KPCC)  Commissioning of 0.1 MW Test-Bed (Dec ‘10) at KOMIPO’S Boryeong Thermal Power Station

Total Page:16

File Type:pdf, Size:1020Kb

KPCC)  Commissioning of 0.1 MW Test-Bed (Dec ‘10) at KOMIPO’S Boryeong Thermal Power Station 2012 IERE-KEPCO Korea Forum November 8, 2012 Jeom-In Baek KEPCO Research Institute 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760, Korea Tel: +82-42-865-5256 e-mail: [email protected] Contents Introduction Post-combustion Technology • Dry sorbent technology • Advanced amine technology Pre-combustion Technology Chemical Looping Combustion The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea S Introduction The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Role of CCS for CO2 Reduction CCS: One of the major options for CO2 reduction ETP 2010 (IEA) ETP 2012 (IEA) Power generation : key sector for CCS application CCS: Carbon Capture and Storage The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea CCS Policy and KEPCO’s Strategy CCS-related Policy in Korea Commitment of the 30% GHG reduction below BAU by 2020 (Nov.’09) Framework Act on Low Carbon, Green Growth (14 April 2010) Presidential Committee on Green Growth: Major Policies and Plans including CCS Announcement of CCS Master Plan (July 13 2010) CO2 will be regulated based on the Clean Air Conservation Act (amended 13 Jan. 2010) Established Korea CCS Association in MKE, leading by KEPCO (Nov. 2010) KEPCO’s CCS R&DD Strategies Capture Post-combustion: solid sorbent, advanced amine Pre-combustion: solid sorbent, wet solvent Oxy-fuel, chemical looping combustion Storage Geological Storage The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Korea’s CCS Demonstration Plan Two Large-scale integrated CCS demonstrations by 2020 Stage 1. Pilot demo Stage 2. Large-scale demo (10-30 MW) (100-300 MW) 2010 2014 2014 2018 KCCS-1 Post-Combustion Demonstration (Dry or Wet) FEED (Link to Storage) Pilot Plant 2012 2016 2016 2020 KCCS-2 Oxy-fuel or IGCC Demonstration FEED Pilot Plant (Link to Storage) KEPCO is leading the development of large scale CCS commercialization technologies. The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Post-combustion CO2 capture - Dry sorbent technology The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Post-combustion CO2 Capture: solid sorbent KEPCO’s Dry Regenerable Sorbent Technology KEPCO’s Solid Sorbent KIER’s Fluidized-Bed (FB) CO2 Capture Process Commissioning of 0.5 MW Capture Facility at KOSPO’s Hadong Thermal Power Station (Unit # 3) in March 2010. Achieved >85% Removal from 0.5 MW Plant Schematic of Dry Post-Combustion Technology 10 MW Pilot Plant (‘10~‘14) & 300 MW Demo (‘14~’18) 10 MW site: KOSPO’s Hadong Thermal Power Station (Unit #8) 300 MW site: KOSPO’s Samcheock Power Station (500 MW CFBC) Expecting Less $, Space, and water consumption etc. Participant: KEPCO RI, TODA ISU, KIER, KEPCO E&C, Univ.s, KC Cottrell, KEPCO and its 5 Thermal Power Co., MKE (10 MW+), MEST (0.5 MW) KIER: Korea Institute of Energy Research KOSPO: KOREA SOUTHERN POWER CO. LTD. The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea 0.5 MW Pilot Plant: dry regenerable sorbent Scale: 0.5 MW slip-streamed from 500 MW coal-fired power plant(SC) Capacity: 10 tCO2/d Flue gas: coal-fired boiler Process: KIER’s Fluidized-bed Process Sorbent: KEP-CO2P2 &P3 85±5% CO2 capture rate > 90% CO2 product purity Startup: 2010.03. Pilot plant area: 10 x 6 x 24(H) m Location: Hadong, Korea. KOSPO’s Hadong Thermal Power 0.5 MW test-bed at KOSPO’s Hadong coal-fired power plant, Station (unit 3) The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea 10 MW Pilot plant • Capacity: 200 