XI. What Drives the Molecular Gas Properties of Early-Type Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamos on Galactic Scales, Or Dynamos Around Us
Dynamos on galactic scales, or Dynamos around us. Part I. Galaxies and galaxy clusters Anvar Shukurov School of Mathematics and Statistics, Newcastle University, U.K. 1. Introduction: basic facts and parameters 2. Spiral galaxies 2.1. Rotation 2.2. Hydrostatic equilibrium of the gas layer 2.3. Interstellar gas and its multi-phase structure 2.4. Interstellar turbulence 3. Elliptical galaxies 4. Galaxy clusters Warning cgs units will be used, 1 G = 10 -4 T, 1 µG = 10 -6 G = 0.1 nT. G ≈ 6.67 ×10 −8 cm 3 g−1 s−2; k ≈ 1.38 ×10 −16 erg K −1; ≈ × −24 ≈ × 7 ≈ × −12 mp 1.7 10 g, 1 year 3 10 s; 1 eV 1.6 10 erg. 1 parsec ≈ 3 × 10 18 cm ≈ 3.26 light years, 1 kpc = 10 3 pc; c ≈ 3×10 10 cm 3 cm s −1 (1 parsec distance: Earth orbit’s par allax = 1 sec ond of arc). Solar mass, radius and luminosity: ≈ × 33 ≈ × 10 ≈ × 33 −1 M 2 10 g; R 7 10 cm; L 4 10 erg s . Notation: HI = neutral hydrogen, HII = p+ = ionized hydrogen, CIV = triply ionized carbon, etc. Further reading R. G. Tayler, Galaxies: Structures and Evolution , Cambridge Univ. Press, 1993 (a high-level scientific popular book on galactic astrophysics, entertaining and informative, very well written). J.E Dyson and D.A Williams, The Physics of the Interstellar Medium , Second Edition (The Graduate Series in Astronomy), IOP, 1997 (a good textbook on interstellar medium, presents appropriate equations and their solutions together with clear qualitative arguments and explanations and order of magnitude estimates). -
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
Identification of Old Tidal Dwarfs Near Early-Type Galaxies from Deep
Mon. Not. R. Astron. Soc. 000,1–11 (2013) Printed 29 October 2018 (MN LATEX style file v2.2) Identification of old tidal dwarfs near early-type galaxies from deep imaging and H I observations Pierre-Alain Duc,1? Sanjaya Paudel,1 Richard M. McDermid,2 Jean-Charles Cuillandre,3 Paolo Serra,4 Fred´ eric´ Bournaud,1 Michele Cappellari,5 Eric Emsellem6;7 1Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp, CNRS/INSU, Universite´ Paris Diderot, 91191 Gif-sur-Yvette Cedex, France 2Gemini Observatory, Northern Operations Centre, 670 N. A‘ohoku Place, Hilo, HI 96720, USA 3Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Hwy., Kamuela, Hawaii 96743 USA 4CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 5Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH 6European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 7Centre de Recherche Astrophysique de Lyon, Universite´ Lyon 1, Observatoire de Lyon, Ecole Normale Superieure´ de Lyon, CNRS, UMR 5574, 9 avenue Charles Andre,´ F-69230 Saint-Genis Laval, France Accepted for publication in MNRAS ABSTRACT It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group disks of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and H I surveys with the CFHT MegaCam camera and Westerbork Syn- thesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic ob- servations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. -
Teacher's Guide
Teacher’s guide CESAR Science Case – The secrets of galaxies Material that is necessary during the laboratory o CESAR Booklet o Computer with an Internet browser o CESAR List of Galaxies (.txt file) o Paper, pencil or pen o CESAR Student’s guide o o Introduction o o This Science Case provides an introduction to galaxies based on real multi-wavelength observations with space missions. It discusses concepts such as the Hubble Tuning Fork and the morphological classification of galaxies, stellar and ISM content of the different types of galaxies, and galaxy interaction and evolution. The activity is designed to encourage students to discover the properties of galaxies on their own. o During the laboratory, students make use of ESASky1, a portal for exploration and retrieval of space astronomical data, to visualise different galaxies and classify them according to their shapes and optical colours. Students can load different sky maps to see how the galaxies look like when they are observed at different wavelength ranges, and discuss how the presence of the ISM is affecting these observations. o Before starting this activity, students must be familiar with the properties of stars and of the interstellar medium, as well as have some basic concepts of stellar evolution. In particular, they must understand that young, massive stars display blue colors, while evolved stars look yellowish or reddish. They must also understand the relation between the ISM and young stars. o o Learning Outcomes o o By the end of this laboratory, students will be able to: 1. Explain how astronomers classify galaxies according to their shapes and contents. -
