Controlling Home Appliances Using Internet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Short Range Object Detection and Avoidance
Short Range Object Detection and Avoidance N.F. Jansen CST 2010.068 Traineeship report Coach(es): dr. E. García Canseco, TU/e dr. ing. S. Lichiardopol, TU/e ing. R. Niesten, Wingz BV Supervisor: prof.dr.ir. M. Steinbuch Eindhoven University of Technology Department of Mechanical Engineering Control Systems Technology Eindhoven, November, 2010 Abstract The scope of this internship is to investigate, model, simulate and experiment with a sensor for close range object detection for the purpose of the Tele-Service Robot (TSR) robot. The TSR robot will be implemented in care institutions for the care of elderly and/or disabled. The sensor system should have a supporting role in navigation and mapping of the environment of the robot. Several sensors are investigated, whereas the sonar system is the optimal solution for this application. It’s cost, wide field-of-view, sufficient minimal and maximal distance and networking capabilities of the Devantech SRF-08 sonar sensor is decisive to ultimately choose this sensor system. The positioning, orientation and tilting of the sonar devices is calculated and simulations are made to obtain knowledge about the behavior and characteristics of the sensors working in a ring. Issues surrounding the sensors are mainly erroneous ranging results due to specular reflection, cross-talk and incorrect mounting. Cross- talk can be suppressed by operating in groups, but induces the decrease of refresh rate of the entire robot’s surroundings. Experiments are carried out to investigate the accuracy and sensitivity to ranging errors and cross-talk. Eventually, due to the existing cross-talk, experiments should be carried out to decrease the range and timing to increase the refresh rate because the sensors cannot be fired more than only two at a time. -
Converting a Microcontroller Lab from the Freescale S12 to the Atmel Atmega32 Processor
ASEE-NMWSC2013-0025 Converting a Microcontroller Lab From The Freescale S12 to the Atmel ATmega32 Processor Christopher R. Carroll University of Minnesota Duluth [email protected] Abstract During the summer of 2013, the laboratory supporting the microcontroller course at the University of Minnesota Duluth was completely re-implemented. For the last several years, the processor that has been used was the Freescale S12, a popular 16-bit microcontroller with a long ancestral history 1. The recent popularity of the Atmel AVR series of microcontrollers, as used in the Arduino microcomputers, for example, has prompted a change in the lab to use Atmel’s ATmega32 microcontroller, an 8-bit member of the AVR family of microcontrollers 2,3 . The new processor has a fundamentally different architecture than that used in the past, but the input/output resources available are much the same. This paper addresses issues that will be faced in the conversion when the course is taught with the new lab hardware for the first time in the Fall. At the very fundamental level, the S12 and ATmega32 differ in architecture. The S12 is a Princeton architecture computer (single memory for both program and data), while the ATmega32 is a Harvard architecture computer (separate program and data memories). The S12 is clearly a CISC machine (Complex Instruction Set Computer) while the ATmega32 is clearly a RISC machine (Reduced Instruction Set Computer). These differences will affect how the microcontroller course is taught when it is offered in the Fall using this new lab. Fortunately, however, the collection of input/output devices in the AVR microcontrollers mimics closely what is found in the S12, so that many of the existing lab exercises will be used again with only minor tweaking. -
8051 Programmer
