A New Chronology for the Moon and Mercury
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geochemical Characterization of Moldavites from a New Locality, the Cheb Basin, Czech Republic
Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic Item Type Article; text Authors Řanda, Zdeněk; Mizera, Jiři; Frána, Jaroslav; Kučera, Jan Citation Řanda, Z., Mizera, J., Frána, J. and Kučera, J. (2008), Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteoritics & Planetary Science, 43(3), 461-477. DOI 10.1111/j.1945-5100.2008.tb00666.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 30/09/2021 11:07:40 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656405 Meteoritics & Planetary Science 43, Nr 3, 461–477 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic ZdenÏk ÿANDA1, Ji¯í MIZERA1, 2*, Jaroslav FRÁNA1, and Jan KU»ERA1 1Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 ÿež, Czech Republic 2Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V HolešoviËkách 41, 182 09 Praha 8, Czech Republic *Corresponding author. E-mail: [email protected] (Received 02 June 2006; revision accepted 15 July 2007) Abstract–Twenty-three moldavites from a new locality, the Cheb Basin in Western Bohemia, were analyzed by instrumental neutron activation analysis for 45 major and trace elements. Detailed comparison of the Cheb Basin moldavites with moldavites from other substrewn fields in both major and trace element composition shows that the Cheb Basin is a separate substrewn field. -
The High-Pressure Mineral Inventory of Shock Veins from the Steen River Impact Structure
46th Lunar and Planetary Science Conference (2015) 2512.pdf The high-pressure mineral inventory of shock veins from the Steen River impact structure. Walton E.L., Sharp T. G. and Hu J. 1MacEwan University, Department of Physical Sciences, 10700 104 Ave, Edmonton, AB, T5J 2S2, Canada ([email protected] / [email protected] ), 2University of Alberta, Department of Earth & Atmospheric Sciences, Edmonton, AB, T6G 2E3, Canada. 3Arizona State University, School of Earth & Space Ex- ploration,Tempe, AZ 85287-1404, USA. Introduction: The Steen River impact struc- equipped with five WDS spectrometers. Raw data ture (SRIS; 59o31'N, 117o39’W) is a buried complex were corrected using the ZAF procedure. The excel crater with an apparent diameter of ~25 km [1]. The spreadsheets of [6,7] where used to recast chemical SRIS is the largest known impact structure in the analyses of amphiboles and garnets following the IMA Western Canada Sedimentary Basin and is a producer reccomentations. Micro-Raman spectra of various and host of oil and gas reservoirs [1]. The target rocks phases were obtained with point measurements, using comprise a 70 m layer of Missippian calcareous shale a Bruker SENTERRA instrument. The 100X objective underlain by a thick (1530 m) sequence of Devonian of a petrographic microscope was used to focus the marine sedimentary rocks including carbonates and excitation laser beam (532 nm line of Ar+ laser) to a evaporates. This ~1.6 km thick sedimentary cover focal spot size of ~1 µm. TEM sections will be pre- overlies Precambrian basement rocks (primarily gran- pared using an FEI Nova200 NanoFab dual-beam FIB, ite / gneiss / granodiorite). -
The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact. -
Lechatelierite in Moldavite Tektites: New Analyses of Composition
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1580.pdf LECHATELIERITE IN MOLDAVITE TEKTITES: NEW ANALYSES OF COMPOSITION. Martin Molnár1, Stanislav Šlang2, Karel Ventura3. Kord Ernstson4.1Resselovo nám. 76, Chrudim 537 01, Czech Republic ([email protected]) 2Center of Materials and Nanotechnologies, University of Pardubice, 532 10 Pardubice, Czech Republic, [email protected] 3Faculty of Chemical Technology, University of Pardubice, 530 02 Pardubice, Czech Republic, [email protected]. 4University of Würzburg, D-97074 Würzburg, Deutschland ([email protected]) Introduction: Moldavites are tektites with a Experiments and Results: Experiments 1 and 2 - beautiful, mostly green discoloration and a very the boron question. The question of lowering the pronounced sculpture (Fig.1), which have been studied melting point and acid resistance led to the possibility many times e.g. [1-3]). of adding boron. The experiment 1 on a moldavite plate etched in 15%-HF to expose the lechatelierite was performed by laser ablation spectrometry and showed B2O3 concentration of >1%. In experiment 2, 38 g of lechatelierite fragments were then separated from 482 g of pure moldavite, and after the boron Fig. 1. Moldavites from Besednice analyzed in this content remained high (Tab. 2), the remaining carbon study. Scale bar 1 cm. was washed away. The analysis in Tab. 3 shows According to the most probable theory, they were remaining low boron content, which is obviously formed 14.5 million years ago together with the Ries bound to the carbon of the moldavites [8]. crater meteorite impact in Germany. They belong to the mid-European tektite strewn field and fell mostly in Bohemia. -
