Dehydroepiandrosterone: Biological Effects and Clinical Significance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prolongevity Hormone FGF21 Protects Against Immune Senescence by Delaying Age-Related Thymic Involution
Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution Yun-Hee Youma, Tamas L. Horvatha, David J. Mangelsdorfb,c, Steven A. Kliewerb,d, and Vishwa Deep Dixita,e,1 aSection of Comparative Medicine and Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06520; bDepartment of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; cHoward Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; dDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and eDepartment of Immunobiology, Yale School of Medicine, New Haven, CT 06520 Edited by Ruslan Medzhitov, Yale School of Medicine, New Haven, CT, and approved December 16, 2015 (received for review July 22, 2015) Age-related thymic degeneration is associated with loss of naïve T showed that FGF7/keratinocyte growth factor (KGF) adminis- cells, restriction of peripheral T-cell diversity, and reduced health- tration in aged mice partially reversed thymic involution (17–19). span due to lower immune competence. The mechanistic basis of Notably, unlike most FGFs, FGF21 lacks affinity for heparan age-related thymic demise is unclear, but prior evidence suggests sulfate in the extracellular matrix and thus can be secreted to act that caloric restriction (CR) can slow thymic aging by maintaining in an endocrine fashion (20). FGF21 is predominantly secreted thymic epithelial cell integrity and reducing the generation of from liver but is also expressed in thymus (21). FGF21 is a pro- intrathymic lipid. Here we show that the prolongevity ketogenic longevity hormone that elicits it biological effects by binding to β hormone fibroblast growth factor 21 (FGF21), a member of the Klotho in complex with FGF receptor (FGFR) 1c, 2c, or 3c, but endocrine FGF subfamily, is expressed in thymic stromal cells along not FGFR4 (16, 22, 23). -
Central Immune Senescence, Reversal Potentials
31 Central Immune Senescence, Reversal Potentials Krisztian Kvell and Judit E. Pongracz Department of Medical Biotechnology, University of Pecs, Hungary 1. Introduction 1.1 Ageing in focus Ageing is a complex process that affects all living organisms. Senescence is not only conceivable in multicellular organisms, but also in unicellulars. Unlike certain diseases that have specific morbidity rates, ageing is a physiological process that affects all individuals that live long enough (unaffected by i.e. predation or famine) to experience senescence. A pioneer of ageing research, August Weismann has established two rather opposing concepts for aging and even today both gather numerous followers. One is the adaptive concept, according to which ageing has evolved to cleanse the population from old, non- reproductive consumers. The other, non-adaptive concept suggests that ageing is due to greater weight on early survival / reproduction rather than vigour at later ages. This latter has been reshaped by the theory of antagonistic pleiotropy (Ljubuncic et al. 2009). Due to advances in biomedical research and care, currently an average 55-aged person is expected to live up to 85 years of age at death on average in the Western societies. This number is expected to increase if biomedical research continues to develop at the current rate and by the year 2030 an average 55-aged person is expected to live up to 115 years of age at death (according to SENS plans) (de Grey 2007). If such forecasts prove to be true, it is of extraordinary significance and will likely trigger immense social and economical conflicts. 1.1.1 Ageing and society Ageing of the population is one of the most important challenges for the developed world to face over the next decades. -
Thymic Involution in Viable Motheaten (Me(V)) Mice Is Associated with a Loss of Intrathymic Precursor Activity
University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 1992-3 Thymic involution in viable motheaten (me(v)) mice is associated with a loss of intrathymic precursor activity Sandra M. Hayes University of Connecticut Health Center Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Repository Citation Hayes SM, Shultz LD, Greiner DL. (1992). Thymic involution in viable motheaten (me(v)) mice is associated with a loss of intrathymic precursor activity. Open Access Articles. Retrieved from https://escholarship.umassmed.edu/oapubs/2309 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Developmental Immunology, 1992, Vol. 2, pp. 191-205 (C) 1992 Harwood Academic Publishers GmbH Reprints available directly from the publisher Printed in the United Kingdom Photocopying permitted by license only Thymic Involution in Viable Motheaten (mev) Mice is Associated with a Loss of Intrathymic Precursor Activity SANDRA M. HAYES,t LEONARD D. SHULTZ,* and DALE L. GREINERt "Department of Pathology, University of Connecticut Health Center, Farmington, Connecticut 06030 :The Jackson Laboratory, Bar Harbor, Maine 04609 Department of Medicine, University of Massachusetts, 55 Lake Avenue North, Worcester, Massachusetts 01655 Mice homozygous for the viable motheaten (mev) allele manifest abnormalities in thymocytopoiesis, are severely immunodeficient, and develop autoimmune disorders early in life. -
