United States Patent Office Patented Feb

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Feb 3,644,476 United States Patent Office Patented Feb. 22, 1972 2 Hydrodimerizations have also been taught using alkali 3,644,476 metal amalgams but low yields and great inefficiencies PREPARATION OF ADPONTRLE have been major disadvantages. U.S. Pat. 3,215,726 seeks Olav T. Onsager, Waldwick, N.J., assignor to to provide an improvement by using beta-halopropioni Halcon International, Inc. No Drawing. Continuation-in-part of applications Ser. No. trile in combination with acrylonitrile in the alkali metal 801,757 and 801,758, both Feb. 24, 1969. This applica amalgam system but still shows high production of propio tion June 23, 1969, Ser. No. 835,722 nitrile and poor yields of adiponitrile despite the use of nt. C. C07c 121/26 expensive procedures and reagents. Electrolytic hydro U.S. C. 260-465.8 5 Claims dimerization procedures suffer from the problems in 10 herent in electrolytic cell usage-proportional capital cost for increase capacity insofar as the electrolytic cells are ABSTRACT OF THE DISCLOSURE concerned, and high power costs. A process for the reductive coupling of a compound The extension of carbon chains by the reductive having the formula coupling of two groups is well known in the art. Organic 15 coupling has been accomplished for example by the well R known Wurtz reaction wherein an organic halide is XCH-CH-A coupled in the presence of metallic sodium. Similarly, wherein X is Cl, Br, or I, R is H or lower alkyl, and A organic halo compounds activated by groups such allylic, is -CN, benzylic, gem di-halides and 1,2 dihalides have been 20 coupled. For example, in British Pat. 858,514 the coupling of -bor, - R chloro substituted allylic cyano compounds is shown. or -CONR2, using as reducing agent zero valent iron or However, the coupling of non-activated halo-compounds nickel or compounds thereof. The invention especially is not shown. relates to an overall process for the production of linear 25 RELATED APPLICATIONS dimers of compounds of the formula The present application is a continuation-in-part of co R pending applications, Ser. No. 801,757 filed Feb. 24, CH-)-A 1969 and Ser. No. 801,758 filed Feb. 24, 1969. by first hydrohalogenation to 30 SUMMARY OF THE INVENTION R In accordance with the present invention, an organic XCH-CH-A compound having the formula: followed by the reductive coupling. R 35 - x-CH-bh-A BACKGROUND OF THE INVENTION is coupled by reaction in the liquid phase at about 50'- 250 C. with nickel or iron or zero valent compounds This invention relates to a process for the reductive thereof to produce the coupled product. coupling of particular halo organic compounds and in particular provides a process for the preparation of valu 40 R R able compounds such as adiponitrile starting with inex A-du-CH-CH-CH-A pensive and readily available compounds such as acryloni A being -CN, trile. O O Adiponitrile is a chemical of very great potential im 45 portance since it is easily converted to hexamethylene -oR, -R diamine by straightforward procedures. Hexamethylene or -CONR, R being hydrogen or lower alkyl (1 to 4 diamine is, of course, a component of nylon 6,6. carbon atoms), and X being chloro, bromo, or iodo. In by Presently, the bulk of hexamethylene diamine is pre far the most preferred embodiment, adiponitrile is pre pared by the costly route of first preparing adipic acid 50 pared by the coupling of 3-halopropionitrile, especially and subsequently converting the adipic acid to hexa 3-bromopropionitrile. methylene diamine. In view of the high expenses as In a particular practice, the above coupled product is sociated with the adipic acid route, those skilled in this prepared from the unsaturated compound art have devoted much time and energy to devising other, less costly routes. 55 Acrylonitrile has become a cheap and readily available CH=C-A chemical and great efforts have been expended in order by the steps of reacting said unsaturated compound with to successfully prepare adiponitrile from acrylonitrile, HX to produce via linear dimerization of hydrodimerization procedures. R However, such methods have not proved completely suc 60 cessful since in linear dimerizations yields are very low XCH-CH-A and high amounts both of polymer and of the branched followed by the coupling of this latter product. The com dimer tend also to be produced. In U.S. Pat. 3,225,083, for example, linear dimerizations are taught using aro pounds matic tertiary phosphine catalysts but these produce at 65 R best only minor amounts of linear dimer. Hydrodimeriza CH=C-A tions produce better yields of adiponitrile but inevitably high amounts of propionitrile are also produced thus wherein R and A are as above indicated undergo anti rendering the process as economically unattractive. For Markownikoff addition of HX and this is essential in example, British Pat. 1,079,696 shows hydrodimerization 70 order to produce the halo-organic product which is using a ruthenium catalyst with yields of linear products coupled to form the saturated linear derivative of the less than 50% based on consumed acrylonitrile. above said unsaturated material. 