Remove This Report from Blc8. 25
.:WO _______CUfe\J-&£sSU -ILtXJZ-.__________ T REMOVE THIS REPORT FROM BLC8. 25 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. Prepared by the Geological Survey for the National Aeronautics and Space Administration U )L Interagency Report: 43 GUIDE TO THE GEOLOGY OF SUDBURY BASIN, ONTARIO, CANADA (Apollo 17 Training Exercise, 5/23/72-5/25/72) by I/ 2/ Michael R. Dence , Eugene L. Boudette 2/ and Ivo Lucchitta May 1972 Earth Physics Branch Dept. of Energy, Mines & Resources Ottawa, Canada 21 Center of Astrogeology U. S. Geological Survey Flagstaff, Arizona 86001 ERRATA Guide to the geology of Sudbury Basin, Ontario, Canada by Michael R. Dence, Eugene L. Boudette, and Ivo Lucchitta Page ii. Add "(photograph by G. Mac G. Boone) 11 to caption. iii. P. 2, line 5; delete "the" before "data", iv. P. 1, line 3; add "of Canada, Ltd." after "Company", iv. P. 1, line 7; delete "of Canada" after "Company". v. Move entire section "aerial reconnaissance....etc..." 5 spaces to left margin. 1. P. 2, line 6; add "moderate to" after "dips are". 1. P. 2, line 13; change "strike" to "striking". 2. P. 1, line 2; change "there" to "these". 2. P. 2, line 7; change "(1) breccias" to "breccias (1)". 2. P. 3, line 3; add "slate" after "Onwatin". 4. P. 1, line 7; change "which JLs" to "which are". 7. P. 1, line 9; add "(fig. 3)" after "surveys". 7. P. -
Twinning, Reidite, and Zro in Shocked Zircon from Meteor Crater
Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA) Aaron J. Cavosie1,2,3, Nicholas E. Timms1, Timmons M. Erickson1, Justin J. Hagerty4, and Friedrich Hörz5 1TIGeR (The Institute for Geoscience Research), Department of Applied Geology, Curtin University, Perth, WA 6102, Australia 2NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 3Department of Geology, University of Puerto Rico–Mayagüez, Mayagüez, Puerto Rico 00681, USA 4U.S. Geological Survey (USGS) Astrogeology Science Center, Flagstaff, Arizona 86001, USA 5NASA Johnson Space Center, Science Department/Jets/HX5/ARES, Houston, Texas 77058, USA ABSTRACT Granular zircon in impact environments has long been recognized but remains poorly A N35° 2.0’ W111° 0.9’ understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (USA) contains abundant evidence of shock metamorphism, includ- N ing shocked quartz, the high-pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked-mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during formation at extreme impact conditions. The zircon grains occur as aggregates of sub-micrometer neoblasts in highly shocked Coconino Sandstone (CS) comprised of lechatelierite. Electron backscatter diffraction shows that each MCC2 site grain consists of multiple domains, some with boundaries disoriented by 65° around <110>, (main shaft) a known {112} shock-twin orientation. Other domains have {001} in alignment with {110} of neighboring domains, consistent with the former presence of the high-pressure ZrSiO4 polymorph reidite. -
Keurusselkä - Distribution of Shatter Cones
Lunar and Planetary Science XXXVIII (2007) 1762.pdf KEURUSSELKÄ - DISTRIBUTION OF SHATTER CONES. S. Hietala 1 and J. Moilanen 2, 1Kiveläntie 2 B 13, FI-42700 Keuruu, Finland, [email protected], 2Vuolijoentie 2086, FI-91760 Säräisniemi, Finland, [email protected]. Introduction: Keurusselkä impact structure was from the impact point increases. We have come to con- discovered by authors in 2003 [1], [2]. Well-formed clusion that most distant shatter cone like features we shatter cones in situ and boulders confirmed impact have found so far are still related to the impact struc- origin. A breccia with multiple sets of planar deforma- ture but this must be studied more carefully in future. tion features (PDFs) in quartz grains support this con- We have also measured directions of shatter cones. clusion. Structure is located in Central Finland (cen- This is not a simple task since only measurements that tered at 62°08´N, 24°37´E). seem to make any sense are made along the topside Exposed bedrocks of the region are Paleoprotero- striation of a shatter cone. What is the true topside of zoic granites and mica schists with volcanic inliers of the cone is not always so obvious. Central Finland Granitoid Complex. The age of the A breccia dike: In Autumn 2006 we discovered an granite basement is 1880 Ma. in situ breccia dike almost at the center of the structure. Precise age of the structure is unknown. It probably This is the first in situ breccia we have found and it is between 1880 - 600 Ma. 1880 Ma is the youngest may be impact related. -
