Effect of Heliox Breathing on Flow Limitation in Chronic Heart Failure Patients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lung Function Studies in Diagnostics and Follow-Up of Pulmonary Sarcoidosis
Lung Function Studies in Diagnostics and Follow-up of Pulmonary Sarcoidosis By INGELA BRÅDVIK Lund 1994 From the Department of Lung Medicine and the Department of Clinical Physiology University of Lund, Sweden Lung Function Studies in Diagnostics and Follow-up of Pulmonary Sarcoidosis Ingela Brådvik Lund 1994 Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Lung Medicine Date of issue University Hospital 94 06 09 S-22I 85 Lund CODEN: ISRN LUMEDW/MELL- - 1007- - SE Authorfj) Sponsoring organization Ingela Brådvik The Swedish Heart Lung Foundation Title and subtitle Lung function studies in diagnostics and follow-up of pulmonary sarcoidosis Abstract In 66 patients the relationship between lung volumes and lung mechanics in pulmonary sarcoidosis was investigated Lung volumes, static lung mechanics, lung resistance, dynamic lung mechanics and arterial blood gases at rest and during exercise were obtained. Fifteen functionally compromised patients received steroids during one year. They were re-investigated during the treatment and at a follow-up after an average of 7 years. In another 41 patients with newly diagnosed sarcoidosis, the kinetics of the lung clearance of ^9mTc-DTPA measured over 180 minutes was explored, and compared to kinetics in healthy smokers. The relationship between lung clearance and lung volumes, lung mechanics, arterial blood gases and disease activity assessed with serum angiotensin-converting enzyme and "'Ga scintigraphy was studied. Reduced lung volumes and compliance, increased resistance and decreased arterial oxygen tension were common. Vital i capacity (VC), and changes of VC at follow-up, corresponded to the slope of the static elastic pressure/volume curve, . and to the variation of it. -
Effect of an Indwelling Pleural Catheter Vs Talc Pleurodesis On
This supplement contains the following items: 1. Original protocol, final protocol, summary of changes. 2. Original statistical analysis plan. There were no further changes to the original statistical analysis plan. Downloaded From: https://jamanetwork.com/ on 10/02/2021 The Australasian Malignant Pleural Effusion Trial (AMPLE) A Multicentre Randomized Study Comparing Indwelling Pleural Catheter vs Talc Pleurodesis in Patients with Malignant Pleural Effusions Ethics Registration number 2012-005 Protocol version number 1.0 Protocol date 10/01/2012 Authorised by: Name: Prof YC Gary Lee Role: Chief Investigator Signature: Date: 10/01/2012 Downloaded From: https://jamanetwork.com/ on 10/02/2021 General Information This document describes the Western Australian Randomised Malignant Effusion trial for the purpose of submission for review by the relevant human research and ethics committees. It provides information about procedures for entering patients into the trial and this protocol should not be used as a guide for the treatment of other patients; every care was taken in its drafting, but corrections or amendments may be necessary. Questions or problems relating to this study should be referred to the Chief Investigator or Trial Coordinator. Compliance The trial will be conducted in compliance with this protocol, the National Statement on Ethical Conduct in Human Research, data protection laws and other guidelines as appropriate. It will be registered with the Australia and New Zealand Clinical Trials Registry, once ethical approval is secured. -
Bronchodilators Accelerate the Dynamics of Muscle O2 Delivery
Chronic obstructive pulmonary disease Bronchodilators accelerate the dynamics of muscle Thorax: first published as 10.1136/thx.2009.120857 on 13 July 2010. Downloaded from O2 delivery and utilisation during exercise in COPD Danilo C Berton,1 Priscila B Barbosa,1 Luciana S Takara,1 Gaspar R Chiappa,1 Ana Cristina B Siqueira,1 Daniela M Bravo,1 Leonardo F Ferreira,2 J Alberto Neder1 See Editorial, p 573 ABSTRACT (QT), suggesting an important role for the central Background Expiratory flow limitation and lung cardiovascular adjustments in setting the limits of < Supplementary methods are hyperinflation promote cardiocirculatory perturbations increase in peripheral QO at the onset of exercise. published online only. To view 2 these files please visit the that might impair O2 delivery to locomotor muscles in Further experimental evidence for this contention journal online (http://thorax.bmj. patients with chronic obstructive pulmonary disease was obtained in a subsequent study in which com). (COPD). The hypothesis that decreases in lung hyperinflation a strategy aimed to reduce the resistive work of 1Pulmonary Function and Clinical after the inhalation of bronchodilators would improve breathing and dynamic hyperinflation (heliox) Exercise Physiology Unit skeletal muscle oxygenation during exercise was tested. simultaneously accelerated the dynamics of QTand (SEFICE), Division of Respiratory 5 Methods Twelve non- or mildly hypoxaemic males QO2 in patients with moderate to severe COPD. Diseases, Department of (forced expiratory volume in 1 s (FEV1)¼38.5612.9% -