T51prog2 MCS51 series and Atmel AVR microcontrollers ISP capable fast programmer Short description: 10692 supported devices from 149 manufacturers by 2.75 version of SW (21. Dec. 2010) small, very fast and powerful portable programmer of MCS51 series and Atmel AVR microcontrollers in-circuit serial programming (ISP) capability included program also serial EEPROMs DIL40 ZIF socket, all MCS51/AVR chips in DIL package up to 40 pins are supported without adapters connection to PC: USB port USB 2.0 full speed and USB 1.1 compatible upgradeable to SmartProg2 programmer. comfortable and easy to use control program, work with all versions of MS Windows from Windows 98 to Window 7 64-bit free SW update, download from Internet power supply, cable and software included approved by CE laboratory to meet CE requirements made in Slovakia Available accessories: Programming Adapters (Socket Converters) Diagnostic POD for ISP connector upgrade kit Xprog2 to SmartProg2 Features GENERAL T51prog2 is the next member of new generation MS Windows (from Windows 98 to Window 7 64-bit) based ELNEC specialized programmers . Programmer is capable to support all currently available microcontrollers of the MCS51 series (up to 40 pins) and the AVR microcontrollers (8-40 pins) using parallel and serial algorithms. T51prog2 has been developed in close cooperation with Atmel W&M. , therefore programmer's hardware is focused to support all current and future microcontrollers of Atmel W&M MCS51 family. T51prog2 is a small, very fast and powerful portable programmer for MCS51 series and Atmel AVR microcontrollers. T51prog also programs serial EEPROM with IIC (24Cxx), Microwire (93Cxx) and SPI (25Cxx) interface types. -
Architecture of 8051 & Their Pin Details
SESHASAYEE INSTITUTE OF TECHNOLOGY ARIYAMANGALAM , TRICHY – 620 010 ARCHITECTURE OF 8051 & THEIR PIN DETAILS UNIT I WELCOME ARCHITECTURE OF 8051 & THEIR PIN DETAILS U1.1 : Introduction to microprocessor & microcontroller : Architecture of 8085 -Functions of each block. Comparison of Microprocessor & Microcontroller - Features of microcontroller -Advantages of microcontroller -Applications Of microcontroller -Manufactures of microcontroller. U1.2 : Architecture of 8051 : Block diagram of Microcontroller – Functions of each block. Pin details of 8051 -Oscillator and Clock -Clock Cycle -State - Machine Cycle -Instruction cycle –Reset - Power on Reset - Special function registers :Program Counter -PSW register -Stack - I/O Ports . U1.3 : Memory Organisation & I/O port configuration: ROM RAM - Memory Organization of 8051,Interfacing external memory to 8051 Microcontroller vs. Microprocessors 1. CPU for Computers 1. A smaller computer 2. No RAM, ROM, I/O on CPU chip 2. On-chip RAM, ROM, I/O itself ports... 3. Example:Intel’s x86, Motorola’s 3. Example:Motorola’s 6811, 680x0 Intel’s 8051, Zilog’s Z8 and PIC Microcontroller vs. Microprocessors Microprocessor Microcontroller 1. CPU is stand-alone, RAM, ROM, I/O, timer are separate 1. CPU, RAM, ROM, I/O and timer are all on a single 2. designer can decide on the chip amount of ROM, RAM and I/O ports. 2. fix amount of on-chip ROM, RAM, I/O ports 3. expansive 3. for applications in which 4. versatility cost, power and space are 5. general-purpose critical 4. single-purpose uP vs. uC – cont. Applications – uCs are suitable to control of I/O devices in designs requiring a minimum component – uPs are suitable to processing information in computer systems. -
8-Bit Microcontrollers 32-Bit Microcontrollers and Application
8-bit Microcontrollers 32-bit Microcontrollers and Application Processors QUICK REFE R ENCE GUIDE February 2009 Everywhere You Are® AVR Introduction Atmel® offers both 8-bit and 32-bit AVR®s. AVR microcontrollers and application processors deliver unmatched flexibility. AVR combines the most code-efficient architecture for C and assembly programming with the ability to tune system parameters throughout the entire life cycle of your key products. Not only do you get to market faster, but once there, you can easily and cost-effectively refine and improve your product offering. The AVR XMEGA gives you 16-bit performance and leading low-power features at 8-bit price. It’s simple: AVR works across the entire range of