Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 2007 Generalized Reciprocals, Factors of Dickson Polynomials and Generalized Cyclotomic Polynomials over Finite Fields Robert W. Fitzgerald Southern Illinois University Carbondale,
[email protected] Joseph L. Yucas Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles Published in Finite Fields and Their Applications, 13, 492-515. doi: 10.1016/j.ffa.2006.03.002 Recommended Citation Fitzgerald, Robert W. and Yucas, Joseph L. "Generalized Reciprocals, Factors of Dickson Polynomials and Generalized Cyclotomic Polynomials over Finite Fields." (Jan 2007). This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles and Preprints by an authorized administrator of OpenSIUC. For more information, please contact
[email protected]. Generalized Reciprocals, Factors of Dickson Polynomials and Generalized Cyclotomic Polynomials over Finite Fields Robert W. Fitzgerald and Joseph L. Yucas Abstract We give new descriptions of the factors of Dickson polynomials over ¯nite ¯elds in terms of cyclotomic factors. To do this general- ized reciprocal polynomials are introduced and characterized. We also study the factorization of generalized cyclotomic polynomials and their relationship to the factorization of Dickson polynomials. 1 Introduction e Throughout, q = p will denote an odd prime power and Fq will denote the ¯nite ¯eld containing q elements. Let n be a positive integer, set s = bn=2c and let a be a non-zero element of Fq. In his 1897 PhD Thesis, Dickson introduced a family of polynomials s µ ¶ X n n ¡ i D (x) = (¡a)ixn¡2i: n;a n ¡ i i i=0 These are the unique polynomials satisfying Waring's identity a a D (x + ) = xn + ( )n: n;a x x In recent years these polynomials have received an extensive examination.