The Cratered Earth
Lunar and Planetary Science XXXIII (2002) sess33.pdf Tuesday, March 12, 2002 POSTER SESSION I 7:00–9:30 p.m. Gymnasium The Cratered Earth Ormö J. Rossi A. P. Komatsu G. Marchetti M. De Santis A. The Discovery of a Probable Well-preserved Impact Crater Field in Central Italy [#1075] We propose the first impact craters found in Italy. They form a crater field with about 17 craters in the range 2- 20 m, and a main crater 140x115 m. It represents a rare example of well-preserved explosion craters formed in unconsolidated targets. Rossi A. P. Seven Possible New Impact Structures in Western Africa Detected on ASTER Imagery [#1309] Seven possible impact structures have been found in W Africa on ASTER images. Their diameters vary from few hundreds of meters up to few kilometers. They are located in Mauritania, Mali and Niger, on a sedimentary or metamorphic bedrock. Miura Y. Hirota A. Gorton M. Kedves M. Impact-related Events on Active Tectonic Regions Defined by Its Age, Shocked Minerals and Compositions [#1231] New type of impact-related event is defined at active tectonic region by using semi-circular structure, bulk XRF compositions with mixed data, shocked quartz grains with the PDFs texture, and Fe-Ni content. Example is discussed in Takamatsu MKT crater in Japan. Krochuk R. V. Sharpton V. L. Overview of Terny Astrobleme (Ukrainian Shield) Studies [#1832] A brief summary of Terny astrobleme observations, including history, petrographic and mineralogical evidences of impact, structure of the crater at current erosion level. Pesonen L. J. Reimold W. U. -
The Geological Record of Meteorite Impacts
THE GEOLOGICAL RECORD OF METEORITE IMPACTS Gordon R. Osinski Canadian Space Agency, 6767 Route de l'Aeroport, St-Hubert, QC J3Y 8Y9 Canada, Email: [email protected] ABSTRACT 2. FORMATION OF METEORITE IMPACT STRUCTURES Meteorite impact structures are found on all planetary bodies in the Solar System with a solid The formation of hypervelocity impact craters has surface. On the Moon, Mercury, and much of Mars, been divided, somewhat arbitrarily, into three main impact craters are the dominant landform. On Earth, stages [3] (Fig. 2): (1) contact and compression, (2) 174 impact sites have been recognized, with several excavation, and (3) modification. A further stage of more new craters being discovered each year. The “hydrothermal and chemical alteration” is also terrestrial impact cratering record is critical for our considered as a separate, final stage in the cratering understanding of impacts as it currently provides the process (e.g., [4]), and is also described below. only ground-truth data on which to base interpretations of the cratering record of other planets and moons. In this contribution, I summarize the processes and products of impact cratering and provide and an up-to-date assessment of the geological record of meteorite impacts. 1. INTRODUCTION It is now widely recognized that impact cratering is a ubiquitous geological process that affects all planetary objects with a solid surface (e.g., [1]). One only has to look up on a clear night to see that impact structures are the dominant landform on the Moon. The same can be said of all the rocky and icy bodies in the solar system that have retained portions of their earliest crust. -
Rock Magnetism and Palaeomagnetism of Meteorite Impact Craters in India
ROCK MAGNETISM AND PALAEOMAGNETISM OF METEORITE IMPACT CRATERS IN INDIA A THESIS SUBMITTED TO THE UNIVERSITY OF MUMBAI FOR THE PH. D. (SCIENCE) DEGREE IN PHYSICS Submitted By M. D. ARIF UNDER THE GUIDANCE OF PROF. NATHANI BASAVAIAH INDIAN INSTITUTE OF GEOMAGNETISM PLOT NO. 5, SECTOR 18, NEW PANVEL (W), NAVI MUMBAI-410 218 MAHARASHTRA, INDIA APRIL 2013 STATEMENT BY THE CANDIDATE As required by the University Ordinances 770, I wish to state that the work embodied in this thesis titled “Rock Magnetism and Palaeomagnetism of Meteorite Impact Craters in India" forms my own contribution to the research work carried out under the guidance of Prof. Nathani Basavaiah at the Indian Institute of Geomagnetism, New Panvel, Navi Mumbai. This work has not been submitted for any other degree of this or any other University. Wherever references have been made to previous works of others, it has been