Puberty in a Case with Novel 17-Hydroxylase Mutation and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Adrenal Androgen Precursors DHEA and Androstenedione (A4)
PERIPHERAL METABOLISM OF THE ADRENAL STEROID 11Β- HYDROXYANDROSTENEDIONE YIELDS THE POTENT ANDROGENS 11KETO- TESTOSTERONE AND 11KETO-DIHYDROTESTOSTERONE Elzette Pretorius1, Donita J Africander1, Maré Vlok2, Meghan S Perkins1, Jonathan Quanson1 and Karl-Heinz Storbeck1 1University of Stellenbosch, Department of Biochemistry, Stellenbosch, South Africa 2University of Stellenbosch, Mass Spectrometry Unit, Stellenbosch, South Africa The adrenal androgen precursors DHEA and androstenedione (A4) play an important role in the development and progression of castration resistant prostate cancer (CRPC) as they are converted to dihydrotestosterone (DHT) by steroidogenic enzymes expressed in CRPC tissue. We have recently shown that the adrenal C19 steroid 11β-hydroxyandrostenedione (11OHA4) serves as a precursor to the androgens, 11-ketotestosterone (11KT) and 11-keto-5α-dihydrotestosterone (11KDHT), and that the latter two steroids could play a role in CRPC. The aim of this study was therefore to characterise 11KT and 11KDHT in terms of their androgenic activity. Competitive whole cell binding assays revealed that 11KT and 11KDHT bind to the human androgen receptor (AR) with affinities similar to that of testosterone (T) and DHT. Transactivation assays on a synthetic androgen response element (ARE) demonstrated that the potencies and efficacies of 11KT and 11KDHT are comparable to that of T and DHT, respectively. Moreover, we show that both 11KT and 11KDHT induce the expression of AR-regulated genes (KLK3, TMPRSS2 and FKBP5) and cellular proliferation in the androgen dependent prostate cancer cell lines, LNCaP and VCaP. In most cases, 11KT and 11KDHT upregulated AR-regulated gene expression and increased LNCaP cell growth to a significantly higher extent than T and DHT. Mass spectrometry-based proteomics revealed that 11KT and 11KDHT, like T and DHT, results in the upregulation of multiple AR-regulated proteins in VCaP cells, with 11KDHT regulating more AR-regulated proteins than DHT. -
Pharmacology/Therapeutics II Block III Lectures 2013-14
Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine -
DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging. -
Role of Transport Systems in Cortisol Release from Human Adrenal Cells
Role of transport systems in cortisol release from human adrenal cells Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Abdul Rahman Asif aus Gujrat, Pakistan Göttingen 2004 D7 Referent: Prof. Dr. R. Hardeland Korreferent: Prof. Dr. D. Gradmann Tag der mündlichen Prüfung: To My parents & in loving memory of my grandma! She could not wait! CONTENTS I ABSTRACT ................................................................................................... IV LIST OF ABBREVIATIONS .......................................................................... VI 1 INTRODUCTION........................................................................................1 1.1 THE ADRENAL GLAND ANATOMY ...............................................................................................1 1.2 ADRENAL GLAND HORMONES....................................................................................................2 1.2.1 Biosynthesis of the steroid hormones...........................................................................................2 1.2.2 Regulation of adrenal glands........................................................................................................6 1.2.3 Actions of adrenal steroids ...........................................................................................................7 1.3 HUMAN ADRENOCORTICAL CELLS ............................................................................................8 -
Dehydroepiandrosterone: a Potential Therapeutic Agent in the Treatment
