Evaluasi Kapasitas Penampang Sungai Bodri Dengan Menggunakan HEC-RAS

Total Page:16

File Type:pdf, Size:1020Kb

Evaluasi Kapasitas Penampang Sungai Bodri Dengan Menggunakan HEC-RAS Evaluasi Kapasitas Penampang Sungai Bodri Dengan Menggunakan HEC-RAS Abrar Putra Harjanto1, Akhmad Imamudin1, Budi Santosa2 1,2 Program Studi Teknik Sipil, Fakultas Teknik, Universitas Katolik Soegijapranata, Jl. Pawiyatan Luhur IV/1, Bendan Dhuwur, Semarang 50234 3 Dosen Program Studi Teknik Sipil, Fakultas Teknik, Universitas Katolik Soegijapranata, Jl. Pawiyatan Luhur IV/1, Bendan Dhuwur, Semarang 50234 e-mail : [email protected] Abstrak Banjir bandang yang terjadi di Dukuh Desa Kaliputih, Kecamatan Singorojo, Kendal. Banjir bandang yang terjadi diakibatkan meluapnya Sungai Bodri. Hal ini terjadi karena debit air sungai yang sangat tinggi dan kurangnya daya tampung sungai sehingga meluap dan terjadi banjir. Untuk itu diperlukan evaluasi kapasitas penampang Sungai Bodri. Tujuan penelitian ini adalah mengevaluasi kapasitas eksisting Sungai Bodri dalam menampung debit rencana banjir serta memberikan solusi alternatif penanganan mengatasi banjir. Data yang diperlukan berupa data curah hujan, data tata guna lahan, data Sungai Bodri dari Dinas PSDA Provinsi Jawa Tengah dan data debit harian pada titik kontrol Bendung Juwero. Data curah hujan yang digunakan adalah data curah hujan harian yang tercatat di stasiun Patean, Patebon dan Singorojo. Data hujan harian ini selanjutnya diolah menjadi data hujan jam-jaman menggunakan metode mononobe. Kemudian dari parameter yang telah ditentukan dimasukan kedalam software HEC-HMS. Proses HEC-HMS ini kemudian akan menghasilkan debit rencana. Tahapan selanjutnya yang dilakukan adalah mengolah data menggunakan software HEC-RAS untuk memodelkan Sungai Bodri. Hasil penelitian menunjukan bahwa, Kondisi eksisting Sungai Bodri dengan debit kala ulang 2, 5, 10, 25 dan 50 tahun tidak dapat menampung debit yang direncanakan. Dalam kajian ini solusi alternatif yang dilakukan adalah berupa normalisasi sungai, bermula pada STA 0+000 sampai dengan STA 246 dengan jarak ± 25,69 km. Kata kunci : Banjir, Debit Banjir, HEC-HMS, HEC-RAS. Abstract Flash floods that occurred in Hamlet Village Kaliputih, District Singorojo, Kendal. Flash floods that occur due to overflow of the River Bodri. This happens because the river water discharge is very high and the lack of capacity so that the river overflows and floods occur. Therefore, it is necessary to evaluate the capacity of the Bodri River cross section. The purpose of this study is to evaluate the existing capacity of the Bodri River to accommodate the flood discharge plan as well as to provide alternative solutions to overcome the flood. Required data are rainfall data, land use data, Bodri River data from PSDA of Central Java Province and daily debit data at control point of Juwero Dam. The rainfall data used is the daily rainfall recorded in Patean, Patebon and Singorojo stations. Daily rainfall data is then processed into hour-time rain data using mononobe method. Then from the parameters that have been determined included into HEC-HMS software. This HEC-HMS process will then generate the plan debit. The next step is to process data using HEC-RAS software to model the Bodri River. The result of the research shows that the existing condition of the Bodri River with the reset discharge of 2, 5, 10, 25 and 50 years can not accommodate the planned discharge. In this study the alternative solution is the normalization of the river, starting at STA 0 + 000 up to STA 246 with distance ± 25.69 km. Keywords : Floods, Flood discharge, HEC-HMS, HEC-RAS 1. PENDAHULUAN b. Menghitung debit rencana Sungai Bodri dengan periode ulang 2 tahun, 5 tahun, 10 1.1 Latar Belakang tahun, 25 tahun dan 50 tahun, Air merupakan