC: M01AA06) 20 Indometacin (ATC: M01AB01) 21 Sulindac (ATC: M01AB02) 25 Tolmetin (ATC: M01AB03) 30 Zomepirac (ATC: M01AB04) 33 Diclofenac (ATC: M01AB05) 34 Alclofenac (ATC: M01AB06) 39 Bumadizone (ATC: M01AB07) 40 Etodolac (ATC: M01AB08) 41 Lonazolac (ATC: M01AB09) 45 Fentiazac (ATC: M01AB10) 46 Acemetacin (ATC: M01AB11) 48 Difenpiramide (ATC: M01AB12) 53 Oxametacin (ATC: M01AB13) 54 Proglumetacin (ATC: M01AB14) 55 Ketorolac (ATC: M01AB15) 57 Aceclofenac (ATC: M01AB16) 63 Bufexamac (ATC: M01AB17) 67 2 Indometacin, Combinations (ATC: M01AB51) 68 Diclofenac, Combinations (ATC: M01AB55) 69 Piroxicam (ATC: M01AC01) 73 Tenoxicam (ATC: M01AC02) 77 Droxicam (ATC: M01AC04) 82 Lornoxicam (ATC: M01AC05) 83 Meloxicam (ATC: M01AC06) 87 Meloxicam, Combinations (ATC: M01AC56) 91 Ibuprofen (ATC: M01AE01) 92 Naproxen (ATC: M01AE02) 98 Ketoprofen (ATC: M01AE03) 104 Fenoprofen (ATC: M01AE04) 109 Fenbufen (ATC: M01AE05) 112 Benoxaprofen (ATC: M01AE06) 113 Suprofen (ATC: M01AE07) 114 Pirprofen (ATC: M01AE08) 115 Flurbiprofen (ATC: M01AE09) 116 Indoprofen (ATC: M01AE10) 120 Tiaprofenic Acid (ATC:
    [Show full text]
  • Pharmaceuticals (Monocomponent Products) ………………………..………… 31 Pharmaceuticals (Combination and Group Products) ………………….……
    DESA The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global and policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. Note Symbols of United Nations documents are composed of the capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. Applications for the right to reproduce this work or parts thereof are welcomed and should be sent to the Secretary, United Nations Publications Board, United Nations Headquarters, New York, NY 10017, United States of America. Governments and governmental institutions may reproduce this work or parts thereof without permission, but are requested to inform the United Nations of such reproduction. UNITED NATIONS PUBLICATION Copyright @ United Nations, 2005 All rights reserved TABLE OF CONTENTS Introduction …………………………………………………………..……..……..….. 4 Alphabetical Listing of products ……..………………………………..….….…..….... 8 Classified Listing of products ………………………………………………………… 20 List of codes for countries, territories and areas ………………………...…….……… 30 PART I. REGULATORY INFORMATION Pharmaceuticals (monocomponent products) ………………………..………… 31 Pharmaceuticals (combination and group products) ………………….……........
    [Show full text]