Site and Age Discrimination Using Trace Element Fingerprints in The

Total Page:16

File Type:pdf, Size:1020Kb

Site and Age Discrimination Using Trace Element Fingerprints in The Journal of Experimental Marine Biology and Ecology 522 (2020) 151249 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Site and age discrimination using trace element fingerprints in the blue mussel, Mytilus edulis T ⁎ Aaron Honiga, , Ron Ettera, Kyle Peppermanb, Scott Morelloa, Robyn Hanniganc a Biology Department, University of Massachusetts, Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America b Downeast Institute for Applied Marine Research and Education, 39 Wildflower Lane, Beals, ME 04611, United States of America c School for the Environment, University of Massachusetts, Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America ARTICLE INFO ABSTRACT Keywords: The ability to accurately estimate population connectivity and larval dispersal among mussel populations in the Trace element fingerprinting Gulf of Maine is important to better understand ongoing declines in blue mussel abundances. Such efforts are Bioincorporation crucial for crafting conservation strategies targeting important spawning and settlement sites necessary to Blue mussel support threatened local shellfisheries, and to mitigate the potential effects of rapid climate change on larval Population connectivity dispersal and survivorship. Trace element fingerprints can be used to infer larval dispersal and population connectivity, but require a reference map of geographic variation in elemental fingerprints to infer natal sites of settled mussels. Previous work has suggested rearing mussel larvae in situ to create a reference map because biomineralization differs between larval and post-metamorphic mussels, which might lead to differences in trace element fingerprints. To test whether elemental fingerprints differed between larval and juvenile (post-meta- morphic) mussels (Mytilus edulis), we reared them in situ and under controlled laboratory conditions. Trace element concentrations in larval and juvenile shell matrices were quantified using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The majority of trace element concentrations, normalized to calcium, differed between larval and juvenile mussels, resulting in elemental fingerprints that were consistently distinct between age classes. Larval and juvenile fingerprints differed consistently whether they were reared in the lab or field, probably reflecting age-specificdifferences in biomineralization. To use trace element finger- prints to estimate larval dispersal and population connectivity, our results suggest that a spatial map of ele- mental fingerprints should be created by rearing larval, not juvenile, mussels at potential source populations. Our results are consistent with what has been found for other mussels and thus may be true for all mussels, and likely true for any bivalves with age-specificdifferences in biomineralization. 1. Introduction et al., 2007; Cowen and Sponaugle, 2009; Lowe and Allendorf, 2010; Leis et al., 2011). Quantifying patterns of larval dispersal and population connectivity A widely used approach to empirically estimate dispersal and con- in marine ecosystems is important to further our understanding of nectivity in marine organisms relies on trace element fingerprints (TEF) ecology, evolution, conservation and management, and will be essential derived from the chemical signatures found in calcified structures for predicting how organisms might respond to anthropogenic stresses (Lopez-Duarte et al., 2012). TEFs take advantage of the chemical signal (Cowen et al., 2007; Gaines et al., 2007; Siegel et al., 2008; Carson incorporated into growing calcified structures such as shells (Becker et al., 2011; Puckett and Eggleston, 2016; Kroll et al., 2018). However, et al., 2007; Carson, 2010; Fodrie et al., 2011; Broadaway and tracking minute pelagic larvae that drift with the ocean currents and Hannigan, 2012), statoliths (Zacherl et al., 2003; Zacherl, 2005; Warner potentially travel tens of kilometers during several weeks of develop- et al., 2009) or otoliths (Thorrold et al., 2001; Dorval et al., 2007; Leis ment is extremely difficult (DiBacco and Levin, 2000; Thorrold et al., et al., 2011). For example, as bivalves grow they deposit layers of 2002; Knights et al., 2006; Levin, 2006; Cathey et al., 2012). Because of CaCO3 (calcite and aragonite) on a matrix of