t-CO2/day • Source Gas : flue gas of coal fired boiler(CO2: 14%, O2: 5%, SO2: 20~30ppm) • Plant location : KOSPO’s Hadong Thermal Power station(unit 8) • Commissioning : September, 2013 (# Groundbreaking Ceremony : 24 August, 2012) 3D-view Plant location 10MW CO2 Capture Demo Site Hadong Power Plant The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Post-combustion CO2 capture - Advanced amine technology The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Post-Combustion CO2 Capture: Adv. Amine KoSol process for CO2 capture(KPCC) Commissioning of 0.1 MW Test-bed (Dec ‘10) at KOMIPO’s Boryeong Thermal Power Station Achieved very low regeneration energy (KoSol-4: 3.0~3.1 GJ/tCO2) from 0.1 MW Test bed with 90 % CO2 removal efficiency 0.1MW Test bed at Boryeong coal-fired power plant 10 MW Pilot Plant (‘10~‘14) and 500 MW Demo (‘14~‘18) at KOMIPO’s Boryeong Thermal Power Station Participants: KEPCO RI, Daelim Ind., KEPCO E&C, Univ.s, POSCO E&C, KEPCO & its 5 Thermal Power Co., MKE KOMIPO: KOREA MIDDLE POWER CO. LTD. The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea 0.1 MW pilot plant: adv. amine Scale: 0.1 MW slip-streamed from 500 MW coal-fired power plant(SC) Capacity: 2 tCO2/d Flue gas: coal-fired boiler Absorber Process: KPCC (KoSol Process for CO2 Capture) Stripper Solvent: KoSol-4 90% CO2 capture rate Reboiler 99% CO2 product purity Startup: 2010. 12. 7. Plot plant area: 12 x 6.5 x 25(H) m Location: city of Boryeong, Korea. KOMIPO’s Boryeong Thermal Power Station (unit 8) 0.1 MW Test-bed at Boryeong coal-fired power plant The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Comparison of various amine technology The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea 10 MW Pilot plant • Capacity: 200 t-CO2/day • Source Gas : flue gas of coal fired boiler(CO2: 14%, O2: 5%, SO2: 25ppm) • Plant location : KOMIPO’s Boryong Thermal Power station(unit 8) • Scheduled Completion date : March, 2013 (# Groundbreaking Ceremony : 02 March, 2012) 3D-view Plant location Target -CO2 capture efficiency: 90% - Regeneration Energy: <2.8GJ/tCO2 - 1000 h continuous operation -CO2 capture cost: <30 US$/tCO2 The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Pre-combustion CO2 capture - Dry sorbent technology The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Pre-Combustion CO2 Capture KEPCO’s Solid Sorbent Pre-Combustion CO2 Capture Strategic Approach . Minimize energy penalty and cost for CO2 capture Maintain high T & P through the whole process CO2 CO Storage Compression 2 Oxygen Coal Warm Gas SEWGS Combined 가스화기Gasifier Cleanup By One Loop Process Cycle Warm Gas Clean-up . Solid sorbent (KEPCO RI) & FB Process (KIER) One Loop Process for Pre-combustion CO2 Capture . Solid Sorbents (KEPCO RI) & One-loop FB Process (KIER) H2S WGS Scale-up Schedule of Process Development Sorbent Catalyst . 0.1 MW ('11) → 1~10 MW (‘18) → 300 MW (’18~) HCl CO2 Participant: KEPCO RI, KIER, IAE, KEPCO and WP, Univ.s sorbent Sorbent The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Pre-combustion CO2 Capture Technology CO2 WGS: CO + H2O = CO2 + H2 Compression CO2~3 bar Coal 2-3Stage Multistage Gasifier 40 bar Gas CC WGS CO Captue 800-1600oC Cleanup 2 300-500oC O 400-180oC -20~40oC H2 2 ~35 bar Gas Cleanup Gas Cleanup + or Sour WGS CO2 Capture Selexol CO2 Capture Process Coal SEWGS H2 Gasifier 40 bar HGCU ~35 bar CC o o (WGS + CO2) o 800-1600 C 400-550 C o 300-500 C O2 200-500 C 특징: CO 1) Maintaining High P & T DSR 2 ~35 bar CO 2) High CO conversion w/ Regenerator 2 low steam Compression 3) CO conversion at low T Sx 4) No Heating/cooling of gas 5) One loop process for WGS & CO2 capture One