3,644,476 3. 4 Although the invention has wide applicability, in an Insofar as the coupling agent is concerned, by far the especially advantageous practice there is provided a pro most preferred practice of the invention involves the use cedure for producing adiponitrile i.e., of metallic iron as the coupling agent. Still further, it is preferred but not essential that the iron be added in NEC-CH-CH2-CH-CH-C=N finely divided form, for example, as iron powder. Iron from 3-halo propionitrile. It will, of course, be under in bulk form e.g., as sheets or large particles has also stood that the adiponitrile is readily converted to hexa been found effective in the process of the invention. The methylene diamine by known techniques. iron can be formed in situ as by decomposition of a pre DETAILS OF THE INVENTION cursor compound. O Metallic nickel which is the least preferred coupling (A) The halo organic compound agent in the inventive process, can be employed in finely The halo organic compound has the formula divided form as for example powder, or it may be pro vided in bulk form. R The coupling agent can also be composed of a zero X-CH-C-A valent nickel or iron moiety and a ligand or a nickel wherein X is chloro, bromo, or iodo, R is hydrogen or or iron carbonyl moiety and a ligand as set forth in co C1-C4 alkyl, and A is -CN, pending application Ser. No. 801,757 filed Feb. 24, 1969 O of which this application is a continuation in part. The ligand moiety of the coupling agent may be any -COR, -: R Lewis base such as phosphines, phosphites, phosphorous -CONR2. Examples are halides, amines, pyridines, o-phenanthrolines, arsines and 3-bromopropionitrile, stibines. 3-chloropropionitrile, The phosphines, arsines, stibines and phosphites may 3-iodopropionitrile, be suitably represented by the following general formulae: 3-bromo-2-methyl propionitrile, 25 RPH2----------- (R1).PH (Ri)2P-P(R:) 3-chloro-2-methyl propionitrile, (R)3P----------- (R1ASH2) -As(R1) a 3-iodo-2-methyl propionitrile, ((R)2ASH).------ (R1)3As 3-bromopropionic acid, 3-chloro-propionic acid, -As(R1)2 30 3-iodo-propionic acid, (RSbFI2)-------- ((R) SbF) R1 3-bromo methyl propionate, (Ri)3S)---------- (HO)2P(OR) 3-chloro methyl propionate, HOP (ORI) or P(OR1)3 -P 3-iodo methyl propionate, 3-bromo propionamide, 3-chloro propionamide, P(R) P(R1) 3-iodo propionamide, methyl (2-bromoethyl) ketone, The various R1 groups may be the same or different in methyl (2-iodoethyl) ketone, each ligand and may be an aliphatic, aromatic, ar-alkyl, methyl (2-chloroethyl) ketone. 40 alicyclic, phenoxy or phenylene group, both substituted (B) Preparation of the halo organic compound and unsubstituted. The aliphatic group may be an alkyl from 1-12 carbon atoms such as methyl, ethyl, butyl, The halo-organic compounds which are coupled in hepty, decyl and the like and may be substituted with a accordance with the present invention, are most suit group such as lower alkoxy, (methoxy, propoxy) hy ably prepared by hydrogen halide addition to the unsatu droxy and cyano. Preferably, the aliphatic group is a rated precursor, i.e., 45 lower alkyl group containing from 1-5 carbon atoms such as methyl, ethyl, butyl and the like. The aromatic I i group may be phenyl or a substituted phenyl such as CEI as C-A -- IX - XCH-CH-A. methoxyphenyl, hydroxyphenyl, cyanophenyl and the wherein X, R and A are as above described. Of course, like. The aralkyl group may be a benzyl, phenethyl, other methods are possible and could be used in carrying 50 phenylpropyl and the like or substituted aralkyl groups out the present invention. containing the substituents as indicated above. The ali The hydrogen halide addition is advantageously carried cyclic group may be a cycloalkyl or from 3-6 carbons, out by passing hydrogen halide into contact with liquid such as cyclopropyl, cyclohexyl and the like or a sub unsaturated precursor at moderate conditions, i.e., at 10 stituted alicyclic such as with a lower alkyl, a lower 100 C. for example. The hydrogen halide may be liquid 55 alkoxy and the like. The phenoxy or phenylene group may or vapor. be conveniently substituted with a cyano, hydroxy, lower All vapor phase techniques can be employed but these alkoxy and the like. are not preferred. The phosphorous halide reducing agent ligands may be Catalysts such as described in U.S.