salah satu sumber kehidupan c. Mengevaluasi kapasitas eksisting Sungai bagi semua makhluk hidup, tetapi bila dengan Bodri dalam menampung debit banjir jumlah yang sangat besar, air juga dapat menjadi rencana serta memberikan solusi masalah bagi kehidupan. Salah satu bentuk alternatif penanganan mengatasi banjir. masalah yang dapat ditimbulkan oleh volume air dalam jumlah yang sangat besar adalah bencana banjir. Di Indonesia tercatat memiliki lebih dari 2. TINJAUAN PUSTAKA 5.000 sungai besar dan kecil, 30% diantaranya melewati kawasan padat penduduk, yang 2.1 Siklus Hidrologi berpotensi menimbulkan banjir pada wilayah Siklus hidrologi merupakan proses kontinyu tersebut (Pusat Penanggulangan Krisis, 2007). Salah dimana air bergerak dari bumi ke atmosfer dan contoh daerah yang berpotensi banjir di Indonesia kemudian ke bumi lagi (Triatmodjo, 2010). adalah Kabupaten Kendal. Kabupaten Kendal merupakan salah satu 2.2 Hujan wilayah dari Provinsi Jawa Tengah yang berpotensi Menurut Triatmodjo (2010) hujan adalah banjir dilanda bencana banjir yang hampir setiap bentuk presipitasi berbentuk air dari atmosfer yang tahunnya. Salah satu penyebabnya adalah jatuh sampai ke permukaan bumi; yang bisa berupa meluapnya sungai Bodri. Sungai yang terletak di hujan, hujan salju, kabut, embun dan hujan es. Kabupaten Temanggung di bagian hulu serta 2.6 Pemilihan Jenis Sebaran Kabupaten Kendal ini menunjukkan bahwa perlu dilakukan suatu evaluasi kapasitas penampang sungai sebagai upaya dalam penanggulangan a. Distribusi Gumbel (Soemarto, 1999) bencana banjir. S X X Y Y ............................(1) Untuk melakukan evaluasi kapasitas T S T n penampang sungai Bodri perlu adanya pemodelan n hidraulik. Pemodelan dalam hidraulik memiliki b. Distribusi Normal (Soemarto, 1999) maksud untuk menjelaskan bagaimana tahapan X X K S ......................................(2) perpindahan air dalam sistem aliran Sungai T T berdasarkan macam-macam perbedaan waktu dan c. Distribusi Log Person III Soewarno tempat sehingga dapat dihasilkan penetapan (1995) besaran-besaran rancangan sehingga dapat 3 menunjang perancangan bangunan – bangunan hidraulik pengendali banjir. Pemodelan dapat n LogXi LogX dilakukan dengan bantuan suatu software tertentu, CS ..............(3) sehingga model yang dihasilkan lebih mendekati n 1n 2S 3 kenyataan di lapangan. Salah satu software yang digunakan adalah Hydrologic Engineering Center's LogX i LogX KT S .........................(4) River Analysis System (HEC-RAS). d. Distribusi Log Normal (Soemarto, 1999) 1.2 Rumusan Masalah XT X KT S .......................................(5) Meluapnya Sungai Bodri menimbulkan kerugian baik materi maupun non materi terhadap manusia 2.3 Pengujian Kecocokan Sebaran dan lingkungan yang cukup besar, Hal ini terjadi akibat debit air sungai yang sangat tinggi dan Pengujian kecocokan sebaran digunakan untuk kurangnya daya tampung sungai sehingga meluap menguji apakah sebaran tersebut dapat memenuhi dan terjadi banjir. Untuk itu diperlukan evaluasi syarat untuk data perencanaan. Pengujian kapasitas penampang Sungai Bodri. kecocokan dapat dilakukan 2 cara. a. Perhitungan Chi Kuadrat 1.3 Tujuan Penelitian b. Perhitungan Smirnov Kolmogorov Tujuan dari penelitian ini adalah sebagai berikut: 2.4 Banjir a. Mengetahui kapasitas eksisting Sungai satu definisi banjir menurut Suripin (2004) Bodri, adalah suatu kondisi di mana tidak tertampungnya air dalam saluran pembuang (palung sungai) atau terhambatnya aliran air di dalam saluran pembuang, sehingga meluap menggenangi daerah (dataran banjir) sekitarnya. Sungai 2.5 Sungai Sungai atau saluran terbuka menurut Triatmodjo (2010) adalah saluran dimana terdapat air mengalir dengan muka air bebas. Pada saluran terbuka, misalnya sungai (saluran alam), variabel aliran sangat tidak teratur terhadap ruang dan waktu. 