Bentley et al. Burns & Trauma (2019) 7:26 https://doi.org/10.1186/s41038-019-0158-z REVIEW Open Access Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient Conor Bentley1,2,3* , Jon Hazeldine1,3, Carolyn Greig2,4, Janet Lord1,3,4 and Mark Foster1,5 Abstract Severe injuries are the major cause of death in those aged under 40, mainly due to road traffic collisions. Endocrine, metabolic and immune pathways respond to limit the tissue damage sustained and initiate wound healing, repair and regeneration mechanisms. However, depending on age and sex, the response to injury and patient prognosis differ significantly. Glucocorticoids are catabolic and immunosuppressive and are produced as part of the stress response to injury leading to an intra-adrenal shift in steroid biosynthesis at the expense of the anabolic and immune enhancing steroid hormone dehydroepiandrosterone (DHEA) and its sulphated metabolite dehydroepiandrosterone sulphate (DHEAS). The balance of these steroids after injury appears to influence outcomes in injured humans, with high cortisol: DHEAS ratio associated with increased morbidity and mortality. Animal models of trauma, sepsis, wound healing, neuroprotection and burns have all shown a reduction in pro- inflammatory cytokines, improved survival and increased resistance to pathological challenges with DHEA supplementation. Human supplementation studies, which have focused on post-menopausal females, older adults, or adrenal insufficiency have shown that restoring the cortisol: DHEAS ratio improves wound healing, mood, bone remodelling and psychological well-being. Currently, there are no DHEA or DHEAS supplementation studies in trauma patients, but we review here the evidence for this potential therapeutic agent in the treatment and rehabilitation of the severely injured patient. -
Direct Metabolic Interrogation of Dihydrotestosterone Biosynthesis from Adrenal Precursors in Primary Prostatectomy Tissues
Author Manuscript Published OnlineFirst on July 21, 2017; DOI: 10.1158/1078-0432.CCR-17-1313 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Title: Direct metabolic interrogation of dihydrotestosterone biosynthesis from adrenal precursors in primary prostatectomy tissues Authors: Charles Dai1,2, Yoon-Mi Chung2, Evan Kovac2,4, Ziqi Zhu2, Jianneng Li2, Cristina Magi- Galluzzi3, Andrew J. Stephenson4, Eric A. Klein1,4, Nima Sharifi1,2,4,5 Author Affiliations: 1Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA 44195 2Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA 44195 3R.T. Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA 44195 4Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA 44195 5Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA 44195 Evan Kovac is currently affiliated with Montefiore Medical Center and the Albert Einstein College of Medicine, New York, NY, USA Running title: Adrenal-derived DHT biosynthesis in prostatectomy tissues Keywords: androgen metabolism, localized prostate cancer, 5α-reductase, adrenal steroids, prostatectomy Additional information: Financial support: This work was supported by funding from the Howard Hughes Medical Institute Medical Fellows Program (to CD), a Howard Hughes Medical Institute Physician-Scientist Early Career Award (to NS), a Prostate Cancer Foundation Challenge Award (to NS) and National Cancer Institute grants (R01CA168899, R01CA172382, and R01CA190289) to NS. Page 1 Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 21, 2017; DOI: 10.1158/1078-0432.CCR-17-1313 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
STEROID PROFILES in the DIAGNOSIS of CANINE ADRENAL DISORDERS Jack W
STEROID PROFILES IN THE DIAGNOSIS OF CANINE ADRENAL DISORDERS Jack W. Oliver, DVM, Ph.D Knoxville, TN INTRODUCTION Diagnosis of adrenal disease in domestic animals usually is dependent on the manipulation of the hypothalamo-pituitary-adrenal axis (HPA) and the measurement of cortisol (i.e., ACTH stim test; low dose dexamethasone suppression (LDDS) test; urine cortisol/creatinine ratio test; or the combined dexamethasone suppression/ACTH stimulation test). More recently, other steroid measurements have been utilized to evaluate the HPA, including steroid hormone profiles1,2, and 17-hydroxyprogesterone,3-5 which have revealed that suspected adrenal disease conditions may be caused by steroids other than cortisol (or in addition to cortisol).3 Determination of pituitary-dependent hyperadrenocorticism (PDH), or adrenal-dependent hyperadrenocorticism (ADH), is now usually made by evaluation of the 4-hour timepoint of the LDDS test6, by endogenous ACTH measurement,7 or by ultrasound visualization of the adrenal glands.7,8 Hyperadrenocorticism (HAC) is defined as an overproduction of steroid hormones by the adrenal cortex.4 Cushing’s syndrome refers to all causes of hyperadrenocorticism with excess production of cortisol,6 while atypical Cushing’s disease refers to hyperadrenocorticism caused by increased levels of intermediate adrenal steroids that frequently are referred to as “sex steroids”.9 STEROID HORMONE PROFILES/GENERAL Steroid hormone profiling in veterinary medicine was begun at The University of Tennessee Clinical Endocrinology Service, with the premise being that multiple steroid hormone analyses would increase the diagnostic accuracy of adrenal function tests.1 Measurement of multiple steroids in Pomeranians2 led to the recognition of a syndrome called “Alopecia-X”11 by dermatologists. -
