Q,Q2, ' " If Ave the Conjugates of 0 , Then ©I,***,© Are All Root8 of Unity. N Pjz) = = Zn + Bn 1 Zn~L
ALGEBRAIC INTEGERS ON THE UNIT CIRCLE* J. Hunter (received 15 April, 1981) 1. Introduction An algebraic integer 0 is a complex number which is a root of an irreducible (over Q ) monic polynomial P(s)=an + a^ ^ zn * + • • • + ao , where the a^ are integers. If 0j = Q,Q2 , ' " ,6^ are the roots of P(a) , then ©l.*’**© are called the conjugates of 0 . The first important result connecting algebraic integers and the unit circle was due to Kronecker [3]: Theorem 1 (Kronecker, 1857). If |0^| 5 1 (1 < i < n) , where ©1 * ©»©2 »’**»©„ave the conjugates of 0 , then ©i,***,© are all root8 of unity. We include a proof of Theorem 1 partly for completeness and partly because it contains ideas (especially those connected with the introduc tion of polynomials related to P(a) , the monic irreducible polynomial for 0) that are used to prove other results. Let n P J z ) = (m = 1,2,3,...) = zn + bn_ 1 zn ~ l* ••• b+ 0 , say. * This survey article comprises the text of a seminar presented at the University of Auckland on 15 April 1981. Math. Chronicle 11(1982) Part 2 37-47. 37 Then Pj (a) = P(a) . Also, i£ = 0* + ••• + 0*(k i JV) , then £ 77j ( k = 1,2,3, •••) , by Newton's formulae involving symmetric functions of • Since the b^ are symmetric polynomials in 07.,**»©m with integer coefficients, it follows that the b. 1 tt are rational integers. Now |bn = |the sum of the ^.J products of taken i at a time| < since |0™| <1 (1 < r < n) .
[Show full text]