2.6 Daerah Aliran Sungai (DAS) Daerah aliran sungai (DAS) adalah daerah yang dibatasi oleh punggung-punggung / pegunungan dimana air hujan yang jatuh didaerah tersebut akan mengalir menuju sungai utama pada suatu titik/stasiun yang ditinjau (Triatmodjo, 2010). Gambar 3.1 Bagan Alir Penelitian 2.7 Model Hidrologi 3.2 Tahapan Analisis Menurut Harto (1993), model hidrologi adalah sebuah sajian sederhana (simple representation) Analisis dilakukan dalam beberapa tahapan, dari sebuah sistem hidrologi yang kompleks. yaitu: 1. Mempersiapkan data yang akan diolah 2.8 HEC-HMS a. Curah hujan harian maksimum Hydrologic Engineering Centre (HEC) - b. Data geometri Sungai Bodri Hydrologic Modeling System (HMS) merupakan 2. Penentuan batas DAS dan membagi salah satu model hidrologi yang masuk dalam menjadi Sub DAS kategori model matematik yang dikembangkan 3. Penentuan area Poligon Thiessen oleh Hydrologic Engineering Centre (HEC) dari US 4. Penentuan distribusi hujan rancangan Army Corps Of Engineers (Arlen, 2000). 5. Penentuan parameter awal yang 2.9 HEC-RAS Digunakan HEC-HMS HEC-RAS adalah singkatan dari Hydraulic a. Curve number (CN) Engineering Centre-River Analysis System. HEC-RAS b. Impervious (%) merupakan program aplikasi yang didesain untuk c. Lag time. memodelkan aliran di sungai, Program River 6. Menghitung besar debit puncak banjir Analysis System (RAS), yang dibuat oleh Hydrologic 7. Input data parameter awal kedalam Engineering Center (HEC) yang merupakan satu software HEC-HMS divisi di dalam Institute for Water Resources (IWR), 8. Kalibrasi parameter awal dan didapatkan di bawah US Army Corps of Engineers (USACE). HEC- RAS merupakan model satu dimensi aliran debit puncak banjir permanen maupun tak permanen (steady and 9. Penentuan parameter awal yang digunakan unsteady one-dimensional flow model) (Istiarto, HEC-RAS 2014). a. Geometri saluran sungai b. Nilai kekasaran manning 3. METODE PENELITIAN c. Data aliran untuk analisis hidrologi. 10. Input data geometri dan data debit rencana 3.1 Tahapan Penelitian kedalam software HEC-RAS Dalam diagram alir berikut ditunjukan diagram
Recommended publications
  • Dutch East Indies)
    .1" >. -. DS 6/5- GOiENELL' IJNIVERSIT> LIBRARIES riilACA, N. Y. 1483 M. Echols cm Soutbeast. Asia M. OLIN LIBRARY CORNELL UNIVERSITY LlflfiAfiY 3 1924 062 748 995 Cornell University Library The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924062748995 I.D. 1209 A MANUAL OF NETHERLANDS INDIA (DUTCH EAST INDIES) Compiled by the Geographical Section of the Naval Intelligence Division, Naval Staff, Admiralty LONDON : - PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE. To be purchased through any Bookseller or directly from H.M. STATIONERY OFFICE at the following addresses: Imperial House, Kinqswat, London, W.C. 2, and ,28 Abingdon Street, London, S.W.I; 37 Peter Street, Manchester; 1 St. Andrew's Crescent, Cardiff; 23 Forth Street, Edinburgh; or from E. PONSONBY, Ltd., 116 Grafton Street, Dublin. Price 10s. net Printed under the authority of His Majesty's Stationery Office By Frederick Hall at the University Press, Oxford. ill ^ — CONTENTS CHAP. PAGE I. Introduction and General Survey . 9 The Malay Archipelago and the Dutch possessions—Area Physical geography of the archipelago—Frontiers and adjacent territories—Lines of international communication—Dutch progress in Netherlands India (Relative importance of Java Summary of economic development—Administrative and economic problems—Comments on Dutch administration). II. Physical Geography and Geology . .21 Jaya—Islands adjacent to Java—Sumatra^^Islands adja- — cent to Sumatra—Borneo ^Islands —adjacent to Borneo CeLel3^—Islands adjacent to Celebes ^The Mpluoeas—^Dutoh_ QQ New Guinea—^Islands adjacent to New Guinea—Leaser Sunda Islands.