Lemmings. I. the Emerlin Legacy Survey of Nearby Galaxies. 1.5-Ghz Parsec-Scale Radio Structures and Cores
MNRAS 000,1{44 (2018) Preprint 8 February 2018 Compiled using MNRAS LATEX style file v3.0 LeMMINGs. I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores R. D. Baldi1?, D. R. A. Williams1, I. M. McHardy1, R. J. Beswick2, M. K. Argo2;3, B. T. Dullo4, J. H. Knapen5;6, E. Brinks7, T. W. B. Muxlow2, S. Aalto8, A. Alberdi9, G. J. Bendo2;10, S. Corbel11;12, R. Evans13, D. M. Fenech14, D. A. Green15, H.-R. Kl¨ockner16, E. K¨ording17, P. Kharb18, T. J. Maccarone19, I. Mart´ı-Vidal8, C. G. Mundell20, F. Panessa21, A. B. Peck22, M. A. P´erez-Torres9, D. J. Saikia18, P. Saikia17;23, F. Shankar1, R. E. Spencer2, I. R. Stevens24, P. Uttley25 and J. Westcott7 1 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK 2 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK 3 Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK 4 Departamento de Astrofisica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, E-28040 Madrid, Spain 5 Instituto de Astrofisica de Canarias, Via Lactea S/N, E-38205, La Laguna, Tenerife, Spain 6 Departamento de Astrofisica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain 7 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK 8 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 43992 Onsala, Sweden 9 Instituto de Astrofisica de Andaluc´ıa(IAA, CSIC); Glorieta de la Astronom´ıa s/n, 18008-Granada, Spain 10 ALMA Regional Centre Node, UK 11 Laboratoire AIM (CEA/IRFU - CNRS/INSU - Universit´eParis Diderot), CEA DSM/IRFU/SAp, F-91191 Gif-sur-Yvette, France 12 Station de Radioastronomie de Nan¸cay, Observatoire de Paris, PSL Research University, CNRS, Univ. -
Structural Parameters of Compact Stellar Systems
Structural Parameters of Compact Stellar Systems Juan Pablo Madrid Presented in fulfillment of the requirements of the degree of Doctor of Philosophy May 2013 Faculty of Information and Communication Technology Swinburne University Abstract The objective of this thesis is to establish the observational properties and structural parameters of compact stellar systems that are brighter or larger than the “standard” globular cluster. We consider a standard globular cluster to be fainter than M 11 V ∼ − mag and to have an effective radius of 3 pc. We perform simulations to further un- ∼ derstand observations and the relations between fundamental parameters of dense stellar systems. With the aim of establishing the photometric and structural properties of Ultra- Compact Dwarfs (UCDs) and extended star clusters we first analyzed deep F475W (Sloan g) and F814W (I) Hubble Space Telescope images obtained with the Advanced Camera for Surveys. We fitted the light profiles of 5000 point-like sources in the vicinity of NGC ∼ 4874 — one of the two central dominant galaxies of the Coma cluster. Also, NGC 4874 has one of the largest globular cluster systems in the nearby universe. We found that 52 objects have effective radii between 10 and 66 pc, in the range spanned by extended star ∼ clusters and UCDs. Of these 52 compact objects, 25 are brighter than M 11 mag, V ∼ − a magnitude conventionally thought to separate UCDs and globular clusters. We have discovered both a red and a blue subpopulation of Ultra-Compact Dwarf (UCD) galaxy candidates in the Coma galaxy cluster. Searching for UCDs in an environment different to galaxy clusters we found eleven Ultra-Compact Dwarf and 39 extended star cluster candidates associated with the fossil group NGC 1132. -
MASSIVE Galaxies with Supermassive Black Holes
Hubble Space Telescope Cycle 23 GO Proposal 750 Homogeneous Distances and Central Profiles for MASSIVE Survey Galaxies with Supermassive Black Holes Scientific Category: UNRESOLVED STELLAR POPULATIONS AND GALAXY STRUCTURE Scientific Keywords: Black Holes, Cosmological Parameters And Distance Scale, Galaxy Centers, Galaxy Morphology And Structure Instruments: WFC3 Proprietary Period: 12 Proposal Size: Small Orbit Request Prime Parallel Cycle 23 34 0 Abstract Massive early-type galaxies are the subject of intense interest: they exhibit the most massive black holes (BHs), most extreme stellar IMFs, and most dramatic size evolution over cosmic time. Yet, their complex formation histories remain obscure. Enter MASSIVE: a volume-limited survey of the structure and dynamics of the 100 most massive early-type