Recommended publications
  • Mechanistic Insights Into the Hydrocyanation Reaction
    Mechanistic insights into the hydrocyanation reaction Citation for published version (APA): Bini, L. (2009). Mechanistic insights into the hydrocyanation reaction. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR644067 DOI: 10.6100/IR644067 Document status and date: Published: 01/01/2009 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Numerical Simulation of a Two-Phase Flow for the Acrylonitrile Electrolytic Adiponitrile Process in a Vertical/Horizontal Electrolysis Cell
    energies Article Numerical Simulation of a Two-Phase Flow for the Acrylonitrile Electrolytic Adiponitrile Process in a Vertical/Horizontal Electrolysis Cell Jiin-Yuh Jang * and Yu-Feng Gan Department of Mechanical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-6-2088573 Received: 7 September 2018; Accepted: 6 October 2018; Published: 12 October 2018 Abstract: This paper investigated the effect of oxygen holdup on the current density distribution over the electrode of a vertical/horizontal electrolysis cell with a two-dimensional Eulerian–Eulerian two-phase flow model in the acrylonitrile (AN) electrolytic adiponitrile (ADN) process. The physical models consisted of a vertical/horizontal electrolysis cell 10 mm wide and 600 mm long. The electrical potential difference between the anode and cathode was fixed at 5 V, which corresponded to a uniform current density j = 0.4 A/cm2 without any bubbles released from the electrodes. The effects of different inlet electrolyte velocities (vin = 0.4, 0.6, 1.0 and 1.5 m/s) on the void fraction and the current density distributions were discussed in detail. It is shown that, for a given applied voltage, as the electrolyte velocity is increased, the gas diffusion layer thickness decreased and this resulted in the decrease of the gas void fraction and increase of the corresponding current density; for a given velocity, the current density for a vertical cell was higher than that for a horizontal cell. Furthermore, assuming the release of uniform mass flux for the oxygen results in overestimation of the total gas accumulation mass flow rate by 2.8% and 5.8% and it will also result in underestimation of the current density by 0.3% and 2.4% for a vertical cell and a horizontal cell, respectively.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Purification and Characterization of a Novel Nitrilase of Rhodococcus
    JOURNAL OF BACTERIOLOGY, Sept. 1990, p. 4807-4815 Vol. 172, No. 9 0021-9193/90/094807-09$02.00/0 Copyright X3 1990, American Society for Microbiology Purification and Characterization of a Novel Nitrilase of Rhodococcus rhodochrous K22 That Acts on Aliphatic Nitriles MICHIHIKO KOBAYASHI,* NORIYUKI YANAKA, TORU NAGASAWA, AND HIDEAKI YAMADA Department ofAgricultural Chemistry, Faculty ofAgriculture, Kyoto University, Sakyo-ku, Kyoto 606, Japan Received 18 April 1990/Accepted 8 June 1990 A novel nitrilase that preferentially catalyzes the hydrolysis of aliphatic nitriles to the corresponding carboxylic acids and ammonia was found in the cells of a facultative crotononitrile-utilizing actinomycete isolated from soil. The strain was taxonomically studied and identified as Rhodococcus rhodochrous. The nitrilase was purified, with 9.08% overall recovery, through five steps from a cell extract of the stain. After the last step, the purified enzyme appeared to be homogeneous, as judged by polyacrylamide gel electrophoresis, analytical centrifugation, and double immunodiffusion in agarose. The relative molecular weight values for the native enzyme, estimated from the ultracentrifugal equilibrium and by high-performance liquid chromatog- raphy, were approximately 604,000 + 30,000 and 650,000, respectively, and the enzyme consisted of 15 to 16 subunits identical in molecular weight (41,000). The enzyme acted on aliphatic olefinic nitriles such as crotononitrile and acrylonitrile as the most suitable substrates. The apparent Km values for crotononitrile and acrylonitrile were 18.9 and 1.14 mM, respectively. The nitrilase also catalyzed the direct hydrolysis of saturated aliphatic nitriles, such as valeronitrile, 4-chlorobutyronitrile, and glutaronitrile, to the correspond- ing acids without the formation of amide intermediates.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • BUTADIENE AS a CHEMICAL RAW MATERIAL (September 1998)
    Abstract Process Economics Program Report 35D BUTADIENE AS A CHEMICAL RAW MATERIAL (September 1998) The dominant technology for producing butadiene (BD) is the cracking of naphtha to pro- duce ethylene. BD is obtained as a coproduct. As the growth of ethylene production outpaced the growth of BD demand, an oversupply of BD has been created. This situation provides the incen- tive for developing technologies with BD as the starting material. The objective of this report is to evaluate the economics of BD-based routes and to compare the economics with those of cur- rently commercial technologies. In addition, this report addresses commercial aspects of the butadiene industry such as supply/demand, BD surplus, price projections, pricing history, and BD value in nonchemical applications. We present process economics for two technologies: • Cyclodimerization of BD leading to ethylbenzene (DSM-Chiyoda) • Hydrocyanation of BD leading to caprolactam (BASF). Furthermore, we present updated economics for technologies evaluated earlier by PEP: • Cyclodimerization of BD leading to styrene (Dow) • Carboalkoxylation of BD leading to caprolactam and to adipic acid • Hydrocyanation of BD leading to hexamethylenediamine. We also present a comparison of the DSM-Chiyoda and Dow technologies for producing sty- rene. The Dow technology produces styrene directly and is limited in terms of capacity by the BD available from a world-scale naphtha cracker. The 250 million lb/yr (113,000 t/yr) capacity se- lected for the Dow technology requires the BD output of two world-scale naphtha crackers. The DSM-Chiyoda technology produces ethylbenzene. In our evaluations, we assumed a scheme whereby ethylbenzene from a 266 million lb/yr (121,000 t/yr) DSM-Chiyoda unit is combined with 798 million lb/yr (362,000 t/yr) of ethylbenzene produced by conventional alkylation of benzene with ethylene.