    [Show full text]
  • Project Report on CCOP-GSJ/AIST-GA Groundwater Phase II Project Final Meeting 18-20 March 2014, Bandung, Indonesia COORDINATING
    GW-4 Geological Survey of Japan, AIST Project report on CCOP-GSJ/AIST-GA Groundwater Phase II Project Final Meeting 18-20 March 2014, Bandung, Indonesia COORDINATING COMMITTEE FOR GEOSCIENCE PROGRAMMES IN EAST AND SOUTHEAST ASIA (CCOP) In cooperation with GEOLOGICAL SURVEY OF JAPAN (GSJ), AIST Published by CCOP Technical Secretariat Bangkok, Thailand Youhei Uchida (Chief Editor) PREFACE Groundwater is one of the limited natural resources of the world. Because of the lack a feeling of importance of groundwater, especially, in the late 20th century, groundwater has been significantly damaged by human activities, resulting in groundwater issues, such as land subsidence, seawater intrusion, and groundwater pollution by toxic substances, that have become remarkable problems in everywhere in the world. The countries in the East and Southeast Asia have been also faced the many groundwater problems which are needed international cooperation to be solved. Since the establishment of the organization in 1966, geological and geophysical surveys have been carried out by the CCOP under the cooperative schemes in the East and Southeast Asia for offshore natural resources. These data have been distributed to member countries as printed maps and publications. As for a groundwater project, “Groundwater database in East and Southeast Asia͇had been compiled under the DCGM Phase IV project of CCOP from 2001 to 2004. The following project, named “Groundwater Assessment and Control in the CCOP Region by CCOP-GSJ/AIST Groundwater project” from 2005 to 2008, had been started from a point of view of finding a solution of issues on an exploration and an exploitation of a groundwater resource.
    [Show full text]
  • List of Oral Presentation Room “A”
    LIST OF ORAL PRESENTATION ROOM “A” NO CODE NAME TITLE 1 ABS-IGEOS Nasir Nayan Is Flood Water Safe for Consumption at Evacuation Center in UNS-19001 Kuala Krai District, Kelantan, Malaysia? 2 ABS-IGEOS AFRINIA LISDITYA Evaluation of Lahar Flood Hazard Management Policy using UNS-19035 PERMATASARI Participatory Planning in Putih Watershed, Magelang Regency, Central Java, Indonesia 3 ABS-IGEOS Yudi Basuki Hydrometeorological Hazard Prediction in the Kuto Bodri River UNS-19039 Region Central Java Based on Normalized Difference Vegetation Index (NDVI) Analysis 4 ABS-IGEOS Listyo Irawan ASSESSING COMMUNITY COPING CAPACITY IN FACE UNS-19070 OF TSUNAMI DISASTER RISK (Case Study: Sumberagung Coastal Area, Banyuwangi, East Java) 5 ABS-IGEOS Wahyu Widiyatmoko Agricultural Drought Risk Assessment in Upper Progo UNS-19097 Watershed using Multi-temporal Landsat 8 Imagery 6 ABS-IGEOS Ananto Aji STUDY OF THE MERAPI MOUNTAIN ERUPTION AND UNS-19110 THE IMPACT ON COMMUNITY AGRICULTURAL LANDUSE IN SLEMAN REGENCY 7 ABS-IGEOS Cecep Pratama A possible Opak fault segment that caused the 2006 Mw 6.3 UNS-19126 Yogyakarta earthquake and its future implication 8 ABS-IGEOS herdis herdiansyah Strategy for Community Adaptation to Flood-Prone Areas in UNS-19153 Situ Rawa Besar Settlement, Depok City 9 ABS-IGEOS Retno Purnama Irawati Disaster Concepts and Disaster Mitigation According to The UNS-19154 Students from Faculty of Language and Arts, Universitas Negeri Semarang 10 ABS-IGEOS herdis herdiansyah The Internet Of Things (IoT) For Flood Disaster Early Warning UNS-19157
    [Show full text]
  • Assessment of Climate Change Impacts Using Hydrological Drought Index
