Loggerhead Sea Turtles (Caretta Caretta) As Bioturbators in Neritic

Total Page:16

File Type:pdf, Size:1020Kb

Loggerhead Sea Turtles (Caretta Caretta) As Bioturbators in Neritic Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE Loggerhead sea turtles (Caretta caretta) as bioturbators in neritic habitats: an insight through the analysis of benthic molluscs in the diet Bojan Lazar1,2,3, Romana Gracˇan4, Jelena Katic´5, Dusˇan Zavodnik6, Andrej Jaklin6 & Nikola Tvrtkovic´1 1 Department of Zoology, Croatian Natural History Museum, Zagreb, Croatia 2 Blue World Institute of Marine Research and Conservation, Veli Losˇinj, Croatia 3 Present address: Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia 4 Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia 5 Institute for Medical Research and Occupational Health, Zagreb, Croatia 6 Center for Marine Research, Ruder Bosˇkovic´ Institute, Rovinj, Croatia Keywords Abstract Adriatic Sea; bioturbation; ecological role; feeding ecology; Mollusca; sea turtles. Molluscs are a diverse and ubiquitous group of organisms which contribute to the formation of biogenic sediments and are one of the major prey taxa for the Correspondence neritic-stage loggerhead sea turtles (Caretta caretta) worldwide. Here we inves- Bojan Lazar, Department of Biology, Faculty tigated to what degree molluscs contribute to the diet of individual turtles, and of Science, University of Zagreb, 6 Roosevelt what role the feeding strategy of loggerheads might play in bioturbation, one Sq., HR-10000 Zagreb, Croatia. of the key processes in nutrient transport in marine ecosystems. We performed E-mail: [email protected] a detailed analysis of benthic molluscs from the digestive tracts of 62 logger- Accepted: 28 July 2010 head sea turtles (curved carapace length: 25.0–85.4 cm) found in the Northern Adriatic Sea. From 50 of the turtles that contained benthic molluscs, we identi- doi:10.1111/j.1439-0485.2010.00402.x fied 87 species representing 40 families and three classes (Gastropoda, Bivalvia and Scaphopoda), including 72 new dietary records for loggerhead turtle. Most of the identified molluscs were small-sized species (shell length £ 3 cm) and were often found in a subfossil condition. Their intake may be considered a byproduct of infaunal mining, while larger molluscs were mainly found crushed into smaller fragments. Through such foraging behaviour loggerheads actively rework sediments, increase the surface area of shells and the rate of shells disintegration, acting as bioturbators in this system. We conservatively estimate that loggerheads in the neritic zone of the Adriatic Sea bioturbate about 33 tonnes of mollusc shells per year, and hypothesize about the possible effects of bioturbation reduction on environmental changes in the Northern Adriatic ecosystem. & Jackson 2003). Knowledge on the role of sea turtles in Problem the ecosystems they utilize is necessary for our ability to The issue of the present and past roles of sea turtles in eco- predict how natural and anthropogenic-driven environ- systems is underlined as one of the global research priori- mental changes can affect their populations in order to ties for sea turtle management and conservation in the 21st make informed management decisions (Bjorndal 2003). century (Hamann et al. 2010). Sea turtles act at multiple Loggerhead sea turtle, Caretta caretta (Linnaeus, 1758) levels, as predators, prey, competitors, substrate for epi- is an endangered (IUCN 2009), large, long-lived top bionts, hosts of parasites and pathogens, nutrient trans- predator in marine ecosystems, with a complex life his- porters and modifiers of habitats (Bjorndal 2003; Bjorndal tory characterised by switching between different habitats Marine Ecology (2010) 1–10 ª 2010 Blackwell Verlag GmbH 1 Loggerhead turtles as bioturbators Lazar, Gracˇan, Katic´, Zavodnik, Jaklin & Tvrtkovic´ (Bolten 2003; Casale et al. 2008a) and shifts in trophic status and ecological roles (Bjorndal 2003). Although the species is carnivorous generalist, exhibiting differences in the diet composition between populations and regions (Bjorndal 1997), molluscs represent one of the major prey groups for the neritic-stage loggerheads worldwide (Dodd 1988; Laurent & Lescure 1994; Limpus & Limpus 2003; Lazar et al. 2006; Casale et al. 2008a). Molluscs are diverse and ubiquitous organisms with important roles in