Loop SEWGS (CO2 Capture) Proce The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea Hot Gas Cleanup Technology ■ Hot gas cleanup (0.1 MW scale) ▷H2S sorbent: Sorption capacity >10wt%, Mechanical strength(MS) < 15% (AI) ▷HClsorbent: HCl soption capcity >14wt%, MS < 10% (AI) ▷0.1 MW Continuous 7 days operation with real syngas from 3 tcoal/d gasifier -HS (& HCl) removal: 99.8%+ 2 100 2500 50 ▷DSRP catalyst: 98% S recovery 98 2000 40 H2S Removal 96 1500 30 COS Removal Total Sulfur Removal Inlet H2S Concentration 94 1000 Inlet COS Concentration 20 ① Desulfurizer, ② Regenerator, Outlet H2S Concentration Outlet COS Concentration ③ Loopseal , ④ Multi-Cyclone, [%] Sulfur Removal Inlet Concentration [ppmv] ⑤ Gas Preheaters, 92 500 10 Outlet Concentration [ppmv] ⑥ Dehalogenizer, ⑦ Preheater 90 0 0 7-22 16:00 7-22 18:00 7-22 20:00 7-22 22:00 7-23 00:00 7-23 02:00 Time [M-d HH:mm] 0.1 MW (100 Nm3/h) Inlet Conc Outlet Conc. 0.1 MW HGC unit at IAE (Institute for Advanced Engineering),, H2S : ~ 2000 ppm, H S : < 4 ppm Designed and operated by Korea Institute of Energy Research 2 COS : 150 ~ 200 ppm COS : < 1 ppm The 12th IERE GM/The IERE – Korea Forum, 7 – 9 November 2012, Seoul, Korea One-loop SEWGS CO2 Capture ■ One Loop Process (WGS + CO2 Capture) (5 kW scale) ▷WGScatalyst: CO conversion >95%, Mechanical strength 8.2~40% (AI) ▷CO2 Sorbent: CO2 sorption capacity >6 wt%, Mechanical strength <10% (AI) ▷ 5 kW One Loop SEWGS BSU after hot gas cleanup unit CO capture efficiency: >75% 5 kW SEWGS unit at IAE (Institute for Advanced Engineering), 2 Designed and operated by Korea Institute of Energy Research CO conversion: >95% 3 CO absorbent : PKM1-SU Syngas 1 Nm /hr Pressure : 17 bar absolute 2 SEWGS : 239oC WGS catalyst : MDC-7 Steam:CO = 3:1 REG.
Recommended publications
  • GS Energy Brochure Download
    Company Introduction COPYRIGHT © 2012 GS ENERRGY. All RIGHTS RESERVED GS Energy Profile p.03 Subsidiaries p.04 Business Portfolio Refining & Petrochemicals p.05 Gas & Power p.07 Exploration & Production p.12 Green Growth p.14 GS Energy R&D Center p.18 Financial Information p.19 Contact Us p.20 History p.21 COPYRIGHT © 2012 GS ENERRGY. All RIGHTS RESERVED Corporate Profile GS Energy was incorporated on January 3, 2012 as a result of GS Holdings’ spinoff of GS Caltex, its refining, marketing, chemicals and transportation arm, creating a new independent Korean energy company. Subsequently, GS Energy assumed the high growth businesses previously operated by GS Caltex including, exploration & production and renewable energy operations. Further, by acquiring GS Caltex’s electric & gas utilities operations, GS Energy has solidified its position as an integrated energy-specialized holding company. Value chain integration and operational agility are fundamental to GS Energy’s long term growth strategy. GS Energy is organized into four interrelated segments: Exploration & Production, Refining & Petrochemicals, Gas & Power and Green Growth. Our integrated business model allows us to capture synergies among our different segments and activities. Our upstream businesses include the development of oil & gas projects across the globe, from the Middle East to the Americas and Southeast Asia. Further downstream, GS Energy is currently constructing a Liquefied Natural Gas (LNG) terminal in South Chungcheong Province to optimize value chain integration and to ultimately provide a steady flow of electric power and gas to customers through various subsidiaries and affiliates. Furthermore, given our focus on sustainable growth, we have been actively developing our technical know-how in the alternative energy sector.
    [Show full text]
  • Air Quality Measures in South Korea
    Air Quality Measures South Korea 2016.12 Ministry of Environment Current Air Quality Status in South Korea Ministry of Environment Current Air Quality Status in South Korea According to NASA Satellite Air Quality Map*, South Korea is one of the most concerned countries regarding air pollution (averaged over 2014). * Its major index is NOx mostly caused by power plants and automobiles. Source: NASA Source: NASA Current Air Quality Status in South Korea Transboundary particles Influence from Neighboring Countries exacerbate Korea’s PM concentrations (Source: OECD performance review draft) For an high concentration episode (24 Feb 2014), the contribution rate of neighboring countries was analyzed as 51.94%(Source: KOSAE) * Besides, high population density and rapid industrialization led high density of fine dust Source: Korean Society for Atmospheric Environment(KOSAE) Current Air Quality Status in South Korea In terms of premature deaths caused by outdoor air pollution, South Korea is one the vulnerable countries. Premature Deaths from Outdoor Air Pollution(Unit: deaths per 100,000 capita) 80 70 76 60 50 40 49 30 33 20 23 24 10 17 12 0 Korea Japan China India USA Germany France Source: WHO(2016), Ambient Air Pollution: A Global Assessment ofSource: exposure NASA and burden of disease Source Analysis on PM2.5 Ministry of Environment Source Analysis on PM2.5 With aggravating air pollution, Korea puts an high importance on clear cause analysis (domestic sources + influence from other countries) in preparing actions to improve its aggravating air quality. • Domestic polluting-sources Baecknyeongdo Emission statistics Seoul Super-Sites (Intensive monitoring station network) Daejeon Based on the dedicated information Ulsan above, secondary formation and Gwangju contribution rate of each local part are also reflected in preparing actions.
    [Show full text]
  • HIA South Korea April 2021
    Contents Contents 1 Key Findings 4 Introduction 5 The State of Coal Power and Air Pollution in South Korea 6 Scope and Purpose of the Report 8 RESULTS 10 Emissions Load & Air Quality 10 Toxic Deposition 11 Health Impacts 13 Cumulative Cost of Coal Dependence, Past & Future 18 Recommendations 21 References 22 Appendix 1: Methods & Materials 24 Appendix 2: Stack Properties and Emissions Data 27 Appendix 3: Per-plant Results 30 About CREA The Centre for Research on Energy and Clean Air is an independent research organisation focused on revealing the trends, causes, and health impacts, as well as the solutions to air pollution. CREA uses scientific data, research and evidence to support the efforts of governments, companies and campaigning organizations worldwide in their efforts to move towards clean energy and clean air. We believe that effective research and communication are the key to successful policies, investment decisions and advocacy efforts. CREA was founded in December 2019 in Helsinki, Finland and has staff in several Asian and European countries. Authors: Lauri Myllyvirta Isabella Suarez Andreas Anhäuser Contributors: Minwoo Son The maps used in this document were prepared in accordance with South Korean regulation. CREA is politically independent. The designations employed and the presentation of the material on maps contained in this report do not imply the expression of any opinion whatsoever concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Time for a Check Up: The Health and Economic Cost of Coal Dependence in South Korea’s Power Mix Key Findings ● Exposure to air pollution from coal-fired power plants (CFPPs) in South Korea is estimated to have caused approximately 9,5001 premature deaths since 1983, costing approximately USD 16 billion in healthcare and welfare expenditures, as well as loss of productivity and life expectancy.
    [Show full text]
  • Assessment of Water Supply Stability for Drought-Vulnerable Boryeong Multipurpose Dam in South Korea Using Future Dry Climate Change Scenarios
    water Article Assessment of Water Supply Stability for Drought-Vulnerable Boryeong Multipurpose Dam in South Korea Using Future Dry Climate Change Scenarios Wonjin Kim 1, Jiwan Lee 1,* , Jinuk Kim 1 and Seongjoon Kim 2 1 Graduate School of Civil, Environmental and Plant Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; [email protected] (W.K.); [email protected] (J.K.) 2 School of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-444-0186 Received: 4 September 2019; Accepted: 13 November 2019; Published: 15 November 2019 Abstract: This study assessed the water supply stability for Boryeong multipurpose dam by applying future dry climate change scenarios and Soil and Water Assessment Tool (SWAT). CMCC-CM, INM-CM4, and IPSL-CM5A-MR RCP 4.5 and 8.5 scenarios were selected as the future dry conditions using Runs theory and Standardized Precipitation Index (SPI). For historical (1980–1999), present (2000–2019), and future periods (2030s, 2050s, 2070s, and 2090s) of the 6 scenarios, SWAT model was used to simulate the future dam water supply stability. The stability was evaluated in terms of reliability (RT), resilience (RS), and vulnerability (V) based on the monthly target storage. The results showed that the future RT can be decreased to 0.803 in 2050s IPSL-CM5A-MR RCP 8.5 scenario from present 0.955. The future RS and V showed the minimum value of 0.003 and the biggest value of 3567.6 106 m3 in 2070s IPSL-CM5A-MR RCP 4.5 scenario.
    [Show full text]
  • Assessing the Health Benefits of a Paris-Aligned Coal Phase out for South Korea
    ASSESSING THE HEALTH BENEFITS OF A PARIS-ALIGNED COAL PHASE OUT FOR SOUTH KOREA May, 2021 Assessing the health benefits of a Paris-aligned coal phase out for South Korea 1 AUTHORS Gaurav Ganti Anne Zimmer Andreas Anhäuser* Charlotte Plinke Lauri Myllyvirta** Carley Reynolds Deborah Ramalope Matthew Gidden Bill Hare We would like to express our gratitude to the team of Solutions for Our Climate for their review and guidance in shaping this document. A digital copy of this briefing along with supporting appendices is available at: www.climateanalytics.org/publications CITATION AND ACKNOWLEDGMENTS This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from Climate Analytics, provided acknowledgment and/or proper referencing of the source is made. This publication may not be resold or used for any commercial purpose without prior written permission from Climate Analytics. We regret any errors or omissions that may have been unwittingly made. This document may be cited as: Climate Analytics (2021). Assessing the Health Benefits of a Paris-Aligned Coal Phaseout for South Korea * Affiliation: Greenpeace ** Affiliation: Centre for Research on Energy and Clean Air Supporting science based policy to prevent dangerous climate change enabling sustainable development www.climateanalytics.org In collaboration with: Assessing the health benefits of a Paris-aligned coal phase out for South Korea 2 Key findings ● To contribute to the achievement of the Paris Agreement, South Korea needs to phase out coal from its electricity sector before 2030. The country’s 9th Basic Plan for Electricity Power Supply and Demand (9th BPESD) presents a unit-level operation schedule for coal power plants that would see nearly 27 GW of coal-fired power capacity still online in 2034, with coal eventually being phased out in 2054, almost 25 years later than is required to be Paris Agreement compatible.
    [Show full text]
  • Fuel Cell Business Introduction POSCO ENERGY Product Line-Up
    POSCO Fuel Cell Business Introduction POSCO ENERGY Product Line-up Commercialized Products 300kW 2.5MW Product Development Stage 10’sMW (in 2014) SOFC 10kW R&D Stage Marine Application, SOFC 10kW, MW’s Manufacturing Capabilities Cooperation Technology Assistance Sharpens PE&FCE Competitive Edge Stage 4 Localization■ FCE of █ 포스코에너지CELL Stage 3 · Period : 2012 ~ 2015 Localization of STACK Stage 2 · Period: 2011 ~ 2012 STACK Localization of BOP MBOP · Period: 2009 ~ 2011 STACK MBOP Stage 1 Cell STACK Complete system import from FCE, US MBOP Cell EBOP ㆍPeriod: 2004~2009 Cell EBOP STACK MBOP EBOP Cell 100% EBOP 75% 50% 0% ■ FCE █ POSCO Energy POSCO Fuel Cell Hub World’s Largest Fuel Cell Manufacturing Plant, and First One in Asia Under Construction STACK Manufacturing Factory Cell Manufacturing Factory BOP Manufacturing Factory 연료전지발전소 Fuel Cell Power Plant MCFC Dissemination Track Records in Korea: 150 MW are commercially under operation (20 places) Nowon Samcheok Boil Off Gas (BOG) Ilsan Bundang Children’s Grand Park - KOGAS (300kW) Sangam Incheon Hwaseong GGE Gwangmyung Seo-Incheon Daegu Godeok Dangjin Pohang Boryeong Large Scale Gunsan Power Generation (Grid Support) Ulsan - GGE (58.8MW) Busan Yeosu Bio Gas - Busan Wastewater Treatment Center (1.2MW) Project Reference Gyeonggi Green Energy (58.8MW) Project Schedule - Nov. 2012 : Groundbreaking / Dec. 2013 : Project Completion Expected Effect - The World’s largest Fuel Cell Power Plant - Produce Electricity (464 millions kWh / year) & Heat (195 Billions kcal / year) - Provide electricity
    [Show full text]
  • Case Study of Seosan Smart Water Management
    Mr. Sukuk Yi, Dr. Munhyun Case Study Ryu, Dr. Jinsuhk Suh, Dr. of Seosan Shangmoon Kim, Mr. Seokkyu Seo, Smart Water Mr. Seonghan Kim, K-water (Korea Water Management Resources Corporation) South Korea Seosan CASE STUDIES CASE STUDY OF SEOSAN SMART WATER MANAGEMENT Table of Contents Summary Summary 75 Water management has become increasingly important over the past decades with increase 1. Background 76 of the natural hazards and disasters caused by climate change, deteriorating water manage- ment facilities, and increased water consumption due to population growth and urbanisation 1.1 The importance of Water Management 76 in Korea. To solve these water challenges and improve the efficiency of water management, 1.2 Present conditions of Seosan 77 K-water has introduced ICT (Information and Communication Technology) in their water 1.3 Challenge description 81 management. Water management using ICT, known as Smart Water Management (SWM), enables sustainable water supply to every citizen by water resource monitoring, problem 1.4 Laws and systems related to drought 87 diagnosis, efficiency improvement and harmonising management. 2. Smart Water Management Solution 90 The Smart Seosan City project started when Seosan city asked for a smart metering system 2.1 Innovative Smart Water Management technology for the Seosan local water supply system as a drought measure in January 2016. Seosan city decided to employ smart metering to the local water system when regional and national solution proposed 91 drought reaction plans were established according to laws and plans. Before this project, 2.2. Introduction of SWM in Seosan city 92 K-water was operating smart metering as a pilot project in the Goryeng area (from January to May 2015) and had consigned Seosan’s local water supply.
    [Show full text]
  • Democratic People's Republic of Korea
    Operational Environment & Threat Analysis Volume 10, Issue 1 January - March 2019 Democratic People’s Republic of Korea APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED OEE Red Diamond published by TRADOC G-2 Operational INSIDE THIS ISSUE Environment & Threat Analysis Directorate, Fort Leavenworth, KS Topic Inquiries: Democratic People’s Republic of Korea: Angela Williams (DAC), Branch Chief, Training & Support The Hermit Kingdom .............................................. 3 Jennifer Dunn (DAC), Branch Chief, Analysis & Production OE&TA Staff: North Korea Penny Mellies (DAC) Director, OE&TA Threat Actor Overview ......................................... 11 [email protected] 913-684-7920 MAJ Megan Williams MP LO Jangmadang: Development of a Black [email protected] 913-684-7944 Market-Driven Economy ...................................... 14 WO2 Rob Whalley UK LO [email protected] 913-684-7994 The Nature of The Kim Family Regime: Paula Devers (DAC) Intelligence Specialist The Guerrilla Dynasty and Gulag State .................. 18 [email protected] 913-684-7907 Laura Deatrick (CTR) Editor Challenges to Engaging North Korea’s [email protected] 913-684-7925 Keith French (CTR) Geospatial Analyst Population through Information Operations .......... 23 [email protected] 913-684-7953 North Korea’s Methods to Counter Angela Williams (DAC) Branch Chief, T&S Enemy Wet Gap Crossings .................................... 26 [email protected] 913-684-7929 John Dalbey (CTR) Military Analyst Summary of “Assessment to Collapse in [email protected] 913-684-7939 TM the DPRK: A NSI Pathways Report” ..................... 28 Jerry England (DAC) Intelligence Specialist [email protected] 913-684-7934 Previous North Korean Red Rick Garcia (CTR) Military Analyst Diamond articles ................................................
    [Show full text]
  • Chungcheong Region Coursea. Daejeon
    Chungcheong Region Course A. Daejeon Nonsan Jecheon-si Chungju-si Danyang-gun Eumseong-gun Dangjin-gun 58. Jincheon-gun Cheonan-si Goesan-gun Uam Historic Park Taean-gun Seosan-si Asan-si Jeungpyeong-gun Yesan-gun Cheongju-si Uam Historic Park is known as the site where Song Si-yeol (pen-named Hongseong-gun Cheongwon-gun Gongju-si Boeun-gun Uam), a Confucian scholar of the late Joseon Dynasty, dedicated himself Cheongyang-gun Daejeon to his studies. The site was established as a historical park by reproducing Boryeong-si Okcheon-gun Gy ryong-si the jangpangak house (publishing center) and Confucian academy and Buyeo-gun Nonsan-si Yeongdong-gun creating a relic exhibition hall. Seocheon-gun Geumsan-gun 65, Gayang-ro 62 beon-gil, Dong-gu, Daejeon 56. 59. National Archives of Korea Donamseowon (Headquarters) Confucian Academy The National Archives of Korea, as a central archives, is charged with Donamseowon Confucian Academy was built in 1634 in commemoration establishing policies for national records management, collecting and of Kim Jang-saeng, a scholar from the Joseon Dynasty. Inside the preserving major records and archives, and providing a wide range of academy is the jangpangak house (publishing center) that houses printing archival information to the public. The institution contains an exhibition woodblocks valued for demonstrating the evolution of Korean printing hall designed to showcase trends in periodical Korean recording culture. culture. Daejeon Government Complex Building 2, 189, Cheongsa-ro, Seo-gu, Daejeon 24-4, Im 3-gil, Yeonsan-myeon, Nonsan-si, Chungcheongnam-do Korean Documentary Heritage · Travel Guide Travel · Documentary Heritage Korean 57.
    [Show full text]
  • I Love Korea!
    I Love Korea! TheThe story story of of why why 33 foreignforeign tourists tourists fellfell in in love love with Korea. Korea. Co-plannedCo-planned by bythe the Visit Visit Korea Korea Committee Committee & & the the Korea Korea JoongAng JoongAng Daily Daily I Love Korea! The story of why 33 foreign tourists fell in love with Korea. Co-planned by the Visit Korea Committee & the Korea JoongAng Daily I Love Korea! This book was co-published by the Visit Korea Committee and the Korea JoongAng Daily newspaper. “The Korea Foreigners Fell in Love With” was a column published from April, 2010 until October, 2012 in the week& section of the Korea JoongAng Daily. Foreigners who visited and saw Korea’s beautiful nature, culture, foods and styles have sent in their experiences with pictures attached. I Love Korea is an honest and heart-warming story of the Korea these people fell in love with. c o n t e n t s 012 Korea 070 Heritage of Korea _ Tradition & History 072 General Yi Sun-sin 016 Nature of Korea _ Mountains, Oceans & Roads General! I get very emotional seeing you standing in the middle of Seoul with a big sword 018 Bicycle Riding in Seoul 076 Panmunjeom & the DMZ The 8 Streams of Seoul, and Chuseok Ah, so heart breaking! 024 Hiking the Baekdudaegan Mountain Range Only a few steps separate the south to the north Yikes! Bang! What?! Hahaha…an unforgettable night 080 Bukchon Hanok Village, Seoul at the Jirisan National Park’s Shelters Jeongdok Public Library, Samcheong Park and the Asian Art Museum, 030 Busan Seoul Bicycle Tour a cluster of
    [Show full text]
  • Activity-Based Exposure Levels and Cancer Risk Assessment Due to Naturally Occurring Asbestos for the Residents Near Abandoned Asbestos Mines in South Korea
    International Journal of Environmental Research and Public Health Article Activity-Based Exposure Levels and Cancer Risk Assessment Due to Naturally Occurring Asbestos for the Residents Near Abandoned Asbestos Mines in South Korea Seungho Lee 1 , Dongmug Kang 1,2,3 , Youngki Kim 1,2,3 , Yoon-Ji Kim 2,3 and Se-Yeong Kim 1,2,* 1 Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; [email protected] (S.L.); [email protected] (D.K.); [email protected] (Y.K.) 2 Department of Preventive and Occupational & Environmental Medicine, Medical College, Pusan National University, Yangsan 50612, Korea; [email protected] 3 Environmental Health Center of Asbestos, Pusan National University Yangsan Hospital, Yangsan 50612, Korea * Correspondence: [email protected]; Tel.: +82-55-360-3173 Abstract: This study aims to evaluate the overall asbestos exposure intensity and assess the health risk to residents due to naturally occurring asbestos (NOA) near abandoned asbestos mines in South Korea. Of 38 mines, we found 19 with measured concentrations of NOA. We evaluated the average of airborne NOA concentrations according to the environmental exposure category. When evaluated regionally by dividing into two clusters, the mean concentrations in activity-based sampling (ABS) scenarios exceeded the Korean exposure limit (0.01 f/cc) in both clusters. Moreover, airborne NOA concentrations in agricultural activity (5.49 × 10−2 f/cc) and daily activity (6.95 × 10−2 f/cc) had Citation: Lee, S.; Kang, D.; Kim, Y.; the highest values for clusters A and B, respectively. The excess lifetime cancer risk of one region Kim, Y.-J.; Kim, S.-Y.
    [Show full text]
  • 980 20 KEPCO Engineering A
    Head Office in Gimcheon 269 Hyeoksin-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea Tel +82-54-421-3114 NSSS Division in Daejeon New power, KEPCO E&C makes the new global standard 989-113 Daedukdaero, Yuseong-gu, Daejeon Metropolitan City, 34057, Republic of Korea Tel +82-42-868-4000 www.kepco-enc.com pr @kepco-enc.com ­ Mission Harmonizing Humanity, the Environment and Technology Vision 2025 Global Leading Energy Solution Partner CONTENTS Core Value 06 POWER of KEPCO E&C 06 CHALLENGE Challenge Expertise Communication Reliability Safety 08 PROFESSIONALISM 10 COMMUNICATION 12 LETTER from the PRESIDENT & CEO 14 SPECIAL ACTIVITY Management goals 16 KEPCO E&C ACTIVITIES Sales Sales of future Global sales Securing 12 core 18 NUCLEAR POWER “KRW 2.5 Trillion” growth engines (Operating Profit Margin “10%”) “65%” technologies 22 THERMAL POWER “25%” 26 ENVIRONMENT 28 CONSTRUCTION Management strategies 29 OTHER BUSINESS AREAS Strengthening Securing the Strengthening Enhancing the Advancement of 30 KEPCO E&C’s PROMISE of capability growth engines of sustainable competitiveness energy solution 32 OVERSEAS BUSINESS in global of the future management of core business technologies 34 NEW & RENEWABLE ENERGY businesses energy solution system 36 EPC (Engineering, Procurement and Construction) 38 BUSINESS ETHICS 40 SOCIAL CONTRIBUTION 42 COMPANY STATUS 44 PROJECT LIST POWER of KEPCO E&C Our Challenge is to become a global power EPC contractor realizing customer value through the world-leading technology expertise. Since our foundation, we have committed to engineering technology innovation aimed at achieving safer and more economical power plant design in Korea which barely had engineering infrastructure.
    [Show full text]