    3rd World Irrigation Forum (WIF3) International Workshop 1-7 September 2019, Bali, Indonesia CLIMATE.02 ASSESSMENT OF CLIMATE CHANGE IMPACTS USING HYDROLOGICAL DROUGHT INDEX Levina1, Brigita Diaz2 and Waluyo Hatmoko3 ABSTRACT Climate change is altering the characteristics of rainfall and consequently also the river flow. It is important to asses climate change impact on drought, especially hydrological drought in river flow. This paper proposes to quantify climate change impact using hydrological drought index, from the available flow data. Climate change impact on rainfall in the future is projected using the worst scenario Representative Concentration Pathways (RCP) 8.5 that leading in the long term to high energy demand and greenhouse gas emissions in the absence of climate change policies, as mentioned in the latest IPCC report AR 5. The monthly rainfall is projected until the year of 2045 using ensemble of seven models commonly used by Indonesian Agency for Meteorology, Climatology and Geophysics which is statistical-bias corrected by quantile mapping with observation data. Projected river discharge is calculated using an empirical equation between changes in discharge with potential evaporation and rainfall. A set of hydrological drought index are computed using the Standardized Runoff Index (SRI) method with moving average of 1, 3, 6, and 12 months. Case study of the three irrigation weirs Bodri-Juwero, Notog, and Wlingi in Java confirms that hydrological drought index can be applied to assess the climate change impact in surface water especially at irrigation weirs. It is concluded that the severity and stress of hydrological drought index follow the same pattern of climate change impact on irrigation area affected by drought.
    [Show full text]
  • North Java Flood Control Sector Project CURRENCY EQUIVALENTS
    Completion Report Project Number: 27258 Loan Number: 1425/1426(SF)-INO December 2006 Indonesia: North Java Flood Control Sector Project CURRENCY EQUIVALENTS Currency Unit – rupiah (Rp) At Appraisal At Project Completion 4 August 1995 29 June 2004 Rp1.00 = $0.00044 $0.00012 $1.00 = Rp2,272 Rp8,597 ABBREVIATIONS ADB – Asian Development Bank ADF – Asian Development Fund BSDA – Balai Sumber Daya Air (River Basin Organization) DGWR – Directorate General of Water Resources EA – executing agency EIRR – economic internal rate of return NGO – nongovernment organization O&M – operation and maintenance OCR – ordinary capital resources PIU – project implementing unit PMU – project monitoring unit RBDP – river basin development project RFDR – river flood damage rehabilitation RIWDP – Research Institute for Water Resources Development RRP – report and recommendation of the President RBDP – River Basin Development Project TA – technical assistance NOTE In this report, "$" refers to US dollars. Vice President C. Lawrence Greenwood, Jr., Operations Group 2 Director General A. Thapan, Southeast Asia Department (SERD) Director U. S. Malik, Agriculture, Environment and Natural Resources Division, SERD Team Leader C. I. Morris, Senior Water Resources Engineer, Agriculture, Environment and Natural Resources Division, SERD CONTENTS Page BASIC DATA i MAP vii I. PROJECT DESCRIPTION 1 II. EVALUATION OF DESIGN AND IMPLEMENTATION 1 A. Relevance of Design and Formulation 1 B. Project Outputs 3 C. Project Costs 5 D. Disbursements 6 E. Project Schedule 7 F. Implementation Arrangements 7 G. Conditions and Covenants 8 H. Consultant Recruitment and Procurement 8 I. Performance of Consultants, Contractors, and Suppliers 8 J. Performance of the Borrower and the Executing Agency 9 K. Performance of the Asian Development Bank 10 III.
    [Show full text]
  • Application of Vector Auto Regression Model for Rainfall-River Discharge Analysis
    ISSN: 0852-2682 Forum Geografi, Vol. 29 (1) July 2015: 1 - 10 Application of Vector ... (Hartini, et al) 1 Application of Vector Auto Regression Model for Rainfall-River Discharge Analysis Sri Hartini1, M. Pramono Hadi2, Sudibyakto2, Aris Poniman1 1Geospasial Information Agency, Jl. Raya Jakarta – Bogor Km. 46, Cibinong, Bogor 16911 2Faculty of Geography, Universitas Gadjah Mada, Sekip Utara, Bulak Sumur, Yogyakarta Corresponding E-mail: [email protected] Abstract River discharge quantity is highly depended on rainfall and initial condition of river discharge; hence, the river discharge has auto-correlation relationships. This study used Vector Auto Regression (VAR) model for analysing the relationship between rainfall and river discharge variables. VAR model was selected by considering the nature of the relationship between rainfall and river discharge as well as the types of rainfall and discharge data, which are in form of time series data. This research was conducted by using daily rainfall and river discharge data obtained from three weirs, namely Sojomerto and Juwero, in Kendal Regency and Glapan in Demak Regency, Central Java Province. Result of the causality tests shows significant relationship of both variables, those on the influence of rainfall to river discharge as well as the influence of river discharge to rainfall variables. The significance relationships of river discharge to rainfall indicate that the rainfall in this area has moved downstream. In addition, the form of VAR model could explain the variety of the relationships ranging between 6.4% - 70.1%. These analyses could be improved by using rainfall and river discharge time series data measured in shorter time interval but in longer period.
    [Show full text]
  • North Java Flood Control Sector Project
    Completion Report Project Number: 27258 Loan Number: 1425/1426(SF)-INO December 2006 Indonesia: North Java Flood Control Sector Project CURRENCY EQUIVALENTS Currency Unit – rupiah (Rp) At Appraisal At Project Completion 4 August 1995 29 June 2004 Rp1.00 = $0.00044 $0.00012 $1.00 = Rp2,272 Rp8,597 ABBREVIATIONS ADB – Asian Development Bank ADF – Asian Development Fund BSDA – Balai Sumber Daya Air (River Basin Organization) DGWR – Directorate General of Water Resources EA – executing agency EIRR – economic internal rate of return NGO – nongovernment organization O&M – operation and maintenance OCR – ordinary capital resources PIU – project implementing unit PMU – project monitoring unit RBDP – river basin development project RFDR – river flood damage rehabilitation RIWDP – Research Institute for Water Resources Development RRP – report and recommendation of the President RBDP – River Basin Development Project TA – technical assistance NOTE In this report, "$" refers to US dollars. Vice President C. Lawrence Greenwood, Jr., Operations Group 2 Director General A. Thapan, Southeast Asia Department (SERD) Director U. S. Malik, Agriculture, Environment and Natural Resources Division, SERD Team Leader C. I. Morris, Senior Water Resources Engineer, Agriculture, Environment and Natural Resources Division, SERD CONTENTS Page BASIC DATA i MAP vii I. PROJECT DESCRIPTION 1 II. EVALUATION OF DESIGN AND IMPLEMENTATION 1 A. Relevance of Design and Formulation 1 B. Project Outputs 3 C. Project Costs 5 D. Disbursements 6 E. Project Schedule 7 F. Implementation Arrangements 7 G. Conditions and Covenants 8 H. Consultant Recruitment and Procurement 8 I. Performance of Consultants, Contractors, and Suppliers 8 J. Performance of the Borrower and the Executing Agency 9 K. Performance of the Asian Development Bank 10 III.