clearly indicated as such and included in the Bibliography. Signature of Candidate Full Name: Md. Arif Certified by Signature of Guide Name: Prof. Nathani Basavaiah ii Statement required under 0.770 Statement No. 1 I hereby declare that the work described in the thesis has not been submitted previously to this or any other University for Ph. D. or any other degree. Statement required under 0.771 Statement No.2 “Whether the work is based on the discovery of new facts by the candidate or of new relations of facts observed by others, and how the work tends to the general advancement of knowledge.” This thesis introduces a new method for the observation, evaluation and interpretation of the obliquity impact at Lonar based on structural and anisotropy of magnetic susceptibility (AMS) evidence. -
Observations at Terrestrial Impact Structures: Their Utility in Constraining Crater Formation
Meteoritics & Planetary Science 39, Nr 2, 199–216 (2004) Abstract available online at http://meteoritics.org Observations at terrestrial impact structures: Their utility in constraining crater formation Richard A. F. GRIEVE* and Ann M. THERRIAULT Earth Sciences Sector, Natural Resources Canada, 588 Booth Street, Ottawa, Ontario K1A 0Y7, Canada *Corresponding author. E-mail: [email protected] (Received 22 July 2003; revision accepted 15 December 2003) Abstract–Hypervelocity impact involves the near instantaneous transfer of considerable energy from the impactor to a spatially limited near-surface volume of the target body. Local geology of the target area tends to be of secondary importance, and the net result is that impacts of similar size on a given planetary body produce similar results. This is the essence of the utility of observations at impact craters, particularly terrestrial craters, in constraining impact processes. Unfortunately, there are few well-documented results from systematic contemporaneous campaigns to characterize specific terrestrial impact structures with the full spectrum of geoscientific tools available at the time. Nevertheless, observations of the terrestrial impact record have contributed substantially to fundamental properties of impact. There is a beginning of convergence and mutual testing of observations at terrestrial impact structures and the results of modeling, in particular from recent hydrocode models. The terrestrial impact record provides few constraints on models of ejecta processes beyond a confirmation of the involvement of the local substrate in ejecta lithologies and shows that Z-models are, at best, first order approximations. Observational evidence to date suggests that the formation of interior rings is an extension of the structural uplift process that occurs at smaller complex impact structures. -
Earth, Solar System, Milky
PAA Novice Astronomy Curriculum 1. An Introduction to Astronomy – June 7, 2019 Our Cosmic Address : Earth, Solar System, Milky Way, Local Group, Virgo Supercluster, Universe Overview of visible objects Sampling of exotic objects: black holes, dark energy, dark matter 2. Stars – September 6, 2019 Sun: birth, nuclear fusion, parts, Sun spots, atmosphere, space weather, death Colour & Temperature: OBAFGKM Size comparison: include link to YouTube video Distance H/R diagram Variable stars Life cycle of stars smaller and larger than our Sun Take Away: Plans to build a sundial 3. The Solar System – October 4, 2019 Sun and 8 planets: size (use scale model), distance (use scale model), physical characteristics Moons Origins of life Best possibilities of life in our solar system: Mars, Europa, Enceladus Dwarf Planets Comets Asteroids Meteoroid, Meteor, Meteorite 4. The Sun, Earth, Moon System – November 1, 2019 Day & Night Solar eclipse (use model) Lunar eclipse (use model) Lunar phases Influence of Moon on Earth: tides, stabilizing influence, retreating Seasons 5. The Moon – December 6, 2019 Birth: “Big Splat” Theory Evolution of Luna Historical exploration: Russian, American (Apollo 8-17) Current exploration: Chinese, ESA, etc. Discoveries: water ice, etc. Future? : Space station, habitation 6. The Electromagnetic Spectrum – January 3, 2020 Image of EMS Visible light 400-700 nm Infrared Microwave Radio Ultraviolet X-rays Gamma rays 7. Constellations-- -February 7, 2020 What is a constellation? What is an asterism? Historical significance: mythology (include story from more than Greek & Roman), agriculture, navigation and sea faring Seasonal Change Constellations as pointers 8. Eyepieces – March 6, 2020 eye relief 1 1/4” 2” Barlows Neutral Density filters Photographic filters Nebula filters: UHC, Skyglow, OIII, H alpha 9.