Thymic Involution Development in Two Different Models of Effects Of
Effects of Castration on Thymocyte Development in Two Different Models of Thymic Involution This information is current as Tracy S. P. Heng, Gabrielle L. Goldberg, Daniel H. D. Gray, of October 3, 2021. Jayne S. Sutherland, Ann P. Chidgey and Richard L. Boyd J Immunol 2005; 175:2982-2993; ; doi: 10.4049/jimmunol.175.5.2982 http://www.jimmunol.org/content/175/5/2982 Downloaded from References This article cites 64 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/175/5/2982.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 3, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Effects of Castration on Thymocyte Development in Two Different Models of Thymic Involution1 Tracy S. P. Heng,2 Gabrielle L. Goldberg,2 Daniel H. D. Gray,2 Jayne S. -
The Adrenal Androgen Precursors DHEA and Androstenedione (A4)
PERIPHERAL METABOLISM OF THE ADRENAL STEROID 11Β- HYDROXYANDROSTENEDIONE YIELDS THE POTENT ANDROGENS 11KETO- TESTOSTERONE AND 11KETO-DIHYDROTESTOSTERONE Elzette Pretorius1, Donita J Africander1, Maré Vlok2, Meghan S Perkins1, Jonathan Quanson1 and Karl-Heinz Storbeck1 1University of Stellenbosch, Department of Biochemistry, Stellenbosch, South Africa 2University of Stellenbosch, Mass Spectrometry Unit, Stellenbosch, South Africa The adrenal androgen precursors DHEA and androstenedione (A4) play an important role in the development and progression of castration resistant prostate cancer (CRPC) as they are converted to dihydrotestosterone (DHT) by steroidogenic enzymes expressed in CRPC tissue. We have recently shown that the adrenal C19 steroid 11β-hydroxyandrostenedione (11OHA4) serves as a precursor to the androgens, 11-ketotestosterone (11KT) and 11-keto-5α-dihydrotestosterone (11KDHT), and that the latter two steroids could play a role in CRPC. The aim of this study was therefore to characterise 11KT and 11KDHT in terms of their androgenic activity. Competitive whole cell binding assays revealed that 11KT and 11KDHT bind to the human androgen receptor (AR) with affinities similar to that of testosterone (T) and DHT. Transactivation assays on a synthetic androgen response element (ARE) demonstrated that the potencies and efficacies of 11KT and 11KDHT are comparable to that of T and DHT, respectively. Moreover, we show that both 11KT and 11KDHT induce the expression of AR-regulated genes (KLK3, TMPRSS2 and FKBP5) and cellular proliferation in the androgen dependent prostate cancer cell lines, LNCaP and VCaP. In most cases, 11KT and 11KDHT upregulated AR-regulated gene expression and increased LNCaP cell growth to a significantly higher extent than T and DHT. Mass spectrometry-based proteomics revealed that 11KT and 11KDHT, like T and DHT, results in the upregulation of multiple AR-regulated proteins in VCaP cells, with 11KDHT regulating more AR-regulated proteins than DHT. -
201028 the Lymphatic System 2 – Structure and Function of The
Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Keywords Immunity/Anatomy/Stem cell production/Lymphatic system Systems of life This article has been Lymphatic system double-blind peer reviewed In this article... l How blood and immune cells are produced and developed by the lymphatic system l Clinical significance of the primary and secondary lymphoid organs l How the lymphatic system mounts an immune response and filters pathogens The lymphatic system 2: structure and function of the lymphoid organs Key points Authors Yamni Nigam is professor in biomedical science; John Knight is associate The lymphoid professor in biomedical science; both at the College of Human and Health Sciences, organs include the Swansea University. red bone marrow, thymus, spleen Abstract This article is the second in a six-part series about the lymphatic system. It and clusters of discusses the role of the lymphoid organs, which is to develop and provide immunity lymph nodes for the body. The primary lymphoid organs are the red bone marrow, in which blood and immune cells are produced, and the thymus, where T-lymphocytes mature. The Blood and immune lymph nodes and spleen are the major secondary lymphoid organs; they filter out cells are produced pathogens and maintain the population of mature lymphocytes. inside the red bone marrow, during a Citation Nigam Y, Knight J (2020) The lymphatic system 2: structure and function of process called the lymphoid organs. Nursing Times [online]; 116: 11, 44-48. haematopoiesis The thymus secretes his article discusses the major become either erythrocytes, leucocytes or hormones that are lymphoid organs and their role platelets. -
Rapid Involution of the Thymus Differentiation-Associated Gene 5