proteins to form a shell its importance to ecology, evolution and conservation, a number of (Marin and Luquet, 2004). The calcite-aragonite shell chemistry reflects methods have been developed to estimate dispersal and population the elemental and isotopic chemistry of the surrounding water mass connectivity in marine ecosystems (reviewed in Levin, 2006; Thorrold through geochemically passive and biologically active transport to the ⁎ Corresponding author. E-mail address: [email protected] (A. Honig). https://doi.org/10.1016/j.jembe.2019.151249 Received 11 April 2018; Received in revised form 26 April 2019; Accepted 12 October 2019 0022-0981/ © 2019 Elsevier B.V. All rights reserved. A. Honig, et al. Journal of Experimental Marine Biology and Ecology 522 (2020) 151249 site of shell deposition (Klein et al., 1996; Carson et al., 2013). Trace abundance allows us to identify potential sources for declines within elements in the shell can be quantified using laser ablation inductively the Gulf of Maine, provide important insights into the ecological forces coupled plasma mass spectrometry (LA-ICPMS; Liu et al., 2013). Re- shaping regional dynamics and contribute to more effective manage- sulting trace element fingerprints (e.g., Mg/Ca, Mn/Ca, Ba/Ca, La/Ca, ment and conservation strategies for this ecologically and economically Pb/Ca), vary spatially (< 50 km; Becker et al., 2007); and temporally important species (Botsford et al., 2001, 2009; Bode et al., 2008; (monthly and annual periodicity; Miller et al., 2013, Carson et al., Hayhurst and Rawson, 2009; Sorte et al., 2013; Bryson et al., 2014; 2013), characterize different water masses, and can be used to identify Morello and Etter, 2017). the location where shell material was deposited (Becker et al., 2005; The potential importance of using TEFs in quantifying population Levin, 2006; Broadaway and Hannigan, 2012; Carson et al., 2013). connectivity, and the likely impact of environmental chemistry on shell Because many adult bivalves retain their larval shell even after meta- TEFs has led to the suggestion that larvae should be outplanted and morphosis and settlement, TEFs of the larval shell can be used to assign reared in all potential source populations to generate an appropriate settlers to likely natal sites, through a reference map of site-specific reference map of fingerprints (Becker et al., 2007). Although TEFs ap- TEFs generated during natural spawning events (Becker et al., 2005). pear to differ between larval and adult shells for some bivalves (Becker Temporal changes in host water mass and shell geochemistry necessi- et al., 2007; Strasser et al., 2007, 2008), this has not been tested in tate TEF reference maps be generated through in-situ rearing when Mytilus edulis. Because outplanting larvae and rearing them at potential adults are spawning (Putten et al., 2000; Carré et al., 2006; Lazareth source populations requires considerable time and resources, it is im- et al., 2013, Kroll et al., 2018). High seasonal and annual variability of portant to test whether TEFs differ between larval and post-meta- element ratios (particularly Mn, Co relative to Ca) in outplanted Mytilus morphic (juvenile) shell material. Here we test whether TEFs differ sp. shells was observed by Carson et al. (2013), likely in part due to between age classes of Mytilus edulis and whether any age-specific dif- interannual variability in site-specific environmental factors that im- ferences exceed geographic variation in natural populations in the GOM pact biomineralization (geology, freshwater input, upwelling, anthro- that would preclude accurately inferring natal sites. pogenic impact, e.g., Miller et al., 2013). Estimating the variability among site-specific TEFs is therefore critical to evaluate the analytical 2. Material and methods utility of TEF reference maps, and at what spatial and temporal scale TEFs should be effectively used to estimate patterns of dispersal and 2.1. Laboratory experiment population connectivity (site vs region, week vs month; Becker et al., 2005, 2007). Both laboratory and in-situ field experiments were conducted to To estimate dispersal and population connectivity using TEFs, a determine if TEFs differed between larvae and juvenile mussels. Initial reference map of geographic differences in fingerprints is necessary to laboratory experiments were conducted at the Downeast Institute's infer natal sites (reviewed in: Levin, 2006; Becker et al., 2007; Carson shellfish hatchery on Beals Island, ME (DEI, Fig. 1). Adult mussels et al., 2013). A reference map is typically developed from TEFs of se- (≥5 cm), representing multigenerational brood stock originally locally dentary adults collected from potential source populations (DiBacco collected on Beal's Island, were conditioned during the spring of 2015 and Levin, 2000). However, larval and adult mussels precipitate dif- and spawned in June. Resulting larvae (70 μm diameter, n = 100,000) ferent calcium carbonate polymorphs during shell growth, which might were reared alongside juvenile mussels (2–4 mm shell length, n = 100) influence TEFs (Medaković, 2000; Weiss et al., 2002; Dalbeck et al., in large, shallow
Recommended publications
  • Commercial Performance of Blue Mussel (Mytilus Edulis, L.) Stocks at a Microgeographic Scale
    Journal of Marine Science and Engineering Article Commercial Performance of Blue Mussel (Mytilus edulis, L.) Stocks at a Microgeographic Scale Efflam Guillou 1, Carole Cyr 2, Jean-François Laplante 2, François Bourque 3, Nicolas Toupoint 1,2,* and Réjean Tremblay 1 1 Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), 310 Allée des Ursulines, CP 3300, Rimouski, QC G5L 3A1, Canada; Effl[email protected] (E.G.); [email protected] (R.T.) 2 MERINOV, Centre d’Innovation de l’aquaculture et des pêches du Québec, Secteur Aquaculture, 107-125 Chemin du Parc, Cap-aux-Meules, QC G4T 1B3, Canada; [email protected] (C.C.); [email protected] (J.-F.L.) 3 Ministry of Agriculture, Fisheries and Food of Québec (MAPAQ - Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec), Fisheries and commercial aquaculture branch, 101-125, Chemin du Parc, Cap-aux-Meules, QC G4T 1B3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-(418)-986-4795 (#3227) Received: 18 April 2020; Accepted: 23 May 2020; Published: 26 May 2020 Abstract: Bivalve aquaculture is an important component of the economy in eastern Canada. Because of current social, environmental, economic, and resource constraints, offshore mussel cultivation seems to be a promising strategy. With the objective of optimizing farming strategies that support the sustainability and development of the mussel industry at a microgeographic scale, we evaluated, after a traditional two year production cycle, the commercial performance of spat from several mussel (Mytilus edulis) stocks originating from sites separated by less than 65 km and cultivated at two different grow-out sites (shallow lagoon and offshore waters).
    [Show full text]
  • Histological Changes and Biochemical Parameters in the Hepatopancreas of Terrestrial Gastropod Helix Aspersa As Biomarkers of Neonicotinoid Insecticide Exposure
    African Journal of Biotechnology Vol. 11(96), pp. 16277-16283, 29 November, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1696 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Histological changes and biochemical parameters in the hepatopancreas of terrestrial gastropod Helix aspersa as biomarkers of neonicotinoid insecticide exposure Smina Ait Hamlet1*, Samira Bensoltane1,2, Mohamed Djekoun3, Fatiha Yassi2 and Houria Berrebbah1 1Cellular Toxicology Laboratory, Department of Biology, Faculty of Sciences, Badji-Mokhtar University, Annaba, P.O. Box 12, 23000, Algeria. 2Faculty of Medicine, Badji-Mokhtar University, Annaba, 23000, Algeria. 3Department of Biology, Faculty of Sciences and the Universe, University of May 08th, 1945, Guelma, 24000, Algeria. Accepted 22 June, 2012 In this study, adult snails, Helix aspersa were used to estimate the effect of aneonicotinoid insecticide (thiametoxam) on biochemical parameters and histological changes in the hepatopancreas of this gastropod after a treatment of six weeks. During this period, snails were exposed by ingestion and contact to fresh lettuce leaves which were soaked with an insecticide solution. The thiametoxam test solutions were 0, 25, 50, 100 and 200 mg/L. The results of the biochemical dosages (total carbohydrates, total proteins and total lipids) showed significant decreases at two concentrations (100 and 200 mg/L) of thiametoxam. However, the histological examination of the hepatopancreas of the treated snails showed alterations as a response to all the treatments, and revealed the degeneration of the digestive tubules and the breakdown of the basement membrane in a dose-dependent manner, leading to a severe deterioration of the tissues in the concentration of 200 mg/L thiametoxam.
    [Show full text]
  • Copyrighted Material
    319 Index a oral cavity 195 guanocytes 228, 231, 233 accessory sex glands 125, 316 parasites 210–11 heart 235 acidophils 209, 254 pharynx 195, 197 hemocytes 236 acinar glands 304 podocytes 203–4 hemolymph 234–5, 236 acontia 68 pseudohearts 206, 208 immune system 236 air sacs 305 reproductive system 186, 214–17 life expectancy 222 alimentary canal see digestive setae 191–2 Malpighian tubules 232, 233 system taxonomy 185 musculoskeletal system amoebocytes testis 214 226–9 Cnidaria 70, 77 typhlosole 203 nephrocytes 233 Porifera 28 antennae nervous system 237–8 ampullae 10 Decapoda 278 ocelli 240 Annelida 185–218 Insecta 301, 315 oral cavity 230 blood vessels 206–8 Myriapoda 264, 275 ovary 238 body wall 189–94 aphodus 38 pedipalps 222–3 calciferous glands 197–200 apodemes 285 pharynx 230 ciliated funnel 204–5 apophallation 87–8 reproductive system 238–40 circulatory system 205–8 apopylar cell 26 respiratory system 236–7 clitellum 192–4 apopyle 38 silk glands 226, 242–3 coelomocytes 208–10 aquiferous system 21–2, 33–8 stercoral sac 231 crop 200–1 Arachnida 221–43 sucking stomach 230 cuticle 189 biomedical applications 222 taxonomy 221 diet 186–7 body wall 226–9 testis 239–40 digestive system 194–203 book lungs 236–7 tracheal tube system 237 dissection 187–9 brain 237 traded species 222 epidermis 189–91 chelicera 222, 229 venom gland 241–2 esophagus 197–200 circulatory system 234–6 walking legs 223 excretory system 203–5 COPYRIGHTEDconnective tissue 228–9 MATERIALzoonosis 222 ganglia 211–13 coxal glands 232, 233–4 archaeocytes 28–9 giant nerve
    [Show full text]
  • Shellfish Regulations
    Town of Nantucket Shellfishing Policy and Regulations As Adopted on March 4, 2015 by Nantucket Board of Selectmen Amended March 23, 2016; Amended April 20, 2016 Under Authority of Massachusetts General Law, Chapter 130 Under Authority of Chapter 122 of the Code of the Town of Nantucket TABLE OF CONTENTS Section 1 – Shellfishing Policy for the Town of Nantucket/Purpose of Regulations Section 2 – General Regulations (Applying to Recreational, Commercial and Aquaculture Licenses) 2.1 - License or Permit Required 2.2 - Areas Where Recreational or Commercial Shellfishing May Occur 2.3 - Daily Limit 2.4 - Landing Shellfish 2.5 - Daily Time Limit 2.6 - Closures and Red Flag 2.7 - Temperature Restrictions 2.8 - Habitat Sensitive Areas 2.9 - Bay Scallop Strandings 2.10 - Poaching 2.11 - Disturbance of Licensed or Closed Areas 2.12 - Inspection on Demand 2.13 - Possession of Seed 2.14 - Methods of Taking 2.15 – SCUBA Diving and Snorkeling 2.16 - Transplanting, Shipping, and Storing of Live Shellfish 2.16a - Transplanting Shellfish Outside Town Waters 2.16b - Shipping of Live Shellfish for Broodstock Purposes 2.16c - Transplanting Shellfish into Town Waters 2.16d - Harvesting Seed from the Wild Not Allowed 2.16e - Wet Storage of Recreational Shellfish Prohibited. 2.17 - By-Catch 2.18 - Catch Reports Provided to the Town 2.18a - Commercial Catch Reports 2.18b - Recreational Catch Reports Section 3 – Recreational (Non-commercial) Shellfishing 3.1 - Permits 3.1a - No Transfers or Refunds 3.1b - Recreational License Fees 3.2 - Cannot Harvest for Commerce
    [Show full text]
  • Mir-29A Participated in Nacre Formation and Immune Response by Targeting Y2R in Pinctada Martensii
    Article miR-29a Participated in Nacre Formation and Immune Response by Targeting Y2R in Pinctada martensii Rongrong Tian 1, Zhe Zheng 1, Ronglian Huang 1, Yu Jiao 1,* and Xiaodong Du 1,2,* Received: 17 September 2015; Accepted: 1 December 2015; Published: 10 December 2015 Academic Editor: Constantinos Stathopoulos 1 Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; [email protected] (R.T.); [email protected] (Z.Z.); [email protected] (R.H.) 2 Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang 524025, China * Correspondence: [email protected] (Y.J.); [email protected] (X.D.); Tel.: +86-759-238-3346 (Y.J. & X.D.); Fax: +86-759-238-2404 (Y.J. & X.D.) Abstract: miR-29a is a conserved miRNA that participates in bone formation and immune response in vertebrates. miR-29a of Pinctada martensii (Pm-miR-29a) was identified in the previous research though deep sequencing. In this report, the precise sequence of mature Pm-miR-29a was validated using miRNA rapid amplification of cDNA ends (miR-RACE) technology. The precursor sequence of Pm-miR-29a was predicted to have 87 bp. Stem loop qRT-PCR analysis showed that Pm-miR-29a was easily detected in all the tissues, although expressions in the mantle and gill were low. The microstructure showed the disrupted growth of the nacre after Pm-miR-29a over-expression, which was induced by mimic injection into P. martensii. Results of the target analysis indicated that neuropeptide Y receptor type 2 (Y2R) was the potential target of Pm-miR-29a. Meanwhile, Pm-miR-29a mimics could obviously inhibit the relative luciferase activity of the reporter containing 31 UTR (Untranslated Regions) of the Y2R gene.
    [Show full text]
  • Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2
    catalysts Review Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2 Marek Matula 1, Tomas Kucera 1 , Ondrej Soukup 1,2 and Jaroslav Pejchal 1,* 1 Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; [email protected] (M.M.); [email protected] (T.K.); [email protected] (O.S.) 2 Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, 500 05 Hradec Kralove, Czech Republic * Correspondence: [email protected] Received: 26 October 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The organophosphorus substances, including pesticides and nerve agents (NAs), represent highly toxic compounds. Standard decontamination procedures place a heavy burden on the environment. Given their continued utilization or existence, considerable efforts are being made to develop environmentally friendly methods of decontamination and medical countermeasures against their intoxication. Enzymes can offer both environmental and medical applications. One of the most promising enzymes cleaving organophosphorus compounds is the enzyme with enzyme commission number (EC): 3.1.8.2, called diisopropyl fluorophosphatase (DFPase) or organophosphorus acid anhydrolase from Loligo Vulgaris or Alteromonas sp. JD6.5, respectively. Structure, mechanisms of action and substrate profiles are described for both enzymes. Wild-type (WT) enzymes have a catalytic activity against organophosphorus compounds, including G-type nerve agents. Their stereochemical preference aims their activity towards less toxic enantiomers of the chiral phosphorus center found in most chemical warfare agents. Site-direct mutagenesis has systematically improved the active site of the enzyme. These efforts have resulted in the improvement of catalytic activity and have led to the identification of variants that are more effective at detoxifying both G-type and V-type nerve agents.
    [Show full text]
  • Littorina Littorea
    Zarai et al. Lipids in Health and Disease 2011, 10:219 http://www.lipidworld.com/content/10/1/219 RESEARCH Open Access Immunohistochemical localization of hepatopancreatic phospholipase in gastropods mollusc, Littorina littorea and Buccinum undatum digestive cells Zied Zarai1, Nicholas Boulais2, Pascale Marcorelles3, Eric Gobin3, Sofiane Bezzine1, Hafedh Mejdoub1 and Youssef Gargouri1* Abstract Background: Among the digestive enzymes, phospholipase A2 (PLA2) hydrolyzes the essential dietary phospholipids in marine fish and shellfish. However, we know little about the organs that produce PLA2, and the ontogeny of the PLA2-cells. Accordingly, accurate localization of PLA2 in marine snails might afford a better understanding permitting the control of the quality and composition of diets and the mode of digestion of lipid food. Results: We have previously producted an antiserum reacting specifically with mSDPLA2. It labeled zymogen granules of the hepatopancreatic acinar cells and the secretory materials of certain epithelial cells in the depths of epithelial crypts in the hepatopancreas of snail. To confirm this localization a laser capture microdissection was performed targeting stained cells of hepatopancreas tissue sections. A Western blot analysis revealed a strong signal at the expected size (30 kDa), probably corresponding to the PLA2. Conclusions: The present results support the presence of two hepatopancreatic intracellular and extracellular PLA2 in the prosobranchs gastropods molluscs, Littorina littorea and Buccinum undatum and bring insights on their localizations. Keywords: phospholipase A2, digestive enzyme, littorina littorea, Buccinum undatum hepatopancreas, immunolocalisation Background in littoral dwellers Littorina, the activity of which Snails require lipids for metabolic energy and for main- depends on the tide level. The presence of massive shell taining the structure and integrity of cell membranes in enhances demands in energy needed for supporting common with other animals to tolerate environemental movement and activity.
    [Show full text]
  • Structure and Function of the Digestive System in Molluscs
    Cell and Tissue Research (2019) 377:475–503 https://doi.org/10.1007/s00441-019-03085-9 REVIEW Structure and function of the digestive system in molluscs Alexandre Lobo-da-Cunha1,2 Received: 21 February 2019 /Accepted: 26 July 2019 /Published online: 2 September 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The phylum Mollusca is one of the largest and more diversified among metazoan phyla, comprising many thousand species living in ocean, freshwater and terrestrial ecosystems. Mollusc-feeding biology is highly diverse, including omnivorous grazers, herbivores, carnivorous scavengers and predators, and even some parasitic species. Consequently, their digestive system presents many adaptive variations. The digestive tract starting in the mouth consists of the buccal cavity, oesophagus, stomach and intestine ending in the anus. Several types of glands are associated, namely, oral and salivary glands, oesophageal glands, digestive gland and, in some cases, anal glands. The digestive gland is the largest and more important for digestion and nutrient absorption. The digestive system of each of the eight extant molluscan classes is reviewed, highlighting the most recent data available on histological, ultrastructural and functional aspects of tissues and cells involved in nutrient absorption, intracellular and extracellular digestion, with emphasis on glandular tissues. Keywords Digestive tract . Digestive gland . Salivary glands . Mollusca . Ultrastructure Introduction and visceral mass. The visceral mass is dorsally covered by the mantle tissues that frequently extend outwards to create a The phylum Mollusca is considered the second largest among flap around the body forming a space in between known as metazoans, surpassed only by the arthropods in a number of pallial or mantle cavity.
    [Show full text]
  • Maine Shellfish Research Compendium
    March 1, 2018 SHELLFISH RESEARCH COMPENDIUM A snapshot of recent and ongoing research projects in Maine and New England’s bivalve fisheries Executive Summary: Maine Bivalve Shellfish Research Compendium (March 2018) Maine’s bivalve fisheries, including wild and cultured populations of soft-shell clams, hard clams, blue mussels, American or Eastern Oyster, European oysters and Atlantic razor clams are a valuable and essential part of coastal ecosystems, economies, and cultures. For example, the soft-shell clam fishery is consistently the second or third largest fishery in the state by total landings value and number of licenses. Further, markets for oysters and mussels grown in aquaculture settings continue to expand. The multiple values of bivalves are increasingly threatened by a host of environmental and social changes, such as warming ocean temperatures, increased predation by species such as the invasive European green crab, water pollution, changes in ocean chemistry, harmful algae blooms, changing demographics and coastal access, and challenges related to human health and well-being. The need for applied and basic research on the ecosystems that sustain these fisheries, as well research to understand and strengthen the economies and communities that rely on them has never been greater. Fortunately, as the following table illustrates, there are researchers who are conducting diverse studies to understand and improve bivalve fisheries. The following studies are all focused specifically on Maine and New England bivalve species and shellfish communities. Many of these projects have been conducted in partnership with diverse groups who intend to link the research with management and business innovations. Together, the collection of studies helps us understand important trends in bivalve fisheries and how: • clams have developed an efficient way to warn each other about predators, helping them save energy they need to grow.
    [Show full text]
  • Wadden Sea Quality Status Report Beds of Blue Mussels and Pacific Oysters
    Photo: CWSS/ Bostelmann. Pacific oysters and blue mussel. Wadden Sea Quality Status Report Beds of blue mussels and Pacific oysters E. Folmer, H. Büttger, M. Herlyn, A. Markert, G. Millat, K. Troost, A. Wehrmann This report downloaded: 2018-01-04 This report last updated: 2017-12-21 This report should be cited as: Folmer E., Büttger H., Herlyn M., Markert A., Millat G., Troost K. & Wehrmann A. (2017) Beds of blue mussels and Pacific oysters. In: Wadden Sea Quality Status Report 2017. Eds.: Kloepper S. et al., Common Wadden Sea Secretariat, Wilhelmshaven, Germany. Last updated 21.12.2017. Downloaded DD.MM.YYYY. qsr.waddensea-worldheritage.org/reports/beds-of-blue-mussels-and-pacific-oysters 1. Introduction 1.1 Biology and occurrence In the northern hemisphere, three taxa of blue mussels (Mytilus edulis complex) occur along the coasts of the North Atlantic and North Pacific. On the soft sediments in the Wadden Sea individual blue mussels aggregate and form beds (Figure 1). Pacific oysters (Crassostrea gigas) were introduced to several locations along the North Sea coast within NW Europe for aquaculture purposes in the 1960s and to the western Dutch Wadden Sea in the late 1970s (Troost, 2010) (see report "Alien species"). Wild Pacific oysters were first observed in the western Dutch Wadden Sea near Texel in 1983 (Fey et al., 2010; Troost, 2010). Pacific oysters naturally spread eastwards reaching the central Wadden Sea in 1998 (Wehrmann et al., 2000). Oysters were introduced in the northern Wadden Sea in the 1970s and the first Pacific oyster outside culture plots was observed in 1991 (Reise, 1998).
    [Show full text]
  • Mytilus Edulis
    Blue Mussel − Mytilus edulis Overall Vulnerability Rank = Very High Biological Sensitivity = High Climate Exposure = Very High Data Quality = 88% of scores ≥ 2 Expert Data Expert Scores Plots Mytilus edulis Scores Quality (Portion by Category) Low Moderate Stock Status 2.1 0.8 High Other Stressors 2.3 2.0 Very High Population Growth Rate 1.6 2.1 Spawning Cycle 1.9 2.7 Complexity in Reproduction 1.6 2.8 Early Life History Requirements 2.0 2.8 Sensitivity to Ocean Acidification 3.6 2.2 Prey Specialization 1.7 3.0 Habitat Specialization 2.3 3.0 Sensitivity attributes Sensitivity to Temperature 1.4 2.9 Adult Mobility 3.8 3.0 Dispersal & Early Life History 2.4 2.8 Sensitivity Score High Sea Surface Temperature 4.0 3.0 Variability in Sea Surface Temperature 1.0 3.0 Salinity 1.4 3.0 Variability Salinity 1.2 3.0 Air Temperature 3.6 3.0 Variability Air Temperature 1.0 3.0 Precipitation 1.3 3.0 Variability in Precipitation 1.4 3.0 Ocean Acidification 4.0 2.0 Exposure variables Variability in Ocean Acidification 1.0 2.2 Currents 2.0 1.0 Sea Level Rise 2.1 1.5 Exposure Score Very High Overall Vulnerability Rank Very High Blue Mussel (Mytilus edulis) Overall Climate Vulnerability Rank: Very High (95% certainty from bootstrap analysis). Climate Exposure: Very High. Three exposure factors contributed to this score: Ocean Surface Temperature (4.0), Air Temperature (3.6) and Ocean Acidification (4.0). Blue Mussels use intertidal, nearshore and marine habitats through their life cycle.
    [Show full text]
  • Introduced Marine Ecosystem Engineers Change Native Biotic Habitats but Not Necessarily Associated Species Interactions
    Estuarine, Coastal and Shelf Science 245 (2020) 106936 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: http://www.elsevier.com/locate/ecss Introduced marine ecosystem engineers change native biotic habitats but not necessarily associated species interactions Annika Cornelius, Christian Buschbaum * Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, 25992, List/Sylt, Germany ARTICLE INFO ABSTRACT Keywords: Introduced bioengineering organisms may fundamentally change native coastal ecosystems by modifying Non-native species existing benthic habitat structures and thereby habitat-specific species interactions. The introduction of the Blue mussel Mytilus edulis Pacific oyster Magallana gigas into the sedimentary coastal area of the south-eastern North Sea and its preferred Pacific oyster Magallana gigas settlement on native blue mussel shells caused a large-scale shift from monospecificMytilus edulis beds to current Barnacles mixed reefs of mussels and oysters. To investigate whether the newly developed biotic habitat affects the Epibiosis occurrence of associated native key organisms and their ecological functions, we studied the long-term density trajectory of the gastropod Littorina littorea and its grazing activity on barnacles attached to Pacificoyster reefs in the northern Wadden Sea. We found no significantcorrelation between oyster and snail densities on blue mussel beds in the last two decades, which spans a time-period from the beginning of Pacific oyster establishment to today’s oyster dominance. A manipulative field experiment revealed that snail density significantly affects the recruitment success of barnacles Semibalanus balanoides on oyster shells with the highest number of barnacle recruits at snail exclusion. Thus, density and grazing activity of the snail L.
    [Show full text]