The Pulmonary Manifestations of Left Heart Failure*
The Pulmonary Manifestations of Left Heart Failure* Brian K. Gehlbach, MD; and Eugene Geppert, MD Determining whether a patient’s symptoms are the result of heart or lung disease requires an understanding of the influence of pulmonary venous hypertension on lung function. Herein, we describe the effects of acute and chronic elevations of pulmonary venous pressure on the mechanical and gas-exchanging properties of the lung. The mechanisms responsible for various symptoms of congestive heart failure are described, and the significance of sleep-disordered breathing in patients with heart disease is considered. While the initial clinical evaluation of patients with dyspnea is imprecise, measurement of B-type natriuretic peptide levels may prove useful in this setting. (CHEST 2004; 125:669–682) Key words: Cheyne-Stokes respiration; congestive heart failure; differential diagnosis; dyspnea; pulmonary edema; respiratory function tests; sleep apnea syndromes Abbreviations: CHF ϭ congestive heart failure; CSR-CSA ϭ Cheyne-Stokes respiration with central sleep apnea; CPAP ϭ continuous positive airway pressure; Dlco ϭ diffusing capacity of the lung for carbon monoxide; DM ϭ membrane conductance; FRC ϭ functional residual capacity; OSA ϭ obstructive sleep apnea; TLC ϭ total lung ϭ ˙ ˙ ϭ capacity; VC capillary volume; Ve/Vco2 ventilatory equivalent for carbon dioxide early 5 million Americans have congestive heart For a detailed review of the pathophysiology of N failure (CHF), with 400,000 new cases diag- high-pressure pulmonary edema, the reader is re- nosed each year.1 Unfortunately, despite the consid- ferred to several excellent recent reviews.2–4 erable progress that has been made in understanding the pathophysiology of pulmonary edema, the pul- monary complications of this condition continue to The Pathophysiology of Pulmonary challenge the bedside clinician. -
The Measurement of Pulmonary Diffusing Capacity for Carbon Monoxide by a Rebreathing Method
THE MEASUREMENT OF PULMONARY DIFFUSING CAPACITY FOR CARBON MONOXIDE BY A REBREATHING METHOD Benjamin M. Lewis, … , Ernest J. Hayford-Welsing, Erma Flaherty J Clin Invest. 1959;38(11):2073-2086. https://doi.org/10.1172/JCI103985. Research Article Find the latest version: https://jci.me/103985/pdf THE MEASUREMENT OF PULMONARY DIFFUSING CAPACITY FOR CARBON MONOXIDE BY A REBREATHING METHOD*t By BENJAMIN M. LEWIS, TAI-HON LIN, FRANCES E. NOET AND ERNEST J. HAYFORD-WELSING§ WITH THE TECHNICAL ASSISTANCE OF ERMA FLAHERTY (From the Pulmonary Function Laboratories, Departments of Medicine, Wayne State University College of Medicine, and City of Detroit Receiving Hospital, Detroit, Mich.) (Submitted for publication February 18, 1959; accepted June 19, 1959) The pulmonary diffusing capacity for oxygen capacity and one second vital capacity are first determined. is of great physiological and clinical sig- The analyzer circuit of the apparatus is then flushed with (DLo,) tank oxygen. A sealed bag containing a volume of 0.3 nificance (1). Its measurement, however, is rela- per cent CO and 10 per cent He in air (or in oxygen)2 tively complex (2). Pulmonary diffusing capac- equal to the subject's one second vital capacity is attached ity for carbon monoxide (DLco) which, it is to the three-way tap, the clamps on the bag are removed usually assumed,' can be converted to DL02 from and the bag and analyzer circuit mixed by the pump.3 the known solubilities and molecular weights of A bag-in-box device attached to a spirometer has been found convenient for filling the bag. -
Making the Diagnosis of Asthma
Making the Diagnosis of Asthma Meredith C McCormack MD MHS and Paul L Enright MD Introduction Signs and Symptoms Differential Diagnosis Diagnostic Testing Spirometry Bronchodilator Response Testing Inhalation Challenge Test Radioallergosorbent Test and Allergen Skin Test Exhaled Nitric Oxide Radiographic Imaging Asthma Versus Chronic Obstructive Pulmonary Disease Asthma Severity Summary: Take-Home Messages for the Respiratory Therapist Diagnostic tests can only increase or decrease the probability of the asthma diagnosis, so a thorough history is very important. In patients with asthma-like symptoms, spirometric evidence of airway obstruction plus a large bronchodilator response makes asthma much more likely. However, nor- mal spirometry is common in