galaxies within ~100 Mpc. We use integral-field spectroscopy (IFS) on sub-arcsecond (with AO) and large scales for simultaneous dynamical modeling of the supermassive BH, stars, and dark matter. The goals of MASSIVE include precise constraints on BH-galaxy scaling relations, the stellar IMF, and late-time assembly of ellipticals. We have already obtained much of the needed IFS and wide-field imaging for this project; here, we propose to add the one missing ingredient: high-resolution imaging with HST. This will nail down the central profiles, greatly reducing the degeneracy between M/L and BH masses in our dynamical orbit modeling. Further, we will measure efficient, high-quality WFC3/IR SBF distances for all targets, thereby removing potentially large errors from peculiar velocities (especially in the high-density regions occupied by massive early-types) or heterogeneous distance methods. Distance errors are insidious: they affect BH masses and galaxy properties in dissimilar ways, and thus can bias both the scatter and slopes of the scaling relations. -
Lord Rosse, Robinson, South and the Discovery of Spiral Structure in 1845
Journal of Astronomical History and Heritage, 15(1), 19-29 (2012). THE M51 MYSTERY: LORD ROSSE, ROBINSON, SOUTH AND THE DISCOVERY OF SPIRAL STRUCTURE IN 1845 Wolfgang Steinicke Gottenheimerstr. 18, D-79224, Umkirch, Germany. E-mail: [email protected] Abstract: In April 1845 Lord Rosse discovered the spiral structure of M51 with his 72-inch reflector at Birr Castle. Already in March the new telescope had been pointed at the object in Canes Venatici, later nicknamed the ‘Whirlpool Nebula’. Two experienced astronomers were present: Sir James South and the Reverend Thomas Romney Robin- son. The problem is that there is no record that they noticed the spiral structure, even though it was immediately seen by Lord Rosse the next month. The solution presented here is based on evidentiary facts, highlighting the nine- teenth century astronomical praxis. Focal points are bias, fantasy and a sometimes fatal conspiracy of eye and brain. Keywords: Spiral structure, nebulae, star clusters, Lord Rosse, Birr Castle, Leviathan of Parsonstown, Whirlpool Nebula, nebular hypothesis, visual observation, drawings. 1 DISCOVERY OF M51 AND JOHN the core, surrounded by a divided ring (Figure 2); it HERSCHEL’S ‘RING NEBULA’ appears as Figure 25 in the Slough catalogue. Herschel M51 (NGC 5194) is a nearby Sbc-galaxy with a visual magnitude 8.4 and a size of 11.2 × 6.9. It was dis- covered on 13 October 1773 by Charles Messier (1730–1817) with a 3.5-inch refractor at Paris. The description, published in his famous catalogue of 1781, reads: “… very faint nebula without stars …” 1 (Messier, 1781: 247). -
Atlas Menor Was Objects to Slowly Change Over Time
C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
Arxiv:1801.08245V2 [Astro-Ph.GA] 14 Feb 2018
Draft version June 21, 2021 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE MASSIVE SURVEY IX: PHOTOMETRIC ANALYSIS OF 35 HIGH MASS EARLY-TYPE GALAXIES WITH HST WFC3/IR1 Charles F. Goullaud Department of Physics, University of California, Berkeley, CA, USA; [email protected] Joseph B. Jensen Utah Valley University, Orem, UT, USA John P. Blakeslee Herzberg Astrophysics, Victoria, BC, Canada Chung-Pei Ma Department of Astronomy, University of California, Berkeley, CA, USA Jenny E. Greene Princeton University, Princeton, NJ, USA Jens Thomas Max Planck-Institute for Extraterrestrial Physics, Garching, Germany. Draft version June 21, 2021 ABSTRACT We present near-infrared observations of 35 of the most massive early-type galaxies in the local universe. The observations were made using the infrared channel of the Hubble Space Telescope (HST ) Wide Field Camera 3 (WFC3) in the F110W (1.1 µm) filter. We measured surface brightness profiles and elliptical isophotal fit parameters from the nuclear regions out to a radius of ∼10 kpc in most cases. We find that 37% (13) of the galaxies in our sample have isophotal position angle rotations greater than 20◦ over the radial range imaged by WFC3/IR, which is often due to the presence of neighbors or multiple nuclei. Most galaxies in our sample are significantly rounder near the center than in the outer regions. This sample contains six fast rotators and 28 slow rotators. We find that all fast rotators are either disky or show no measurable deviation from purely elliptical isophotes. Among slow rotators, significantly disky and boxy galaxies occur with nearly equal frequency. -
X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission.