Important Radionuclides in High Level Nuclear Waste Disposal: Determination Using a Comparison of the Epa and Nrc Regulations

Total Page:16

File Type:pdf, Size:1020Kb

Important Radionuclides in High Level Nuclear Waste Disposal: Determination Using a Comparison of the Epa and Nrc Regulations UCR1, 94222 PREPRINT IMPORTANT RADIONUCLIDES IN HIGH LEVEL NUCLEAR WASTE DISPOSAL: DETERMINATION USING A COMPARISON OF THE EPA AND NRC REGULATIONS Virginia M. Oversby This paper was prepared for submittal to Nuclear and Chemical Waste Management February 1986 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. - QLJ Important Radionuclides in High Level Nuclear -Waste Disposal: Determination Using a Comparison of the EPA and NRC Regulations Virginia M. Oversby Earth Sciences Department Lawrence Livermore National Laboratory Livermore, CA 94550 Preprint - for submission to Nuclear and Chemical Waste Management ABSTRACT The performance objective for the engineered barrier system given in the NRC regulations (10CFR60) is used to determine a maximum release rate for each significant radionuclide for a generic repository containing PWR spent fuel. This release rate, integrated over the times during which release would occur, is then compared to the EPA requirements on limitation of total releases to the accessible environment. The amount by which the releases allowed under the NRC regulations exceeds the EPA requirements is an indication of the importance of the radionuclide for performance assessment purposes. Nuclides for which NRC-allowed releases from the engineered barrier system greatly exceed those allowed by EPA to the accessible environment will need to be controlled either by limiting their release at the EBS boundary to values that are lower than the NRC requirements or by reducing the amounts of these nuclides that reach the environment by processes that occur during transport. The simplest case, which assumed only the minimum performance required in 1OCFR60 on control of release rates, results in the identification of 17 chemical elements for which data on solubility and sorption would be needed for use in site performance assessment. Of these, americium and plutonium are by far the most important. The other actinides, carbon, and nickel are also important. If the assumption of congruent dissolution is imposed, with a 1% rapid release spike for cesium, iodine, carbon, and technetium, the list of elements reduces to 13, with iodine, cesium, selenium, and palladium being eliminated from the list. The importance of americium is greatly reduced in this case and plutonium becomes the most important element. A final analysis, which assumed a congruent dissolution rate of one part in 1,000,000 per year, results in a list of at most seven important elements. With reasonable assumptions the list can be narrowed to just americium and plutonium. All of the considerations point to the importance of understanding the behavior of americium and plutonium under conditions that are relevant to the waste form dissolution process and under processes that might pertain during transport from the repository to the accessible environment. Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. - 1 - INTRODUCT ION The Nevada Nuclear Waste Storage Investigations Project NNWSI) is studying the tuffaceous rocks at Yucca Mountain, Nevada, to evaluate their potential for use as a high level radioactive waste repository. As part of the NNWSI Project, Lawrence Livermore National Laboratory (LLNL) is responsible for the design of waste packages, the testing of waste package components under a range of possible repository environments, and the prediction of the performance of the waste package and its near field environment over the time periods required by the regulations related to high level waste repositories. LLNL is also responsible for development of EQ3/6, a geochemical modelling code that uses a collection of thermodynamic data to calculate the reaction progress between aqueous solutions and solids. For both of these tasks, an understanding of the individual regulations and their interrelationships is necessary to guide the direction of the work. The Environmental Protection Agency (EPA) has issued a final rule, 40 CFR Part 191, that provides generally applicable standards for the management and disposal of spent nuclear fuel and high level radioactive wastes. The long term requirements for performance of the repository are given in section 191.13 "Containment Requirements". These requirements limit the total quantities of radionuclides that are predicted to be released to the accessible environment over a period of 10,000 years. Cumulative releases from all significant processes and events must "have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table 1" of 40 CFR 191 and "less than one chance in 1,000 of exceeding ten times the quantities calculated according to Table 1" (Reference 1). The values given in the EPA rule limit the releases of alpha-emitting radionuclides to 100 curies per 1000 metric tons of heavy metal (MTHM) except for thorium isotopes, for which the value is 10 curies. For radionuclides that do not decay by alpha emission, the general limit is 1000 curies per 1000 MTHM; exceptions are carbon-14 (100 curies), iodine-129 (100 curies), and technetium (10,000 curies). In addition to meeting the individual - limitations, the sum of the releases from all radionuclides must be such that - 2 - n E Ri 1 where Qi is the calculated release for radionuclide RLI is the Table 1 release limit for radionuclide I. and n is the number of radionuclides contributing to the sum The EPA rule also contains two "protection requirements", one related to individual dose limits and one related to special sources of ground water. Both of these limits apply to the first 1000 years after disposal and "undisturbed performance" of the disposal system. At present there is no source of water near the Yucca Mountain site that would qualify under the 40 CFR 191 definition of "special source of ground water." The individual dose limit will probably not be difficult to meet, given the long travel times that are calculated for movement of water through the unsaturated zone under the expected conditions of flux (Sinnock et al., 2). The Nuclear Regulatory Commission issued a rule for the licensing of geologic repositories for high level waste (10 CFR Part 60) in 1983, before the EPA rule had been finalized (Reference 3). This rule may need to be amended to reflect the content of the final EPA rule; however, for the purposes of identifying the radionuclides f most importance to the performance of a repository, the present NRC rule is adequate. The rule states in part that "the engineered barrier system shall be designed, assuming anticipated processes and events, so that ... (B) The release rate of any radionuclide from the engineered barrier system following the containment period shall not exceed one part in 100,000 per year of the inventory of that radionuclide calculated to be present at 1,000 years following permanent closure, or such other fraction of the inventory as may be approved or specified by the Commission; provided that this requirement does not apply to any radionuclide which is released at a rate less than 0.1% of the calculated total release rate limit. The calculated total release rate limit shall be taken to be one part in 100,000 per year of the inventory of radioactive waste, originally emplaced in the underground facility, that remains after 1,000 years of radioactive decay" (10 CFR 60, section 60.113 (a)(l)(ii)). - 3 - The NRC performance objective for the engineered barrier system, quoted above, can be used as the basis for evaluating which radionuclides will be the most significant in determining the performance of the repository system. We will first determine, for the case of average spent fuel, what the maximum allowed release rates would be for individual radionuclides. These release rates, integrated over the time of release, can then be compared to the EPA cumulative release limits to determine how much lower the release rates must be, or how much further control on releases to the accessible environment must be provided by the site characteristics, in order to achieve compliance with the EPA limits. These calculations can provide generic guidance that is independent of site characteristics or waste form performance models; the results are simply consequences of the EPA and NRC regulations taken together. Once the key radionuclides have been identified, researchers and designers for each individual site can determine whether the additional control of releases of specific important radionuclides will be best achieved through engineered barrier system design features or through retardation properties of the site geologic media. This information can then be used to set priorities for the research and development program for the site. - 4 - RELEASE RATES BASED ON THE NRC PERFORMANCE OBJECTIVE The Performance Objective for Release Rate The NRC statement of the performance objective for the engineered barrier system limits the release of individual radionuclides to one part in 100,000 per year of their inventory at 1,000 years after closure of the repository, or to 0.1% of the calculated total release rate limit. The calculated total release rate limit is based on one part in 100,000 of the "inventory of radioactive waste, originally emplaced in the underground facility, that remains after 1,000 years of radioactive decay." (Reference 3). A close examination of the wording shows that two different times are stated for the inventory calculations. The time for determining the calculated release rate limit is 1,000 years after emplacement, while the time for the individual isotope release rate calculations is 1,000 years after closure of the repository. No time period over which this performance objective would apply is stated in the rule.
Recommended publications
  • Light Isotopes of Berkelium and Californium
    Lawrence Berkeley National Laboratory Recent Work Title LIGHT ISOTOPES OF BERKELIUM AND CALIFORNIUM Permalink https://escholarship.org/uc/item/1fm7b1fp Author Chetham-Strode, Alfred Publication Date 1956-06-26 eScholarship.org Powered by the California Digital Library University of California .... I UCRL 3322 UNIVERSITY OF CALIF-ORNIA .. i/ I / LIGHT ISOTOPES OF BERKELIUM AND CALIFORNIUM •' TWO-WEEK LOAN COPY This is a Library Circulating Copy r 'which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dioision, Ext. 5545 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of · California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. UCRL- 3322 Chemistry Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Berkeley, California Contract No. W-7405-eng-48 LIGHT ISOTOPES OF BERKELIUM AND CALI~ORNIUM Alfred Chetham-Strode, Jr.
    [Show full text]
  • 1. Public Health Statement
    AMERICIUM 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about americium and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal cleanup activities. Americium has been found in at least 8 of the 1,636 current or former NPL sites. However, the total number of NPL sites evaluated for americium is not known. As more sites are evaluated, the sites at which americium is found may increase. This information is important because exposure to americium may harm you and because these sites may be sources of exposure. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are normally exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. However, since americium is radioactive, you can also be exposed to its radiation if you are near it. External or internal exposure to radiation may occur from natural or man-made sources. Naturally occurring sources of radiation are cosmic radiation from space or naturally occurring radioactive materials in our body or in soil, air, water, or building materials. Man-made sources of radiation are found in consumer products, industrial equipment, atom bomb fallout, and to a smaller extent, from hospital waste and nuclear reactors.
    [Show full text]
  • EPA Facts About Americium-241 July 2002
    Argonne National Laboratory, EVS Human Health Fact Sheet, August 2005 Americium What Is It? Americium is a malleable, silvery white metal that tarnishes slowly in dry air at room temperature. Americium does not occur naturally but is produced artificially Symbol: Am by successive neutron capture reactions by plutonium isotopes. There are sixteen known isotopes of americium and all of them are radioactive. Atomic Number: 95 (Isotopes are different forms of an element that have the same number of (protons in nucleus) protons in the nucleus but a different number of neutrons.) Americium-241 was first produced in 1944 in a nuclear reactor at the University of Chicago. Atomic Weight: - Dr. Glenn Seaborg gave the new element its name in 1946 in honor of the (not naturally occurring) continent on which it was discovered. Of the sixteen radioactive isotopes, only three have half-lives long enough to warrant concern at Department of Energy (DOE) environmental management sites: americium-241, americium-242m, and americium-243. The half-lives of these three isotopes range from 150 to 7,400 Radioactive Properties of Key Americium Isotopes years, while those of the other and Associated Radionuclides Specific Radiation Energy (MeV) isotopes are less than a day. Half- Decay Isotope Activity Americium-241 is generally the Life Mode Alpha Beta Gamma most prevalent isotope at DOE (Ci/g) (α) (β) (γ) sites such as Hanford. It has a Am-241 430 yr 3.5 α 5.5 0.052 0.033 half-life of 430 years and decays Am-242m 150 yr 9.8 IT 0.025 0.044 0.0051 by emitting an alpha particle Am-242 16 hr 820,000 β, EC - 0.18 0.018 with attendant gamma radiation.
    [Show full text]
  • Americium Cas #7440-35-9
    AMERICIUM CAS #7440-35-9 Division of Toxicology ToxFAQsTM April 2004 This fact sheet answers the most frequently asked health questions (FAQs) about americium. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Very low levels of americium occur in air, water, soil, and food, as well as in smoke detectors. Exposure to radioactive americium may result in increased cancer risk. Americium has been found in at least 8 of the 1,636 National Priorities List (NPL) sites identified by the Environmental Protection Agency (EPA). What is americium? ‘ Americium strongly sticks to soil particles and does not travel very far into the ground. Americium is a man-made radioactive chemical. Americium ‘ Plants may take up small amounts of americium from the has no naturally occurring or stable isotopes. Two soil. important isotopes of americium are americium 241 (241Am) ‘ Fish may take up americium, but little builds up in the (read as americium two-forty-one) and 243Am. Both isotopes fleshy tissue. In shellfish, americium is attached to the shell have the same chemical behavior in the environment and the and not to the parts you normally eat. same chemical effects on your body. How might I be exposed to americium? 241Americium is used in ionization smoke detectors.
    [Show full text]
  • An Investigation of the Isotopes of Americium and Curium
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title AN INVESTIGATION OF THE ISOTOPES OF AMERICIUM AND CURIUM Permalink https://escholarship.org/uc/item/9z7727pf Author Higgins, Gary Hoyt. Publication Date 2011-02-01 eScholarship.org Powered by the California Digital Library University of California UCRL 1796 Unclassified Chemistry Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Contract No o W-7405=eng=48 AN INVESTIGATION OF THE ISOTOPES OF AMERICIUM AND CURIUM Gary Hoyt Higgins (Thesis) June» 1952 Berkeley 9 California. TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS 3 ABSTRACT 4 Part I. INTRODUCTION . 5 II. EXPERIMENTAL METHODS 8 A. Bombardment Techniques 8 B. Chemical Procedures 8 C. Counting Techniques and Equipment . 10 III. RESULTS AND CONCLUSIONS 12 A. Am240 12 B. Am239 13 C. Am238 13 D. Am237 16 Eo Cm241 16 F. Cm240 19 G. Cm239 24 H. Cm238 27 I. General 29 ACKNOWLEDGNENTS 33 APPENDIX 34 REFERENCES 38 -2- LIST OF ILLUSTRATIONS Figure Page I. Pulse analysis of alpha particles of americium produced by bombarding Pu239 with 19 Mev deuterons . • 0 14 2. Decay of americium produced by bombardment of pu239 with 19 Mev ,deuterons 15 3. Decay of americium produced by bombardment of pu239 wi th 30--50 Mev deuterons 17 4. Alpha pulse analysis of particles from americium produced by bombarding Pu239 with 30-50 Mev deuterons. 18 5. Decay of curium produced by bombarding pu239 with 27 Mev helium ions 20 6. Alpha pulse analysis of curium produced by bombarding pu239 with 27 Mev helium ions . • . .. 2l 7. Dec~y of curium produced by bombarding Pu239 with 38 Mev helium ions 22 8.
    [Show full text]
  • 19660018236.Pdf
    NASA PRHS- pt .1 c.1 F1NA.L REPORT PROPERTIES OF RADIOISOTOPE HEAT SOURCES Contract NAS 5-9156 by COOK ELECTRIC COMPANY TECH-CENTER DIVISION MORTONGROVE, ILLINOIS Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION , GODDARD SPACE FLIGHT CENTER , ,. ADVANCED POWER SOURCES SECTION GREENBELT, MARYLAND r -- ~ NASA CR-75439 ' Source: STAR, I v.4 81.5. TECH LIBRARY KAFB. NM FINAL REPORT PROPERTIES OF RADIOISOTOPE HEAT SOURCES 25 March 1965 to 31 August 1965 PART I (UNCLASSIFIED) Contract NAS 5-9156 COOK ELECTR.IC COMPANY TECH-CENTER DIVISION MORTONGROVE, ILLINOIS Pr epa red for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER ADVANCED POWER SOURCES SECTION GREENBELT, MAR-YLAND FINAL REPORT TITLE : Properties of Radioisotope Heat Sources CONTRACTOR Tech-CenterDivision Cook Electric Company Morton Grove, Illinois PERIOD: From 25 March 1965 to 31 August 1965 CLIENT:National Aeronautics and Space Administration Goddard Space Flight Center Advanced Power Sources Section Greenbelt,Maryland Mr. Dale Harris, Program Manager CONTRACT: NAS 5-9156 Program Manager D. E. Lehd6, Manager Undersea Warfare and Instrumentation Section ABSTRACT A report outlining the best available unclassified information on the nuclear, chemical, and physical properties of nine SNAP isotopes was prepared for NASA/GSFC Greenbelt, Maryland, Advanced Power Sourc.es Section. The isotopes reviewed are: Sr-90, Cs-134,Cs-137, Ce-144,Pm-147, Po-210, Pu-238, Cm-242, Cm-244. The properties reviewed were (1) Half Life; (2) Neutrons/Spontaneous Fission; (3) Neutrons from Spontaneous Fission; (4) Other sources of Radiation; (5) Energy Levels and Decay Schemes; (6) Fuel Forms; (7) Material Compatibility; (8) Effects of Impurities; (9) Thermal Conductivity; (10) Power Density; (11) Specific Power; (12) Heat Capacity; (13) Heat of Fusion; (14) Weight Density; (15) Melting Point; (16) Boiling Point; (17) Specific Activity; (18) Isotope Production, Availability,and Cost.
    [Show full text]
  • Nuclear Terrorism
    Nuclear terrorism Jan Willem Storm van Leeuwen Independent consultant member of the Nuclear Consulting Group July 2019 [email protected] Note In this document the references are coded by Q-numbers (e.g. Q6). Each reference has a unique number in this coding system, which is consistently used throughout all publications by the author. In the list at the back of the document the references are sorted by Q-number. The resulting sequence is not necessarily the same order in which the references appear in the text. m23terrorism20190719 1 Contents 1 Nuclear ex[losives Uranium Enrichment of uranium Uranium-233 Plutonium Neptunium-237 Americium 2 Nuclear terrorism Threats MOX fuel Safeguards of plutonium Safeguards of HEU and uranium-233 Safeguards of neptunium and americium Dirty bomb 3 Illicit trafficking and theft Failing nuclear supervision Uncontrollable transports of nuclear materials Illegal dumping at sea 4 Nuclear security and reprocessing of spent fuel Separation of fissile materials Roots of reprocessing Security issues of the breeder and P&T cycles Benefits of reprocessing Keep spent fuel elements intact 5 Vulnerability of nuclear installations Mass casualty attacks Armed conflicts Natural disasters m23terrorism20190719 2 1 Nuclear explosives Uranium An atomic bomb can be made from materials containing sufficient fissile nuclides to sustain a divergent fission chain reaction. Uranium as found in nature contains 0.7% uranium-235, the only fissile nuclide occurring in nature. The remaining 99.3% consists of U-238 and traces of U-234, both nuclides are not fissile. Natural uranium is not suitable for bombs, it has to be enriched in U-235 to make a nuclear explosion possible.
    [Show full text]
  • AMERICIUM Element Symbol: Am Atomic Number: 95
    AMERICIUM Element Symbol: Am Atomic Number: 95 An initiative of IYC 2011 brought to you by the RACI ANITA WANLESS www.raci.org.au AMERICIUM Element symbol: Am Atomic number: 95 Americium is a malleable, silvery white metal that tarnishes slowly in dry air at room temperature. Americium does not occur naturally but is produced artificially by successive neutron capture reactions by plutonium isotopes. There are sixteen known isotopes of americium and all of them are radioactive (Isotopes are different forms of an element that have the same number of protons in the nucleus but a different number of neutrons.) Americium-241 was first produced in 1944 in a nuclear reactor at the University of Chicago. Dr. Glenn Seaborg gave the new element its name in 1946 in honour of the continent on which it was discovered. The researchers at first referred to americium as “pandemonium” owing to the difficulties they encountered trying to isolate it from another new element with which it was very closely associated, curium - or “delirium” as it was first called. Americium is used as the active element in domestic smoke detectors. The americium is present in the form of fine particles rolled into a metallic foil. In this form it cannot be suspended in air and inhaled. In Australia, individual smoke detectors can be discarded in household garbage. The amount of americium-241 in a single smoke detector is negligible compared with the natural radioactivity in one cubic metre of soil. In addition, due to the construction of these detectors the americium is highly immobile in the environment, so the associated environmental risks are very low.
    [Show full text]
  • Rapid Radiochemical Method for Curium- 244 in Water Samples for Environmental Remediation Following Radiological Incidents
    www.epa.gov/radiation May 2017 EPA 402-S17-001 Revision 0 Rapid Radiochemical Method for Curium- 244 in Water Samples for Environmental Remediation Following Radiological Incidents U.S. Environmental Protection Agency Office of Air and Radiation Office of Radiation and Indoor Air National Analytical Radiation Environmental Laboratory Montgomery, AL 36115 Office of Research and Development National Homeland Security Research Center Cincinnati, OH 45268 Rapid Radiochemical Method for Curium-244 in Air Particulate Filters, Swipes and Soils Revision History Revision 0 Original release. 05-01-2016 This report was prepared for the National Analytical Radiation Environmental Laboratory of the Office of Radiation and Indoor Air and the National Homeland Security Research Center of the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development. It was prepared by Environmental Management Support, Inc., of Silver Spring, Maryland, under contract EP-W-13-016, task order 014, managed by Dan Askren. This document has been reviewed in accordance with EPA policy and approved for publication. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names, products, or services does not convey EPA approval, endorsement, or recommendation. Rapid Radiochemical Method for Curium-244 in Water Samples RAPID RADIOCHEMICAL METHOD FOR CM-244 IN WATER SAMPLES FOR ENVIRONMENTAL REMEDIATION FOLLOWING RADIOLOGICAL INCIDENTS 1. Scope and Application 1.1. This method provides for the rapid determination of 244Cm in water samples. 1.2. The method uses radiochemical separation techniques to rapidly isolate curium from a water matrix using 243Am tracer as a yield monitor.
    [Show full text]
  • The Radiochemistry of Americium and Curium
    mLs-IIs-3G05 THE RADIOCHR+ISIIH OF AMERICIIRJIMD CURIUM Urlivweity of’ California Los Alam9, California January 1960 U.S. DEPARTMENT OF COMMERCE NationalTwhnkal InformatloaSmlco National . Academy d Sciences - NUCLEAR SCIENCESERIES d Amerkiwm fm’dlCwkn-% ... ... -- . .. ..” COMMITTEE ON NUCLEAR SCIENCE John Huixmgn, CYrar”rman.Nuclear Structure Re-rch Labamtory lfton~ A. Tombmilo, Wee ~ahxim California Institum of TachnoIogy C. K. Rad. Exacutiw Sacnrrary. N’mend XMY of Sciarrcas Lowell M. 8ollinW, Aqomu Natkmal Mror-stow ~ Dyar, Unititv of Washington Ruaaell Hearh, ~rojet Nuclear Co., Inc. Roy K. Mtddlaton, Uniwtity of Pernaylvmria 1. Lon ~rgan, Columbia -tifie lrrd~strim G. Davis OKallay, Oak Rim National Laboratory G. C. Phillip. Rice Uniwmity Ham N. Wagner,Jr.. The Johm Hopkins Medical Instinmona Josph Wen~, Erookhawn Nsrtiomtl Laboratory Sboldon Wolff, Uniwraity of Califorrm rhien-Shiung Wu. Calumbia Uniwrsty AJaxandm Zudmr, Oais Ridga National La&ratow .- Liaison Members William S. Rodney, National Scianca Foundation Gsorga L. Rogos. (J. S. Department of Enaqy SUBCOMMITTEE ON. RADIC)CHEMISTRY G. 0aui3.=dlby.’Chair.man. D& Rim National Laoorato~ Glsn E. Gordon. Uni.-tiW of Maryland Roffc I-I. Herbar. Rutgarx Univaraky John A. Midtol. Lawrence Livmrrmm Lanorazory Harold A. O’Brien. Jr.. Los Alamm Scimt.fic Lnboratorv Richard W. Pwtmta, Battalta Pacific Normwast Laborarorms Anaranr F. Stahney. Argonna National Lahwarory Kurt Wolfsbarg, Los Alamos .%ant!fic Laboratmy Liaison Members . &hn L. Burnarsa, U. S. Depwbtrant of Ermrgy Frad Finoaia, National Sciinm Foundation (hla~mhip = of November 19771 ---- ...- . ,-- I . .. The Radiocbwnishy d Americium =5cI Curium- mlulaF. 1960 u.s -. %blished W ~=hlli~%l ln+orma~ion C~12i .- U S. ATOMK ENERGY COid%115Sl UH .- -.
    [Show full text]
  • Americium-241 It''
    It" • DOE/LLW-130 LP RECEIVE w. NOV 2 1 1995 O SCI $ National Low-Level Waste Management Program 8$ Radionuclide Report Series V-' Volume 14: Americium-241 it'' Nations/ Low-Level Waste Management Program 1 September 1995 ^ m ^^^^mm^^mm^-^n^ EriV DiSTfiiBUTiON OF WIS DOCUMENT IS UHLMTED DOE/LLW-130 National Low-Level Waste Management Program Radionuclide Report Series Volume 14: Americium-241 M. R. Winberg R. S. Garcia Published September 1995 Idaho National Engineering Laboratory Lockheed Idaho Technologies Company Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Under DOE Idaho Operations Office Contract DE-AC07-94ID13223 DISTRIBUTION OF ISIS DOCUMENT 18 UNLBTED ° ' »* DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ABSTRACT This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 (241Am). This report also includes discussions about waste types and forms in which 241Am can be found and 241Am behavior in the environment and in the human body. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi• bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Estimation of the Amounts of Curium and Americium Isotopes in SNF of the BN-600 Reactor E
    AtomFuture-2017 XIII International Youth Scientific and Practical Conference “FUTURE OF ATOMIC ENERGY - AtomFuture 2017” Volume 2017 Conference Paper Estimation of the Amounts of Curium and Americium Isotopes in SNF of the BN-600 Reactor E. I. Lukyan, G. L. Khorasanov, and А. М. Terekhova Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Studgorodok 1, Obninsk, Kaluga region, 249040, Russia Abstract The neutron-physical characteristics of curium and americium in spent nuclear fuel (SNF) of the BN-600 reactor were considered in the work. With the help of the Serpent software complex, several models of the BN-600 reactor fuel assembly with different enrichment of fuel by U-235 were built. In BN-600, with the probability of dividing Am-241 by no more than 15%, incomplete burning of minor actinides (MA) occurs and even the accumulation of Cm-244, which is dangerous for storage. Corresponding Author: E. I. Lukyan [email protected] Received: 23 December 2017 Accepted: 15 January 2018 1. Introduction Published: 21 February 2018 Publishing services provided by Considering nuclear energy as a large-scale and long-term method of energy produc- Knowledge E tion, it is necessary to develop and justify an effective method of destroying harmful E. I. Lukyan et al. This article wastes of this production [1]. is distributed under the terms of the Creative Commons Long-lived radionuclides accumulated in SNF are MA. The isotopes of americium and Attribution License, which curium contribute greatly to the radioactivity of SNF and represent the greatest danger permits unrestricted use and redistribution provided that the to the environment.
    [Show full text]