applications you’re working on... or want to work on. & Introduction QUICK REFERENCE GUIDE AVR Key Benefits AVR32 Key Benefits High performance High CPU performance picoPower™ technology Low power consumption High code density High data throughput High integration and scalability Low system cost Complete tool offering High reliability Atmel’s AVR is addressing the 8-bit and 16-bit market Easy to use Environment Friendly Packages For AVR and AVR32 microcontrollers and application processors, all the lead free packages are RoHS compliant, lead free, halide free and fully green. All parts are offered in fully green packaging only. Product Range Atmel microcontrollers - success through innovation Atmel offers both 8-bit and 32-bit AVR’s, and since day one the AVR philosophy has always been clear: Highest performance with no power penalty. tinyAVR 1-16 KBytes Flash, 8-32 pin packages megaAVR 4-256 KBytes Flash, 28-100 pin packages AVR XMEGA 16-384 KBytes Flash, 44-100 pin packages AVR32 UC3 16-512 KBytes Flash, 48-144 pin packages AVR32 AP7 Up to 32 KBytes On-chip SRAM, 196-256 pin packages & QUICK REFERENCE GUIDE Product Range Product Product Range Range Product Families tinyAVR® General purpose microcontrollers with up to 16K Bytes Flash program memory, 512 Bytes SRAM and EEPROM. -
Javaedge Setup and Installation
APPENDIX A ■ ■ ■ JavaEdge Setup and Installation Throughout the book, we have used the example application, JavaEdge, to provide a practical demonstration of all the features discussed. In this appendix, we will walk you through setting up the tools and applications required to build and run JavaEdge, as well as take you through the steps needed to get the JavaEdge application running on your platform. Environment Setup Before you can get started with the JavaEdge application, you need to configure your platform to be able to build and run JavaEdge. Specifically, you need to configure Apache Ant in order to build the JavaEdge application and package it up for deployment. In addition, the JavaEdge application is designed to run on a J2EE application server and to use MySQL as the back-end database. You also need to have a current JDK installed; the JavaEdge application relies on JVM version 1.5 or higher, so make sure your JDK is compatible. We haven’t included instruc- tions for this here, since we are certain that you will already have a JDK installed if you are reading this book. However, if you do need to download one, you can find it at http://java. sun.com/j2se/1.5.0/download.jsp. Installing MySQL The JavaEdge application uses MySQL as the data store for all user, story, and comment data. If you don’t already have the MySQL database server, then you need to obtain the version applicable to your platform. You can obtain the latest production binary release of MySQL for your platform at http://www.mysql.com. -
SERVO MAGAZINE TEAM DARE’S ROBOT BAND • RADIO for ROBOTS • BUILDING MAXWELL June 2012 Full Page Full Page.Qxd 5/7/2012 6:41 PM Page 2
0 0 06 . 7 4 $ A D A N A C 0 5 . 5 $ 71486 02422 . $5.50US $7.00CAN S . 0 U CoverNews_Layout 1 5/9/2012 3:21 PM Page 1 Vol. 10 No. 6 SERVO MAGAZINE TEAM DARE’S ROBOT BAND • RADIO FOR ROBOTS • BUILDING MAXWELL June 2012 Full Page_Full Page.qxd 5/7/2012 6:41 PM Page 2 HS-430BH HS-5585MH HS-5685MH HS-7245MH DELUXE BALL BEARING HV CORELESS METAL GEAR HIGH TORQUE HIGH TORQUE CORELESS MINI 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts Torque: 57 oz-in 69 oz-in Torque: 194 oz-in 236 oz-in Torque: 157 oz-in 179 oz-in Torque: 72 oz-in 89 oz-in Speed: 0.16 sec/60° 0.14 sec/60° Speed: 0.17 sec/60° 0.14 sec/60° Speed: 0.20 sec/60° 0.17 sec/60° Speed: 0.13 sec/60° 0.11 sec/60° HS-7950THHS-7950TH HS-7955TG HS-M7990TH HS-5646WP ULTRA TORQUE CORELESS HIGH TORQUE CORELESS MEGA TORQUE HV MAGNETIC ENCODER WATERPROOF HIGH TORQUE 6.0 Volts 7.4 Volts 4.8 Volts 6.0 Volts 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts Torque: 403 oz-in 486 oz-in Torque: 250 oz-in 333 oz-in Torque: 500 oz-in 611 oz-in Torque: 157 oz-in 179 oz-in Speed: 0.17 sec/60° 0.14 sec/60° Speed: 0.19 sec/60° 0.15 sec/60° Speed: 0.21 sec/60° 0.17 sec/60° Speed: 0.20 sec/60° 0.18 sec/60° DIY Projects: Programmable Controllers: Wild Thumper-Based Robot Wixel and Wixel Shield #1702: Premium Jumper #1336: Wixel programmable Wire Assortment M-M 6" microcontroller module with #1372: Pololu Simple Motor integrated USB and a 2.4 Controller 18v7 GHz radio. -