Activation of Melanoma Differentiation-Associated Gene 5 Causes Rapid Involution of the Thymus This information is current as David Anz, Raffael Thaler, Nicolas Stephan, Zoe Waibler, of October 1, 2021. Michael J. Trauscheid, Christoph Scholz, Ulrich Kalinke, Winfried Barchet, Stefan Endres and Carole Bourquin J Immunol 2009; 182:6044-6050; ; doi: 10.4049/jimmunol.0803809 http://www.jimmunol.org/content/182/10/6044 Downloaded from References This article cites 53 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/182/10/6044.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of Melanoma Differentiation-Associated Gene 5 Causes Rapid Involution of the Thymus1 David Anz,2* Raffael Thaler,2* Nicolas Stephan,* Zoe Waibler,† Michael J. Trauscheid,‡ Christoph Scholz,*§ Ulrich Kalinke,¶ Winfried Barchet,‡ Stefan Endres,3* and Carole Bourquin* In the course of infection, the detection of pathogen-associated molecular patterns by specialized pattern recognition receptors in the host leads to activation of the innate immune system. -
Impaired Thymopoiesis Occurring During the Thymic Involution of Tumor-Bearing Mice Is Associated with a Down-Regulation
89-98 1/12/2008 10:17 Ì ™ÂÏ›‰·89 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 23: 89-98, 2009 89 Impaired thymopoiesis occurring during the thymic involution of tumor-bearing mice is associated with a down-regulation of the antiapoptotic proteins Bcl-XL and A1 ROBERTO CARRIO and DIANA M. LOPEZ Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA Received September 11, 2008; Accepted October 6, 2008 DOI: 10.3892/ijmm_00000105 Abstract. The thymus is a central lymphoid organ in which two steps of T cell differentiation and a down-regulation of T lymphocytes undergo differentiation and maturation without important molecules that control programmed cell death. the need for antigenic stimulation. Apoptosis (programmed cell death), plays a critical role in shaping the T cell repertoire, Introduction deleting unproductive as well as potentially autoreactive T cells. Thymic atrophy has been observed in several model The thymus is a specialized organ that is critical for the systems, including aging, graft-vs-host-disease and tumor development and maintenance of an effective peripheral T development. However, the mechanisms involved in this cell repertoire (1,2). The development of ·ß+ TCR T cells in phenomenon remain to be completely elucidated. We have the thymus encompasses a progressive stepwise differentiation previously shown that the progressive growth of D1-DMBA-3 from a multi-potent precursor, producing a mature thymocyte mammary tumor leads to extreme thymic atrophy in the host. with defined potential function (3). The earliest precursors of This thymic involution is associated with an early block in the T cell pathway in the adult thymus are CD3-CD4-CD8- T cell maturation at the triple negative stage of differentiation. -
Pharmacology/Therapeutics II Block III Lectures 2013-14
Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine -
Interruption of Thymic Activity in Adults Improves Responses to Tumor Immunotherapy
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899484; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Almeida-Santos et al 1 Interruption of thymic activity in adults improves responses to tumor immunotherapy José Almeida-Santos, Marie-Louise Bergman, Inês Amendoeira Cabral, and Jocelyne Demengeot. Instituto Gulbenkian de Ciência, Corresponding author: Rua da quinta grande 6, Jocelyne Demengeot, 2780 Oeiras, Portugal Email address: [email protected] Abstract The thymus produces precursors of both effectors and regulatory T cells (Tconv and Treg, respectively) whose interactions prevents autoimmunity while allowing efficient protective immune responses. Tumors express a composite of self- and tumor-specific antigens and engage both Tconv and Treg cells. Along the aging process, the thymus involutes, and tumor incidence increases, a correlation proposed previously to be causal and the result of effector cell decline. In this work, we directly tested whether interruption of thymic activity in adult mice affects Foxp3 expressing Treg composition and function, and alters tumor immune surveillance. Young adult mice, on two different genetic backgrounds, were surgically thymectomiZed (TxT) and analyzed or challenged 2 months later. Cellular analysis revealed a 10-fold decrease in both Tconv and Treg numbers and a bias for activated cells. The persisting Treg displayed reduced stability of Foxp3 expression and, as a population, showed compromised return to homeostasis upon induced perturbations. We next tested the growth of three tumor models from different origin and presenting distinct degrees of spontaneous immunogenicity. -
DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging. -
Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging Rachel Thomas1, Weikan Wang1 and Dong-Ming Su2*
Thomas et al. Immunity & Ageing (2020) 17:2 https://doi.org/10.1186/s12979-020-0173-8 REVIEW Open Access Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging Rachel Thomas1, Weikan Wang1 and Dong-Ming Su2* Abstract Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.