ecosystems, such as biodeposition, pre- dation, boring, grazing, suspension and deposit feeding. Nearly all molluscs produce shells which mainly consist of calcium carbonate (Gutie´rrez et al. 2003). The shell remains stable on the sea floor after the animal dies, form- ing biogenic sediments together with the skeletal remains of other marine species (Kidwell 1985; de Bruyne 2004). Biological reworking of sediments by different organisms, Fig. 1. Study area of the Northern Adriatic Sea (northward from the from microbes and rooting plants to burrowing animals, dashed line), with bathymetry and direction of major sea currents. is termed bioturbation (Meysman et al. 2006). These organisms–sediment interactions, which structure the sub- surface of both terrestrial and marine ecosystems and play shelf (<200 m in depth) covering about 74% of the sur- a major role in biogeochemical processes, are considered face area (Fig. 1). Its northern part is <100 m in depth to be at least as important as the trophic interactions clas- and under permanent influx of fresh water, mainly arriv- sically studied by ecologists (Reise 2002). Modification of ing from the Po River (Cushman-Roisin et al. 2001). We the sediment texture, bio-irrigation and dispersal of solid carried out the present study in the Northern Adriatic particles are major biogeochemical implications of biotur- Sea, which hosts one of the largest neritic foraging habi- bation, which affect transport of nutrients in the marine tats for loggerhead turtles in the Mediterranean (Lazar & ecosystems and formation of seascapes; however, the Tvrtkovic´ 2003; Margaritoulis et al. 2003; Lazar et al. actual mechanisms behind bioturbation are less estab- 2004). The Northern Adriatic bottom consists of three lished (Meysman et al. 2006). sediment types: sand (mean grain size: 360 lm), mud The present study focuses on the bioturbating role of (mean grain size: 70 lm) and areas with a mixture of loggerhead turtles in the neritic foraging habitats of the these two sediment types (Vatova 1949; Fedra et al. Northern Adriatic Sea based upon detailed qualitative and 1976). The majority of carbonates in the sediments are of quantitative analysis of benthic molluscs in the diet of biogenic origin (Vdovic´ & Juracˇic´ 1993). this sea turtle species. We selected benthic molluscs for So far, no complete list of marine mollusc species exists two specific reasons. First, the majority of carbonates in for the Adriatic Sea. However, several studies which par- Adriatic sediments originate from shell and skeletal frag- tially described the distribution of benthic marine flora ments (Vdovic´ & Juracˇic´ 1993). Secondly, a recent study and fauna (e.g. Vatova 1935, 1949; Zavodnik 1971; on the feeding ecology of loggerhead turtles in the Adriat- Hrs-Brenko et al. 1994; Jaklin & Arko-Pijevac 1997) ic Sea emphasized molluscs as the major prey group in defined the Northern Adriatic Sea as an area with high their diet, accounting for 41.1% of dry mass (Lazar macrofaunal density, including a high diversity of molluscs 2009). The aim of this study was therefore to investigate (Vatova 1949; Gamulin-Brida 1967; Scaccini 1967; Fedra to what degree a dietary regime largely based upon mol- et al. 1976; Zavodnik & Vidakovic´ 1987; McKinney 2007). luscs, together with loggerhead feeding behaviour in neri- tic areas (Preen 1996; Houghton et al. 2000; Schofield Material and Methods et al. 2006), may contribute to the individual intake (energy gain by feeding) and what is the possible role of We performed general necropsies of 62 loggerhead sea such feeding strategy in bioturbation. turtles with notch-tip curved carapace length (CCL) rang- ing between 25.0 and 85.4 cm (mean CCL = 45.1 ± 14.3 cm), found stranded or incidentally captured dead Study Area by fisheries in the Northern Adriatic Sea (Slovenia and The Adriatic Sea is a relatively shallow (mean depth: Croatia) in 1995–2004. We isolated the oesophagus, 239 m), temperate, semiclosed sea, with the continental stomach and intestinal tracts, rinsed gut contents in clear 2 Marine Ecology (2010) 1–10 ª 2010 Blackwell Verlag GmbH Lazar, Gracˇan, Katic´, Zavodnik, Jaklin & Tvrtkovic´ Loggerhead turtles as bioturbators water through a 1-mm mesh sieve, and preserved samples classes: Gastropoda (601 specimens), Bivalvia (123 speci- in 4% buffered formaldehyde. All benthic mollusc shells mens) and