patients with mild asthma who are not symptomatic at the time of testing, and patients with poorly controlled asthma may lack substantial bronchodilator response. Inhalation challenge test often helps confirm asthma in patients with normal spirometry. Adult smokers with intermittent respiratory symptoms may have either asthma or chronic obstructive pulmonary disease (COPD). Normal post-bronchodilator spirometry rules out COPD. In patients with airway obstruction, a low diffusing capacity of the lung for carbon monoxide increases the probability of COPD and makes asthma much less likely. A high exhaled nitric oxide level makes allergic asthma more likely. Response to inhaled corticosteroids makes asthma more likely and COPD less likely. Key words: asthma, spirometry, methacholine, bronchodilator, pulmonary function, diagnosis. [Respir Care 2008;53(5):583–590. © 2008 Daedalus Enterprises] Meredith C McCormack MD MHS is affiliated with the Division of consulting on spirometry quality-assurance programs for a phase-3 clin- Pulmonary and Critical Care Medicine, Johns Hopkins School of Med- ical trial of varenicline for smoking cessation. -
Performance Characteristics in Idiopathic Pulmonary Fibrosis
ORIGINAL ARTICLE INTERSTITIAL LUNG DISEASE AND RADIOLOGY Quantitative high-resolution computed tomography fibrosis score: performance characteristics in idiopathic pulmonary fibrosis Stephen M. Humphries1, Jeffrey J. Swigris2, Kevin K. Brown2, Matthew Strand3, Qi Gong4, John S. Sundy4, Ganesh Raghu5, Marvin I. Schwarz6, Kevin R. Flaherty7, Rohit Sood8, Thomas G. O’Riordan4 and David A. Lynch1 Affiliations: 1Dept of Radiology, National Jewish Health, Denver, CO, USA. 2Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA. 3Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO, USA. 4Gilead Sciences Inc., Foster City, CA, USA. 5Center for Interstitial Lung Diseases, Dept of Medicine, University of Washington, Seattle, WA, USA. 6Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA. 7Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA. 8PAREXEL International, Billerica, MA, USA. Correspondence: Stephen M. Humphries, Quantitative Imaging Laboratory, Dept of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206-2761, USA. E-mail: [email protected] @ERSpublications In subjects with IPF, quantification of lung fibrosis extent on HRCT using data-driven texture analysis shows acceptable performance characteristics and minimal clinically important difference in the range of 3.4–6.4% http://ow.ly/fFNc30lfAGh Cite this article as: Humphries SM, Swigris JJ, Brown KK, et al. Quantitative high-resolution computed tomography fibrosis score: performance characteristics in idiopathic pulmonary fibrosis. Eur Respir J 2018; 52: 1801384 [https://doi.org/10.1183/13993003.01384-2018]. ABSTRACT We evaluated performance characteristics and estimated the minimal clinically important difference (MCID) of data-driven texture analysis (DTA), a high-resolution computed tomography (HRCT)-derived measurement of lung fibrosis, in subjects with idiopathic pulmonary fibrosis (IPF). -
Methacholine Challenge Test 1 2
Methacholine Challenge Test 1 2 What is Methacholine Challenge Test (MCT)? Also, • Do not consume a heavy meal within 2 hours of the test. You can have a light It is a test that measures if your airways narrow after inhaling specific provoking meal e.g. sandwich, soup or salad within 2 hours before the test. agent. The provoking agent used in this test is inhaled methacholine. The degree • Do not wear any tight clothes. of resultant airway narrowing is dependent on each individual’s susceptibility and this airway narrowing will be assessed objectively by measuring the lung function You may also need to stop certain medications before taking the test depending on what clinical questions your physician would like answered based on your MCT changes before and after inhalation of the methacholine in progressively larger results. Different medications have to be stopped at different times before the test doses. Increased airway hyperresponsiveness is usually a hallmark feature of asthma. depending on how long they stay in your body. It is important for you to check with your doctor regarding the safety of stopping Why do I need this operation/procedure? these medications before discontinuing them for the test. Commonly, if you had presented with respiratory symptoms such as shortness of How long before the test? Avoid the following: breath, wheezing, chest tightness or cough, 6weeks Omalizumab your physician may consider doing a MCT to 1week Tiotropium (Spiriva) establish the diagnosis of asthma, especially if 48hours Combination inhalers such as Seretide (fluticasone/ initial lung function tests have not confirmed salmeterol) or Symbicort (budesonide/formoterol) or the diagnosis. -