Programming and Customizing the Multicore Propeller
PROGRAMMING AND CUSTOMIZING THE MULTICORE PROPELLERTM MICROCONTROLLER This page intentionally left blank PROGRAMMING AND CUSTOMIZING THE MULTICORE PROPELLERTM MICROCONTROLLER THE OFFICIAL GUIDE PARALLAX INC. Shane Avery Chip Gracey Vern Graner Martin Hebel Joshua Hintze André LaMothe Andy Lindsay Jeff Martin Hanno Sander New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-166451-6 MHID: 0-07-166451-3 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166450-9, MHID: 0-07-166450-5. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. -
2 XII December 2014
2 XII December 2014 www.ijraset.com Volume 2 Issue XII, December 2014 ISSN: 2321-9653 International Journal for Research in Applied Science & Engineering Technology (IJRASET) Overview and Comparative Study of Different Microcontrollers Rajratna Khadse1, Nitin Gawai2, Bagwan M. Faruk3 1Assist.Professor, Electronics Engineering Department, RCOEM, Nagpur 2,3Assist.Professor, E & Tc Engineering Department, JDIET, Yavatmal Abstract—A microcontroller is a small and low-cost computer built for the purpose of dealing with specific tasks, such as displaying information on seven segment display at railway platform or receiving information from a television’s remote control. Microcontrollers are mainly used in products that require a degree of control to be exerted by the user. Today various types of microcontrollers are available in market with different word lengths such as 8bit, 16bit, 32bit, and microcontrollers. Microcontroller is a compressed microcomputer manufactured to control the functions of embedded systems in office machines, robots, home appliances, motor vehicles, and a number of other gadgets. Therefore in today’s technological world lot of things done with the help of Microcontroller. Depending upon the applications we have to choose particular types of Microcontroller. The aim of this paper to give the basic information of microcontroller and comparative study of 8051 Microcontroller, ARM Microcontroller, PIC Microcontroller and AVR Microcontroller Keywords— Microcontroller, Memory, Instruction, cycle, bit, architecture I. INTRODUCTION Microcontrollers have directly or indirectly impact on our daily life. Usually, But their presence is unnoticed at most of the places like: At supermarkets in Cash Registers, Weighing Scales, Video games ,security system , etc. At home in Ovens, Washing Machines, Alarm Clocks, paging, VCR, LASER Printers, color printers etc. -
An Overview of Atmega AVR Microcontrollers Used in Scientific Research and Industrial Applications
Pomiary Automatyka Robotyka, R. 19, Nr 1/2015, 15–20, DOI: 10.14313/PAR_215/15 An Overview of ATmega AVR Microcontrollers Used in Scientific Research and Industrial Applications Wojciech Kunikowski, Ernest Czerwiński, Paweł Olejnik, Jan Awrejcewicz Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 90–924 Łódź, 1/15 Stefanowski str. Abstract: Nowadays, microcontrollers are commonly used in many fields of industrial applications previously dominated by other devices. Their strengths such as: processing power, low cost, and small sizes enable them to become substitutes for industrial PLC controllers, analog electronic circuits, and many more. In first part of this article an overview of the Atmel AVR microprocessor family can be found, alongside with many scientific and industrial applications. Second part of this article contains a detailed description of two implementations of ATmega644PA microprocessor. First one is a controller with PID regulation that supports a DC motor driver. Second one is a differential equation