Scaphopoda (2 specimens). The average num- were isolated and identified under a stereomicroscope to ber of shells per individual turtle was 14.5 ± 24.1, and the the lowest taxon possible. The taxonomic nomenclature maximum number of molluscs was 132, isolated from a used follows the European Register of Marine Species turtle of 70.0 cm CCL. (ERMS, Costello et al. 2008). We counted ingested speci- We have identified 91 taxa of benthic molluscs, including mens when possible, either based upon the number of 87 species representing 40 families, and recorded 72 new whole shells or upon the number of apertures (in the case species in the diet of loggerhead turtles: 37 gastropods, 34 of crushed shells of gastropods) and calculated the per- bivalves and one scaphopod. Most of the identified spe- cent of occurrence for each species. cies belonged to gastropods (50 species, 57.5%), followed To differentiate possibly targeted
Recommended publications
  • Environment for Development Improving Utilization of the Queen
    Environment for Development Discussion Paper Series December 2020 ◼ EfD DP 20-39 Improving Utilization of the Queen Conch (Aliger Gigas) Resource in the Colombian Caribbean A Bioeconomic Model of Rotational Harvesting Jorge Marco, Diego Valderrama, Mario Rueda, and Maykol R o dr i g ue z - P r i et o Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review. Central America Chile China Research Program in Economics and Research Nucleus on Environmental and Environmental Economics Program in China Environment for Development in Central Natural Resource Economics (NENRE) (EEPC) America Tropical Agricultural Research and Universidad de Concepción Peking University Higher Education Center (CATIE) Colombia Ghana The Research Group on Environmental, Ethiopia The Environment and Natural Resource Natural Resource and Applied Economics Environment and Climate Research Center Research Unit, Institute of Statistical, Social Studies (REES-CEDE), Universidad de los (ECRC), Policy Studies Institute, Addis and Economic Research, University of Andes, Colombia Ababa, Ethiopia Ghana, Accra India Kenya Nigeria Centre for Research on the Economics of School of Economics Resource and Environmental Policy Climate, Food, Energy, and Environment, University of Nairobi Research Centre, University of Nigeria, (CECFEE), at Indian Statistical Institute, Nsukka New Delhi, India South Africa Tanzania Sweden Environmental Economics Policy Research Environment
    [Show full text]
  • Impact of the the COVID-19 Pandemic on a Queen Conch (Aliger Gigas) Fishery in the Bahamas
    Impact of the the COVID-19 pandemic on a queen conch (Aliger gigas) fishery in The Bahamas Nicholas D. Higgs Cape Eleuthera Institute, Rock Sound, Eleuthera, Bahamas ABSTRACT The onset of the coronavirus (COVID-19) pandemic in early 2020 led to a dramatic rise in unemployment and fears about food-security throughout the Caribbean region. Subsistence fisheries were one of the few activities permitted during emergency lockdown in The Bahamas, leading many to turn to the sea for food. Detailed monitoring of a small-scale subsistence fishery for queen conch was undertaken during the implementation of coronavirus emergency control measures over a period of twelve weeks. Weekly landings data showed a surge in fishing during the first three weeks where landings were 3.4 times higher than subsequent weeks. Overall 90% of the catch was below the minimum legal-size threshold and individual yield declined by 22% during the lockdown period. This study highlights the role of small-scale fisheries as a `natural insurance' against socio-economic shocks and a source of resilience for small island communities at times of crisis. It also underscores the risks to food security and long- term sustainability of fishery stocks posed by overexploitation of natural resources. Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Marine Biology, Coupled Natural and Human Systems, Natural Resource Management Keywords Fisheries, Coronavirus, COVID-19, IUU, SIDS, SDG14, Food security, Caribbean, Resiliance, Small-scale fisheries Submitted 2 December 2020 INTRODUCTION Accepted 16 July 2021 Published 3 August 2021 Subsistence fishing has played an integral role in sustaining island communities for Corresponding author thousands of years, especially small islands with limited terrestrial resources (Keegan et Nicholas D.