Standardisation of Spirometry
Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method . -
Expiratory Capnography in Asthma
Eur Respir J, 1994, 7, 318–323 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07020318 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Expiratory capnography in asthma: B. You*, R. Peslin**, C. Duvivier**, V. Dang Vu*, J.P. Grilliat* Expiratory capnography in asthma: evaluation of various shape indices. B. You, R. *U.M.G., Service de Médecine H, Hôpital Peslin, C. Duvivier, V. Dang Vu, J.P. Grilliat. ERS Journals Ltd 1994. Central, Nancy, France. **INSERM, Unité ABSTRACT: The shape of the capnogram is modified by airway obstruction, and 14, Physiopathologie Respiratoire, Vandœuvre- the evaluation of this deformation, using measurable indices, could allow an indi- les- Nancy, France. rect measurement of bronchial patency. A previous study undertaken in asthmat- Correspondence: B. You ic subjects showed a good correlation between a capnographic index (end-tidal slope) 19 Avenue du Vieux Château and a spirometric parameter (forced expiratory volume in one second as a per- Vandœuvre-les-Nancy centage of predicted (FEV1 %pred)) and suggested the study of other indices. 54500 The correlations between capnographic and spirometric indices were measured France in 10 healthy subjects and 30 asthmatic patients. The usefulness of eight descriptive indices, analysing the successive phases of the capnogram, was assessed by measur- Keywords: Asthma ing their reproducibility and their sensitivity to airway obstruction. The intra- capnography individual and interindividual variabilities (Vi and VI) and the noise/signal ratio carbon dioxide lung function tests (Vi/VI) were measured by comparing the results of two successive capnographic monitoring measurements in 14 asthmatic subjects. -
Study of Pleurodesis Using Ethanolamine Oleate Through Ultrasound-Guided Pigtail Adel M
Original article 253 Study of pleurodesis using ethanolamine oleate through ultrasound-guided pigtail Adel M. Saeeda, Tamer M. Alia, Ashraf A. Gomaaa, Mohamed N. Kamelb Background Malignant pleural effusion (MPE) is a common treatment, the management of MPE remains palliative, with and serious condition that is associated with poor quality of median survival ranging from 3 to 12 months. life, morbidity and mortality. Results Complete response was 81.8% of studied cases, Aim Study of pleurodesis using ethanolamine oleate (ETH) while no/partial response was 18.2%. Pleurodesis through ultrasound-guided pigtail to evaluate the efficacy and complications were fever (21.1%), chest pain (33.3%), complications of ETH and pigtail. nausea (24.2%), vomiting (12.1%) and hypotension (6.1%). Pigtail complications were pigtail obstruction (3.03%), chest Design Thirty-three patients with MPE were included and pain (3.03%) and obstruction and pain (12.12%) of the were subjected to history taking, clinical examination, chest studied cases. There was a decrease in FVC% and FEV1% 2 radiographs (on admission, every day before pleurodesis to months after pleurodesis. However, no significant difference ensure complete lung expansion and to exclude as regards actual (measured) FEV1/FVC% before and 2 pneumothorax, every day after pleurodesis till the removal of months after pleurodesis in all cases. Whereas, complete the catheter and on follow-up − 2 months after pleurodesis − response was 81.8% by CXR and chest ultrasound. to check for reaccumulation of pleural effusion), chest sonography, pleural tapping, chest computed tomography Conclusion ETH injection through pigtail was safe and scan (in some patients), pleural biopsy using Abram’s needle effective in pleurodesis of MPE. -
ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing
ERJ Express. Published on October 25, 2018 as doi: 10.1183/13993003.01033-2018 Early View Task force report ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing Teal S. Hallstrand, Joerg D. Leuppi, Guy Joos, Graham L. Hall, Kai-Håkon Carlsen, David A. Kaminsky, Allan L. Coates, Donald W. Cockcroft, Bruce H. Culver, Zuzana Diamant, Gail M. Gauvreau, Ildiko Horvath, F. H. C. de Jongh, Beth L. Laube, P. J. Sterk, Jack Wanger Please cite this article as: Hallstrand TS, Leuppi JD, Joos G, et al. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Eur Respir J 2018; in press (https://doi.org/10.1183/13993003.01033-2018). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2018 Copyright 2018 by the European Respiratory Society. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Teal S. Hallstrand1, Joerg D. Leuppi2, Guy Joos3, Graham L. Hall4, Kai-Håkon Carlsen5, David A. Kaminsky6, Allan L. Coates7, Donald W. Cockcroft8, Bruce H. Culver1, Zuzana Diamant9,10, Gail M. Gauvreau11, Ildiko Horvath12, F.H.C. de Jongh13,