    [Show full text]
  • List of Oral Presentation and Round Table
    LIST OF ORAL PRESENTATION ROOM “A” NO CODE NAME TITLE 1 ABS-IGEOS Nasir Nayan Is Flood Water Safe for Consumption at Evacuation Center in UNS-19001 Kuala Krai District, Kelantan, Malaysia? 2 ABS-IGEOS AFRINIA LISDITYA Evaluation of Lahar Flood Hazard Management Policy using UNS-19035 PERMATASARI Participatory Planning in Putih Watershed, Magelang Regency, Central Java, Indonesia 3 ABS-IGEOS Yudi Basuki Hydrometeorological Hazard Prediction in the Kuto Bodri River UNS-19039 Region Central Java Based on Normalized Difference Vegetation Index (NDVI) Analysis 4 ABS-IGEOS Listyo Irawan ASSESSING COMMUNITY COPING CAPACITY IN FACE UNS-19070 OF TSUNAMI DISASTER RISK (Case Study: Sumberagung Coastal Area, Banyuwangi, East Java) 5 ABS-IGEOS Wahyu Widiyatmoko Agricultural Drought Risk Assessment in Upper Progo UNS-19097 Watershed using Multi-temporal Landsat 8 Imagery 6 ABS-IGEOS Ananto Aji STUDY OF THE MERAPI MOUNTAIN ERUPTION AND UNS-19110 THE IMPACT ON COMMUNITY AGRICULTURAL LANDUSE IN SLEMAN REGENCY 7 ABS-IGEOS Cecep Pratama A possible Opak fault segment that caused the 2006 Mw 6.3 UNS-19126 Yogyakarta earthquake and its future implication 8 ABS-IGEOS herdis herdiansyah Strategy for Community Adaptation to Flood-Prone Areas in UNS-19153 Situ Rawa Besar Settlement, Depok City 9 ABS-IGEOS Retno Purnama Irawati Disaster Concepts and Disaster Mitigation According to The UNS-19154 Students from Faculty of Language and Arts, Universitas Negeri Semarang 10 ABS-IGEOS herdis herdiansyah The Internet Of Things (IoT) For Flood Disaster Early Warning UNS-19157
    [Show full text]
  • Directors: Ir. Widagdo, Dipl.HE Hisaya SAWANO Authors
    Directors: Ir. Widagdo, Dipl.HE Hisaya SAWANO Authors: Ir. Sarwono Sukardi, Dipl.HE Ir. Bambang Warsito, Dipl.HE Ir. Hananto Kisworo, Dipl.HE Sukiyoto, ME Publisher: Directorate General of Water Resources Yayasan Air Adhi Eka i Japan International Cooperation Agency ii River Management in Indonesia English Edition English edition of this book is a translation from the book : “Pengelolaan Sungai di Indonesia” January 2013 ISBN 978-979-25-64-62-4 Director General of Water Resources Foreword Water, as a renewable resource, is a gift from God for all mankind. Water is a necessity of life for creatures in this world. No water, no life. The existence of water, other than according to the hydrological cycle, at a particular place, at a particular time, and in particular quality as well as quantity is greatly influenced by a variety of natural phenomena and also by human behavior. Properly managed water and its resources will provide sustainable benefits for life. However, on the other hand, water can also lead to disasters, when it is not managed wisely. Therefore, it is highly necessary to conduct comprehensive and integrated water resources management efforts, or widely known as “Integrated Water Resources Management”. In the same way, river management efforts as part of the river basin integrated water resources management, include efforts on river utilization, development, protection, conservation and control, in an integrated river basin with cross-jurisdiction, cross-regional and cross- sectoral approach. This book outlines how water resources development and management in several river basins are carried out from time to time according to the existing situations and conditions, Besides, it covers various challenges and obstacles faced by the policy makers and the implementers in the field, The existing sets of laws and regulations and the various uses and benefits are also discused.