    [Show full text]
  • Central Mediterranean Sea) Subtidal Cliff: a First, Tardy, Report
    Biodiversity Journal , 2018, 9 (1): 25–34 Mollusc diversity in Capo d’Armi (Central Mediterranean Sea) subtidal cliff: a first, tardy, report Salvatore Giacobbe 1 & Walter Renda 2 ¹Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Al - contres 31, 98166 Messina, Italy; e-mail: [email protected] 2Via Bologna, 18/A, 87032 Amantea, Cosenza, Italy; e-mail: [email protected] ABSTRACT First quantitative data on mollusc assemblages from the Capo d’Armi cliff, at the south en - trance of the Strait of Messina, provided a baseline for monitoring changes in benthic biod- iversity of a crucial Mediterranean area, whose depletion might already be advanced. A total of 133 benthic taxa have been recorded, and their distribution evaluated according to depth and seasonality. Bathymetric distribution showed scanty differences between the 4-6 meters and 12-16 meters depth levels, sharing all the 22 most abundant species. Season markedly affected species composition, since 42 taxa were exclusively recorded in spring and 35 in autumn, contrary to 56 shared taxa. The occurrence of some uncommon taxa has also been discussed. The benthic mollusc assemblages, although sampled in Ionian Sea, showed a clear western species composition, in accordance with literature placing east of the Strait the bound- ary line between western and eastern Mediterranean eco-regions. Opposite, occasional records of six mesopelagic species, which included the first record for this area of Atlanta helicinoi - dea
    [Show full text]
  • Size at Maturation, Spawning Variability and Fecundity in the Queen Conch, Aliger Gigas
    Gulf and Caribbean Research Volume 31 Issue 1 2020 Size at Maturation, Spawning Variability and Fecundity in the Queen Conch, Aliger gigas Richard S. Appeldoorn GCFIMembers, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons, and the Population Biology Commons To access the supplemental data associated with this article, CLICK HERE. Recommended Citation Appeldoorn, R. S. 2020. Size at Maturation, Spawning Variability and Fecundity in the Queen Conch, Aliger gigas. Gulf and Caribbean Research 31 (1): GCFI 10-GCFI 19. Retrieved from https://aquila.usm.edu/gcr/vol31/iss1/11 DOI: https://doi.org/10.18785/gcr.3101.11 This Gulf and Caribbean Fisheries Institute Partnership is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W. Tunnell, Jr. ......................................................................................................... 9—18 Volume 31 ASSESSMENT OF SEAGRASS FLORAL COMMUNITY STRUCTURE FROM TWO CARIBBEAN MARINE PROTECTED 2020 AREAS ISSN: 2572-1410 Paul A.
    [Show full text]
  • Gastropoda: Stylommatophora)1 John L
    EENY-494 Terrestrial Slugs of Florida (Gastropoda: Stylommatophora)1 John L. Capinera2 Introduction Florida has only a few terrestrial slug species that are native (indigenous), but some non-native (nonindigenous) species have successfully established here. Many interceptions of slugs are made by quarantine inspectors (Robinson 1999), including species not yet found in the United States or restricted to areas of North America other than Florida. In addition to the many potential invasive slugs originating in temperate climates such as Europe, the traditional source of invasive molluscs for the US, Florida is also quite susceptible to invasion by slugs from warmer climates. Indeed, most of the invaders that have established here are warm-weather or tropical species. Following is a discus- sion of the situation in Florida, including problems with Figure 1. Lateral view of slug showing the breathing pore (pneumostome) open. When closed, the pore can be difficult to locate. slug identification and taxonomy, as well as the behavior, Note that there are two pairs of tentacles, with the larger, upper pair ecology, and management of slugs. bearing visual organs. Credits: Lyle J. Buss, UF/IFAS Biology as nocturnal activity and dwelling mostly in sheltered Slugs are snails without a visible shell (some have an environments. Slugs also reduce water loss by opening their internal shell and a few have a greatly reduced external breathing pore (pneumostome) only periodically instead of shell). The slug life-form (with a reduced or invisible shell) having it open continuously. Slugs produce mucus (slime), has evolved a number of times in different snail families, which allows them to adhere to the substrate and provides but this shell-free body form has imparted similar behavior some protection against abrasion, but some mucus also and physiology in all species of slugs.
    [Show full text]
  • Lab 5: Phylum Mollusca
    Biology 18 Spring, 2008 Lab 5: Phylum Mollusca Objectives: Understand the taxonomic relationships and major features of mollusks Learn the external and internal anatomy of the clam and squid Understand the major advantages and limitations of the exoskeletons of mollusks in relation to the hydrostatic skeletons of worms and the endoskeletons of vertebrates, which you will examine later in the semester Textbook Reading: pp. 700-702, 1016, 1020 & 1021 (Figure 47.22), 943-944, 978-979, 1046 Introduction The phylum Mollusca consists of over 100,000 marine, freshwater, and terrestrial species. Most are familiar to you as food sources: oysters, clams, scallops, and yes, snails, squid and octopods. Some also serve as intermediate hosts for parasitic trematodes, and others (e.g., snails) can be major agricultural pests. Mollusks have many features in common with annelids and arthropods, such as bilateral symmetry, triploblasty, ventral nerve cords, and a coelom. Unlike annelids, mollusks (with one major exception) do not possess a closed circulatory system, but rather have an open circulatory system consisting of a heart and a few vessels that pump blood into coelomic cavities and sinuses (collectively termed the hemocoel). Other distinguishing features of mollusks are: z A large, muscular foot variously modified for locomotion, digging, attachment, and prey capture. z A mantle, a highly modified epidermis that covers and protects the soft body. In most species, the mantle also secretes a shell of calcium carbonate. z A visceral mass housing the internal organs. z A mantle cavity, the space between the mantle and viscera. Gills, when present, are suspended within this cavity.
    [Show full text]
  • Synopsis of the Biological Data on the Loggerhead Sea Turtle Caretta Caretta (Linnaeus 1758)
    OF THE BI sTt1cAL HE LOGGERHEAD SEA TURTLE CAC-Err' CARETTA(LINNAEUS 1758) Fish and Wildlife Service U.S. Department of the Interior Biological Report This publication series of the Fish and Wildlife Service comprises reports on the results of research, developments in technology, and ecological surveys and inventories of effects of land-use changes on fishery and wildlife resources. They may include proceedings of workshops, technical conferences, or symposia; and interpretive bibliographies. They also include resource and wetland inventory maps. Copies of this publication may be obtained from the Publications Unit, U.S. Fish and Wildlife Service, Washington, DC 20240, or may be purchased from the National Technical Information Ser- vice (NTIS), 5285 Port Royal Road, Springfield, VA 22161. Library of Congress Cataloging-in-Publication Data Dodd, C. Kenneth. Synopsis of the biological data on the loggerhead sea turtle. (Biological report; 88(14) (May 1988)) Supt. of Docs. no. : I 49.89/2:88(14) Bibliography: p. 1. Loggerhead turtle. I. U.S. Fish and Wildlife Service. II. Title. III. Series: Biological Report (Washington, D.C.) ; 88-14. QL666.C536D63 1988 597.92 88-600121 This report may be cit,-;c1 as follows: Dodd, C. Kenneth, Jr. 1988. Synopsis of the biological data on the Loggerhead Sea Turtle Caretta caretta (Linnaeus 1758). U.S. Fish Wildl. Serv., Biol. Rep. 88(14). 110 pp. Biological Report 88(14) May 1988 Synopsis of the Biological Dataon the Loggerhead Sea Turtle Caretta caretta(Linnaeus 1758) by C. Kenneth Dodd, Jr. U.S. Fish and Wildlife Service National Ecology Research Center 412 N.E.