Dehydroepiandrosterone: Biological Effects and Clinical Significance
Reprinted with written permission from Alternative Medicine Review, Vol. 1, #2, 1996, pp. 60-69, Thorne Research, Inc. Dehydroepiandrosterone: Biological Effects and Clinical Significance Alan R. Gaby, M.D. Abstract Dehydroepiandrosterone (DHEA) is a steroid hormone secreted in greater quan- tity by the adrenal glands than any other adrenal steroid. For many years, scientists assumed that DHEA merely functioned as a reservoir upon which the body could draw to produce other hormones, such as estrogen and testosterone. However, the recent identification of DHEA receptors in the liver, kidney and testes of rats strongly suggests that DHEA may have specific physiologic actions of its own. Circulating levels of DHEA decline progressively with age; this age-related decline does not occur with any of the other adrenal steroids. Epidemiologic evidence indicates that higher DHEA levels are associated with increased longevity and prevention of heart disease and cancer, sug- gesting that some of the manifestations of aging may be caused by DHEA deficiency. Animal and laboratory data indicate that administration of DHEA may prevent obesity, diabetes, cancer (breast, colon and liver), and heart disease; enhance the functioning of the immune system; and prolong life. In humans, evidence exists that DHEA might be associated with autoimmune diseases such as lupus, rheumatoid arthritis and mul- tiple sclerosis; chronic fatigue syndrome; acquired immunodeficiency syndrome (AIDS); allergic disorders; osteoporosis; and Alzheimer’s disease. Although administration of DHEA appears to be safe, its long-term effects are unknown, and it is possible that adverse consequences will become evident with chronic use. It is therefore important that this hormone be used with care and that practitioners err on the side of caution when contemplating DHEA supplementation. -
Physiological and Biochemical Aspects of 17Β-Hydroxysteroid Dehydrogenase Type 2 and 3
Physiological and Biochemical Aspects of 17β-Hydroxysteroid Dehydrogenase Type 2 and 3 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Roger Thomas Engeli aus Sulgen (TG), Schweiz Basel, 2017 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung-Nicht kommerziell 4.0 International Lizenz. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt und Prof. Dr. Rik Eggen Basel, den 20.06.2017 ________________________ Dekan Prof. Dr. Martin Spiess 2 Table of Contents Table of Contents ............................................................................................................................... 3 Abbreviations ..................................................................................................................................... 4 1. Summary ........................................................................................................................................ 6 2. Introduction ................................................................................................................................... 8 2.1 Steroid Hormones ............................................................................................................................... 8 2.2 Human Steroidogenesis.................................................................................................................... -
11-Keto-Testosterone and Other Androgens of Adrenal Origin
Physiol. Res. 69 (Suppl. 2): S187-S192, 2020 https://doi.org/10.33549/physiolres.934516 REVIEW 11-Keto-testosterone and Other Androgens of Adrenal Origin Luboslav STÁRKA, Michaela DUŠKOVÁ, Jana VÍTKŮ 1Institute of Endocrinology, Prague, Czech Republic Received February 20, 2020 Accepted April 14, 2020 Summary half in the adrenals. The androgenic potential of these The adrenal glands produce significant amounts of steroid steroids is low. However, the human adrenal also secretes hormones and their metabolites, with various levels of 11-oxygenated androgens (11-oxy-androgens), including androgenic activities. Until recently, the androgenic potency of 11β-hydroxy-androstenedione. Plasma levels of these adrenal-derived compounds were not well known, but 11β-hydroxy-androstenedione (means ± SD) in healthy some recent studies have shown that the production of 11-oxo- persons in the morning are 8.69±2.88 (men), 7.72±2.85 and 11β-hydroxy-derived testosterone and dihydrotestosterone (women), 8.73±5.13 (boys) and 7.88±5.23 (girls) nmol/l, evidently have high androgenic activity. This fact has clinical respectively. The concentrations of these hormones importance, for instance, in various types of congenital adrenal follow the circadian rhythm pattern of cortisol, increasing hyperplasia with androgenization or polycystic ovarian syndrome, markedly after corticotropin stimulation and suppressed and laboratory determinations of these substances could help to by dexamethasone (Putz et al. 1987). 11β-hydroxy- better evaluate the total androgen pressure in patients with these androstenedione serves as the precursor of several highly disorders. Another area of concern is the treatment of prostate potent androgens, the 11-oxygenated derivatives of cancer with androgen deprivation, which loses effectiveness testosterone and dihydrotestosterone. -
The Effects of ACTH on Steroid Metabolomic Profiles in Human
327 The effects of ACTH on steroid metabolomic profiles in human adrenal cells Yewei Xing, Michael A Edwards, Clarence Ahlem1, Mike Kennedy1, Anthony Cohen, Celso E Gomez-Sanchez2 and William E Rainey Department of Physiology and Surgery, Georgia Health University, 1120 15th Street, Augusta, Georgia 30912, USA 1Hollis-Eden Pharmaceuticals, Inc., San Diego, California 921222, USA 2University of Mississippi Medical Center, Jackson, Mississippi 39126, USA (Correspondence should be addressed to W E Rainey; Email: [email protected]) Abstract The adrenal glands are the primary source of mineralocorti- ACTH treatment (48 h). Cortisol production responded the coids, glucocorticoids, and the so-called adrenal androgens. most to ACTH treatment, with a 64-fold increase. Under physiological conditions, cortisol and adrenal andro- Interestingly, the production of two androgens, androstene- gen synthesis are controlled primarily by ACTH. Although it dione and 11b-hydroxyandrostenedione (11OHA), that were is well established that ACTH can stimulate steroidogenesis in also produced in large amounts under basal conditions the human adrenal gland, the effect of ACTH on overall significantly increased after ACTH incubation. In H295R production of different classes of steroid hormones has not cells, 11-deoxycortisol and androstenedione were the major been defined. In this study, we examined the effect of products under basal conditions. Treatment with forskolin ACTH on the production of 23 steroid hormones in adult increased the percentage of 11b-hydroxylated products, adrenal primary cultures and 20 steroids in the adrenal cell including cortisol and 11OHA. This study illustrates that line, H295R. Liquid chromatography/tandem mass spec- adrenal cells respond to ACTH through the secretion of a trometry analysis revealed that, in primary adrenal cell variety of steroid hormones, thus supporting the role of cultures, cortisol and corticosterone were the two most adrenal cells as a source of both corticosteroids and androgens. -
Cross-Reactivity of Steroid Hormone Immunoassays
Krasowski et al. BMC Clinical Pathology 2014, 14:33 http://www.biomedcentral.com/1472-6890/14/33 RESEARCH ARTICLE Open Access Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction Matthew D Krasowski1*, Denny Drees1, Cory S Morris1, Jon Maakestad1, John L Blau1,2 and Sean Ekins3 Abstract Background: Immunoassays are widely used in clinical laboratories for measurement of plasma/serum concentrations of steroid hormones such as cortisol and testosterone. Immunoassays can be performed on a variety of standard clinical chemistry analyzers, thus allowing even small clinical laboratories to do analysis on-site. One limitation of steroid hormone immunoassays is interference caused by compounds with structural similarity to the target steroid of the assay. Interfering molecules include structurally related endogenous compounds and their metabolites as well as drugs such as anabolic steroids and synthetic glucocorticoids. Methods: Cross-reactivity of a structurally diverse set of compounds were determined for the Roche Diagnostics Elecsys assays for cortisol, dehydroepiandrosterone (DHEA) sulfate, estradiol, progesterone, and testosterone. These data were compared and contrasted to package insert data and published cross-reactivity studies for other marketed steroid hormone immunoassays. Cross-reactivity was computationally predicted using the technique of two-dimensional molecular similarity. Results: The Roche Elecsys Cortisol and Testosterone II assays showed a wider range