    [Show full text]
  • Acrylonitrile
    Acrylonitrile 107-13-1 Hazard Summary Exposure to acrylonitrile is primarily occupational: it is used in the manufacture of acrylic acid and modacrylic fibers. Acute (short-term) exposure of workers to acrylonitrile has been observed to cause mucous membrane irritation, headaches, dizziness, and nausea. No information is available on the reproductive or developmental effects of acrylonitrile in humans. Based on limited evidence in humans and evidence in rats, EPA has classified acrylonitrile as a probable human carcinogen (Group B1). Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (4), which contains information on inhalation chronic toxicity of acrylonitrile and the RfC and the carcinogenic effects of acrylonitrile including the unit cancer risk for inhalation exposure, EPA's Health Effects Assessment for Acrylonitrile (6), and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Acrylonitrile (1). Uses Acrylonitrile is primarily used in the manufacture of acrylic and modacrylic fibers. It is also used as a raw material in the manufacture of plastics (acrylonitrile-butadiene-styrene and styrene-acrylonitrile resins), adiponitrile, acrylamide, and nitrile rubbers and barrier resins. (1,6) Sources and Potential Exposure Human exposure to acrylonitrile appears to be primarily occupational, via inhalation. (1) Acrylonitrile may be released to the ambient air during its manufacture and use. (1) Assessing Personal Exposure Acrylonitrile
    [Show full text]
  • 6-Aminocapronitrile As an Alternative Monomer for the Nylon 6 Synthesis
    6-aminocapronitrile as an alternative monomer for the nylon 6 synthesis Citation for published version (APA): Dijk, van, A. J. M. (2006). 6-aminocapronitrile as an alternative monomer for the nylon 6 synthesis. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR608791 DOI: 10.6100/IR608791 Document status and date: Published: 01/01/2006 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Syntheses and Studies of Group 6 Terminal Pnictides, Early-Metal Trimetaphosphate Complexes, and a New Bis-Enamide Ligand
    Syntheses and Studies of Group 6 Terminal Pnictides, Early-Metal Trimetaphosphate Complexes, and a New bis-Enamide Ligand by MASSACHUSMS INSTITUTE Christopher Robert Clough OF TECHNOLOGY B.S., Chemistry (2002) JUN 072011 M.S., Chemistry (2002) The University of Chicago Submitted to the Department of Chemistry ARCHIVES in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2011 @ Massachusetts Institute of Technology 2011. All rights reserved. Author.. .. .. .. .. ... .. .. .. .. .... Department of Chemistry May 6,2011 Certified by............. Christopher C. Cummins Professor of Chemistry Thesis Supervisor Accepted by ........ Robert W. Field Chairman, Department Committee on Graduate Studies 2 This Doctoral Thesis has been examined by a Committee of the Department of Chemistry as follows: Professor Daniel G. Nocera ..................... Henry Dreyfus Profe~ssofof Energy and Pr6fessor of Chemistry Chairman Professor Christopher C. Cummins............................ .................. Professor of Chemistry Thesis Supervisor Professor Richard R. Schrock .................. Frederick G. Keyes Professor of Chemistry Committee Member 4 For my Grandfather: For always encouraging me to do my best and to think critically about the world around me. 6 Alright team, it's the fourth quarter. The Lord gave us the atoms and it's up to us to make 'em dance. -Homer Simpson 8 Syntheses and Studies of Group 6 Terminal Pnictides, Early-Metal Trimetaphosphate Complexes, and a New bis-Enamide Ligand by Christopher Robert Clough Submitted to the Department of Chemistry on May 6, 2011, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Investigated herein is the reactivity of the terminal-nitrido, trisanilide tungsten complex, NW(N[i- Pr]Ar) 3 (Ar = 3,5-Me 2C6H3, 1).
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]