    [Show full text]
  • Rumahlatu D., Leiwakabessy F., 2017 Biodiversity of Gastropoda in the Coastal Waters of Ambon Island, Indonesia
    Biodiversity of gastropoda in the coastal waters of Ambon Island, Indonesia Dominggus Rumahlatu, Fredy Leiwakabessy Biology Education Study Program, Faculty of Teacher Training and Education Science, Pattimura University, Ambon, Indonesia. Corresponding author: D. Rumahlatu, [email protected] Abstract. Gastropods belonging to the mollusk phylum are widespread in various ecosystems. Ecologically, the spread of gastropoda is influenced by environmental factors, such as temperature, salinity, pH and dissolved oxygen. This research was conducted to determine the correlation between the factors of physico-chemical environment and the diversity of gastropoda in coastal water of Ambon Island, Indonesia. This research was conducted at two research stations, namely Station 1 at Ujung Tanjung Latuhalat Beach and Station 2 at coastal water of Waitatiri Passo. The results of a survey revealed that the average temperature on station 1 was 31.14°C while the average temperature of ° station 2 was 29.90 C. The average salinity at Station 1 was 32.02%o whereas the salinity average at Station 2 was 30.31%o. The average pH in station 1 and 2 was 7.03, while the dissolved oxygen at station 1 was 7.68 ppm which was not far different from that in station 2 with the dissolved oxygen of 7.63 ppm. The total number of species found in both research stations was 65 species, with the types of gastropoda were found scattered in 48 genera, 19 families and 7 orders. The most commonly found gastropods were from the genus of Nerita and Conus. 40 species were found in station 1 and 40 species were found in station 2.
    [Show full text]
  • Environmental Heterogeneity and Benthic Macroinvertebrate Guilds in Italian Lagoons Alberto Basset, Nicola Galuppo & Letizia Sabetta
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESE - Salento University Publishing Transitional Waters Bulletin TWB, Transit. Waters Bull. 1(2006), 48-63 ISSN 1825-229X, DOI 10.1285/i1825226Xv1n1p48 http://siba2.unile.it/ese/twb Environmental heterogeneity and benthic macroinvertebrate guilds in italian lagoons Alberto Basset, Nicola Galuppo & Letizia Sabetta Department of Biological and Environmental Sciences and Technologies University of Salento S.P. Lecce-Monteroni 73100 Lecce RESEARCH ARTICLE ITALY Abstract 1 - Lagoons are ecotones between freshwater, marine and terrestrial biotopes, characterized by internal ecosystem heterogeneity, due to patchy spatial and temporal distribution of biotic and abiotic components, and inter-ecosystem heterogeneity, due to the various terrestrial-freshwater and freshwater-marine interfaces. 2 - Here, we carried out an analysis of environmental heterogeneity and benthic macro-invertebrate guilds in a sample of 26 Italian lagoons based on literature produced over a 25 year period.. 3 - In all, 944 taxonomic units, belonging to 13 phyla, 106 orders and 343 families, were recorded. Most species had a very restricted geographic distribution range. 75% of the macroinvertebrate taxa were observed in less than three of the twenty-six lagoons considered. 4 - Similarity among macroinvertebrate guilds in lagoon ecosystems was remarkably low, ranging from 10.5%±7.5% to 34.2%±14.4% depending on the level of taxonomic resolution. 5 - Taxonomic heterogeneity was due to both differences in species richness and to differences in species composition: width of seaward outlet, lagoon surface area and water salinity were the most important factors affecting species richness, together accounting for up to 75% of observed inter-lagoon heterogeneity, while distance between lagoons was the most significant factor affecting similarity of species composition.