    [Show full text]
  • The Study on Development of Regional Railway System of Central Java Region in the Republic of Indonesia
    No. Ministry of Transportation The Republic of Indonesia The Study on Development of Regional Railway System of Central Java Region in The Republic of Indonesia Final Report (Main Report) February 2009 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. EID JR 09-034 Ministry of Transportation The Republic of Indonesia The Study on Development of Regional Railway System of Central Java Region in The Republic of Indonesia Final Report (Main Report) February 2009 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. The foreign exchange rates applied in this study are: USD$1.00 = Rp. 11,500 Yen 1 = Rp. 118.2 (As of November 12, 2008) PREFACE In response to a request from the Government of the Republic of Indonesia, the Government of Japan decided to conduct “The Study on Development of Regional Railway System in Central Java Region” and entrusted to the study to Japan International Cooperation Agency (JICA). JICA selected and dispatched a study team headed by Mr. Tomokazu Wachi of Oriental Consultants Co., Ltd. between January and December, 2008. The team held discussions with the officials concerned of the Government of the Republic of Indonesia and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report. I hope that this report will contribute to the promotion of this project and to the enhancement of friendly relationship between our two countries. Finally, I wish to express my sincere appreciation to the officials concerned of the Government of the Republic of Indonesia for their close cooperation extended to the study.
    [Show full text]
  • Coasral Aggreilory in WESTERN II{DONESIA CONTENTS
    Bulletin of National Institute of Geology and Mining, Bandung (BulI. NIGM Bandung), v. l, Ilo. 1, p. L5-45, August 1968. coASrAL AggREIlory IN WESTERN II{DONESIA ' lr; '-(' {'"" 1). H.,D. TJIA 1), SU*ENDAR ASIKIN 1), and R. SOERIA ATMADJA ABSTRACT Coastal accretion has been found to be important for Sutnatra's East coast and Java's North coast, rcspectively amounting to 60-50O m/ yr and 55 - Zl4 m/yr near the mouths of large streams. Elsewhere on the same coasts the yearly accretion rates are respectively 15 m and less than 30 m. The annual accretion in the vicinity of Padang (Sumatra's West coast) is less than 10 m. In the Landak region of West Kalimantan a rate of 110 m/yr is known. Data are wanting for other coasts of Indonesia but it seems hardly probable that higher accretion rates are present, except presumably for the Mahakam river, East Kalimantan. Comparing accretion rates on Java's North coast from maps surveyed in the period around 1850 till 1946 (aerial photographs), it was found that aggradation rates most commonly have been accelerating since 1920- This rise is undoubtedly due to an increase in denudation rate through vast. deforestations by the growing population and the partial clearance of estates during the Pacific War and the ensuing armed revolution It may also indicate an absolute lowering of sea level and/or tectonic uplift of the land. Positively favourable for coastal growth are the following factors : High denudation rate in the drainage basins through scanty vegetation, high relief, heavy rainfall and the presence of easily er.odible rock like marl; tectonic uplift; clastic volcanic activity; rhizophora growth in the coastal swamps; low springtides; quiet and shallow sea.
    [Show full text]
  • Evaluation of Watershed Carrying Capacity for Watershed Management (A Case Study on Bodri Watershed, Central Java, Indonesia)
    MATEC Web of Conferences 195, 05003 (2018) https://doi.org/10.1051/matecconf/201819505003 ICRMCE 2018 Evaluation of watershed carrying capacity for watershed management (a case study on Bodri watershed, Central Java, Indonesia) Ignatius Sriyana1,* 1Civil Department, Faculty of Engineering, Diponegoro University, Semarang, Indonesia Abstract. Excessive land use without any concern towards land and water conservation codes of conduct has a great potential to cause inevitable erosion and sedimentation, flood, drought, and decrease in vegetation coverage and accelerated land degradation, leading to change in watershed carrying capacity. This study aimed at evaluating the watershed classification, dealing with its carrying capacity, which is fundamental for planning in the watershed management. During the research, the author performed field surveys, questioner dissemination, and laboratory tests for suspended sediment quality. Data collected during the observation were subject to further analysis under five predetermined criteria. The study found that the Bodri Watershed carrying capacity was at 96.7, covering percentage of critical land, percentage of vegetation coverage, erosion index scored 10, respectively. The classification for the Bodri Watershed according to carrying capacity was considered moderate and classified as “to be improved” instead of “to be maintained”. 1 Introduction Watershed Management is a human action aimed at ensuring the use of watershed resources, through an integrated ecosystem approach [1], to maintain the sustainability
    [Show full text]