solver with 4-th order Runge-Kutta method implemented. It is used for solving a torsion pendulum dynamics. Finally, some general conclusions regarding the two presented implementations are made. Keywords: Atmel, AVR, ATmega, microcontroller, torsion pendulum, PID control, DC motor, PWM control 1. Introduction the performance and compact dimensions of control units are the most important requirements. The described micropro- 1.1. Overview of some Atmel microcontrollers cessor characterizes also with very low power consumption. AVR ATmega is a family of 8-bit microprocessors from Atmel. It is the only processor in AVR family that works with 0.7 V Their features vary across models, but mostly, the following power supply. -
Single-Board Microcontrollers
Embedded Systems Design (0630414) Lecture 15 Single-Board Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University Single-Board Microcontrollers: • There is a wide variety of single-board microcontrollers available from different manufacturers and suppliers of microcontrollers. • The most common microcontroller boards are: – Intel Boards: based on Intel microcontrollers. – ARM Boards: based on ARM7 microcontrollers. – Cortex Boards: based on Cortex microcontrollers. – AVR Boards: based on Atmel AVR microcontrollers. – MSP430 Boards: based on Texas Instruments microcontrollers. – PIC Boards: based on the Microchip PIC microcontrollers. – Motorola Boards: based on Motorola microcontrollers. – ARDUNIO Boards: based on Atmel AVR microcontrollers. •It is not easy to decide on which microcontroller to use in a certain application. However, Arduino is becoming one of the most popular microcontrollers used in industrial applications and robotics. •There are different types of Arduino microcontrollers which differ in their design and specifications. The following table shows comparison between the Arduino microcontrollers. Ref: http://www.robotshop.com/arduino-microcontroller-comparison.html The Arduino Uno board: Hardware design of the Arduino Uno board: Single-Board Microcontroller + ZigBee Example: Mobile Robot control using Zigbee Technology Single-Board Microcontroller Selection: The selection guide for using the suitable microcontroller includes: 1. Meeting the hardware needs for the project design; - number of digital and analog i/o lines. - size of flash memory, RAM, and EPROM. - power consumption. - clock speed. - communication with other devices. 2. Availability of software development tools required to design and test the proposed prototype. 3. Availability of the microcontroller.. -
(CGPA) Examination May/June 2017 Programming in C (Revised) [Time: Three Hours] [Max.Marks:80]
Total No. of Printed Pages:2 SUBJECT CODE NO:- P-11 FACULTY OF ENGINEERING AND TECHNOLOGY First Year MCA (CGPA) Examination May/June 2017 Programming in C (Revised) [Time: Three Hours] [Max.Marks:80] Please check whether you have got the right question paper. N.B i) Q.No.1 from section A and Q.No.8 from section B are compulsory. ii) Attempt any two questions from the remaining questions in each section SECTION A Q.1 Find the output of the following and also specify the reason. 08 a. #include<stdio.h> Void main() { Char C*2+= “A”; Printf(“\n %c”,C[0]); Printf(“\n %s”,C); } b. #include<stdio.h> void main() { Int x=4, y=0, z; While (x>=0) { If(x= =y) break; else Printf(“\n%d%d”,x,y); x- -; y++; } } Q.2 A What is constant & variables? Explain the rules for constructing integer & real point (float) constant 08 B Write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of rs.12.00 per hour 08 for overtime hour worked above 40 hours. Assume that employee do not work for fractional part of an hour. Q.3 A Explain all loop control statements in detail with proper example 08 B Write a program in C to accept a number & check whether it is Armstrong number or not. 08 Q.4 A What is an algorithm? Explain with example. 08 B Write a program to enter a number from user and calculate the sum of its digit. 08 SECTION B Q.5 A What is an array? Explain with its types.