    [Show full text]
  • Check List and Occurrence of Marine Gastropoda Along the Palk Bay Region, Southeast Coast of India
    Available online at www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2013, 4(1): 195-199 ISSN: 0976-8610 CODEN (USA): AASRFC Check list and occurrence of marine gastropoda along the palk bay region, southeast coast of India Elaiyaraja C, Rajasekaran R* and Sekar V. Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India _____________________________________________________________________________________________ ABSTRACT The marine biodiversity of the southeast coast of India is rich and much of the world’s wealth of biodiversity is found in highly diverse coastal habitats. A present study was carried out on marine gastropod accessibility among Palk Bay region of Tamilnadu coastline to identify, quantify and assess the shell resources potential for development of a small-scale shell industry. A large collection of marine gastropod was made among the coastal line of Mallipattinam and Kottaipattinam found 61 species (25 families) of marine gastropods over a 12 months period from Aug- 2011 to July- 2012. A totally of 61 species belonging to 55 species of 40 genera were recorded at station 1 and 56 species belonging to 41 genera were identified at station 2. Most of the species were common in both landings centre with slight differences but some species like Turritella duplicate, Strombus canarium, Cyprae onyxadusta, Marginella angustata, and Harpa major were available in station 1 not available in station 2. The present study revealed that the occurrence of marine gastropods species along the Palk Bay region of Tamilnadu coastline. _____________________________________________________________________________________________ INTRODUCTION Though marine science has established much attention in Tamilnadu coastline in the recent years, marine mollusks studies are still overseen by many researchers.
    [Show full text]
  • Unit 2B – Mollusca- Fish
    Unit 2b – Mollusca- Fish Cladogram of animals Several Evolutionary Events: Eumetazoa (Tisssues) Bilateria (Bilateral Organisms) Deuterostomia (Blastopore becomes Anus). Lophotrochozoa (Lophophorate Phyla and Trochophore Larva) Ecydscozoa (Goes through ecdysis). Phylum: Mollusca u Most are marine (some are freshwater or terrestrial) u Most are protected by a shell (calcium carbonate) u Most contain a radula u Most have an OPEN circulatory system. Basic Body Parts of the HAM: 1) _____________Foot 2)______________Mantle 3)______________Visceral Mass 4)______________Radula Phylum Mollusca • Class: Monoplacophora (Neopilina) • Class: ______________Polyplacophora (Chitons) • Class: Gastropoda (Snails, Slugs) • Class: Scaphopoda_______________ (Tooth or Tusk Shells) • Class: Bivalvia (Clams, Mussels, Oysters, scallops) • Class: Cephalopoda_______________ (Squids, Octopuses) Class: Monoplacophora • Single shelled • Segmented • Deep Marine • Reduced head • Foot for locomotion • Radula present Class: _Polyplacophora__________ • Marine • Shell with eight overlapping plates • Foot used for locomotion • Head reduced • Radula present Class: Gastropoda Class: Gastropoda • Marine, Freshwater, and Terrestrial • Asymmetrical due to _________Torsion • Shell coiled (reduced or absent in some) – (dextral vs. sinistral) • Foot for locomotion • Radula present Class: Scaphopoda • Benthic marine • Filter feeders • Foot used to burrow into sand • _________Radula used to move food to gizzard Class: Bivalvia • Marine and Freshwater • Flattened shell with two valves
    [Show full text]
  • The Marine Gastropods Crepidula Plana and Crepidula Convexa Do Not Serve As First Intermediate Hosts for Larval Trematode Development Author(S) :Jan A
    The Marine Gastropods Crepidula plana and Crepidula convexa Do Not Serve as First Intermediate Hosts for Larval Trematode Development Author(s) :Jan A. Pechenik, Bernard Fried, and Jeff Bolstridge Source: Comparative Parasitology, 79(1):5-8. 2012. Published By: The Helminthological Society of Washington DOI: URL: http://www.bioone.org/doi/full/10.1654/4520.1 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Comp. Parasitol. 79(1), 2012, pp. 5–8 The Marine Gastropods Crepidula plana and Crepidula convexa Do Not Serve as First Intermediate Hosts for Larval Trematode Development 1,4 2 3 JAN A. PECHENIK, BERNARD FRIED, AND JEFF BOLSTRIDGE 1 Biology Department, Tufts University, Medford, Massachusetts 02155, U.S.A. (e-mail: [email protected]), 2 Department of Biology, Lafayette College, Easton, Pennsylvania 18042, U.S.A. (e-mail: [email protected]), and 3 Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, U.S.A.
    [Show full text]