RESEARCH ARTICLE PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment Yukiko Imai1†‡, Mathilde Biot1†, Julie AJ Cle´ ment1, Mariko Teragaki1, Serge Urbach2, Thomas Robert1§, Fre´ de´ ric Baudat1, Corinne Grey1*, Bernard de Massy1* 1Institut de Ge´ne´tique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France; 2Institut de Ge´nomique Fonctionnelle, Universite´ de Montpellier, CNRS, INSERM, Montpellier, France Abstract Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) at specific genomic locations that correspond to PRDM9-binding sites. The molecular steps occurring from PRDM9 binding to DSB formation are unknown. Using proteomic approaches to find PRDM9 partners, we identified HELLS, a member of the SNF2-like family of chromatin remodelers. Upon functional analyses during mouse male meiosis, we demonstrated that HELLS is *For correspondence:
[email protected] (CG); required for PRDM9 binding and DSB activity at PRDM9 sites. However, HELLS is not required for
[email protected] DSB activity at PRDM9-independent sites. HELLS is also essential for 5-hydroxymethylcytosine (BM) (5hmC) enrichment at PRDM9 sites. Analyses of 5hmC in mice deficient for SPO11, which catalyzes DSB formation, and in PRDM9 methyltransferase deficient mice reveal that 5hmC is triggered at †These authors contributed DSB-prone sites upon PRDM9 binding and histone modification, but independent of DSB activity. equally to this work These findings highlight the complex regulation of the chromatin and epigenetic environments at ‡ Present address: Department PRDM9-specified hotspots. of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; §Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ Introduction Montpellier, Montpellier, France In sexual reproduction, genetic information from both parental genomes is reassorted through chro- mosome segregation during meiosis.