Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides
Total Page:16
File Type:pdf, Size:1020Kb
Fuels Campaign (TRP) Transmutation Research Program Projects 6-30-2004 Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides Yitung Chen University of Nevada, Las Vegas, [email protected] Randy Clarksean University of Nevada, Las Vegas Darrell Pepper University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels Part of the Nuclear Commons, and the Nuclear Engineering Commons Repository Citation Chen, Y., Clarksean, R., Pepper, D. (2004). Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides. i-107. Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/16 This Annual Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Annual Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Annual Report has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Annual Report Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides Submitted to Advanced Accelerator Applications Program Technical Focus Area Fuel Development Research ATTN: Dr. Anthony Hechanova Harry Reid Center University of Nevada Las Vegas Submitted by Dr. Yitung Chen, Principal Investigator, [email protected] Dr. Randy Clarksean, Co-Principal Investigator, [email protected] Dr. Darrell W. Pepper, Co-Principal Investigator, [email protected] Department of Mechanical Engineering University of Nevada Las Vegas 4505 Maryland Parkway, Box 454027 Las Vegas, NV 89154-4027 Phone: (702) 895-1202 Fax: (702) 895-3936 Collaborators Dr. Mitchell K. Meyer, Leader of Fabrication Development Group Dr. Steven L. Hayes, Manager of Fuels & Reactor Materials Section Nuclear Technology Division Argonne National Laboratory, Idaho Falls, ID Project Dates: 5/1/01 – 4/30/04 June 30, 2004 Table of Contents Table of Contents ........................................................................................................... ii List of Figures ................................................................................................................iii Abstract.............................................................................................................................. vi 1. Introduction and Background ..................................................................................... 1 1.1 Introduction......................................................................................................... 1 1.2 Background......................................................................................................... 2 1.2.1. Nuclear Power and Nuclear Fuel Cycle......................................................... 2 1.2.2. Nuclear Waste and Transmutation Technology............................................. 6 1.2.3. Integral Fast Reactor and Light Water Reactor ............................................. 8 1.2.4. Nuclear Fuel................................................................................................... 8 1.2.5. Actinide and Americium.............................................................................. 10 1.3 Transmutation Research Program..................................................................... 11 1.4 Project Objectives............................................................................................. 11 2. Literature Survey...................................................................................................... 13 3. Physical Model and Theoretical Background........................................................... 16 3.1 Furnace Selection of the ISM System............................................................... 16 3.2 Physical Model..................................................................................................20 3.2.1. Induction Melting Model .............................................................................. 22 3.2.2. Casting Model............................................................................................... 28 3.2.2.1. Simple Solidification Process ....................................................................... 29 3.2.2.2. “Pure” filling process.................................................................................... 30 3.2.2.3. Casting process (VOF-solidification process) .............................................. 31 3.3 Mass Transfer Process ...................................................................................... 32 3.4 Numerical Models............................................................................................. 36 3.4.1. Induction Heating Models.............................................................................36 3.4.2. Induction Melting Process ............................................................................ 38 3.4.3. Casting Process............................................................................................. 41 3.5 VOF and Non-VOF Modeling Approaches...................................................... 42 3.6 FIDAP and the Simulation Scheme .................................................................. 43 4. Results and Discussions............................................................................................ 45 4.1 Induction Melting Process ................................................................................ 45 4.2 Results and Discussion of Casting Process....................................................... 62 4.2.1. Energy Storage Ability of the Mold.............................................................. 62 4.2.2. Simple Solidification Process ....................................................................... 65 4.2.3. Pure Filling Process...................................................................................... 70 4.2.4. Casting Process............................................................................................. 72 5. Conclusions and Recommendations ......................................................................... 75 6. References................................................................................................................. 76 7. Publications and Presentations.................................................................................. 81 Appendix I – Nomenclature.............................................................................................. 83 Appendix II – Finite Element Method.............................................................................. 87 Appendix III – Development of a Model for Induction Heating...................................... 97 Appendix IV – Development of Mass Transfer Model .................................................. 107 ii List of Figures Figure 1 - The Nuclear Fuel Cycle (A once-through fuel cycle. In this cycle spent fuel is handled as waste and is prepared for permanent disposal. )................................................................. 3 Figure 2 - Fuel cycle with uranium recovery only.......................................................................... 5 Figure 3 - Fuel cycle with reprocessing and recycling of both uranium and plutonium. ............... 6 Figure 4 - Actinide and Americium in the element table.............................................................. 11 Figure 5 - Outline of mechanisms and furnace options evaluated in the design process. ............ 16 Figure 6 - Semi-levitation melting system.................................................................................... 17 Figure 7 - DC Arc melting system with pressurized/gravity molds. ............................................ 17 Figure 8 - Inductively heated pressurized chamber vacuum cast (molds).................................... 18 Figure 9 - Induction Skull Melting (ISM) with pressurized/gravity molds.................................. 18 Figure 10 - Schematic of proposed ISM furnace for the casting of high americium content fuels. ............................................................................................................................................... 20 Figure 11 - The geometry of the simple system for induction heating, which can be simplified to an axisymmetric geometry.................................................................................................... 22 Figure 12 - The simplified geometry and the domains................................................................. 23 Figure 13 - The domains and mesh in GAMBIT (9095 nodes, 9248 elements)........................... 23 Figure 14 - Geometry and domains of the second system............................................................ 24 Figure 15 - Mesh of the second system (10360 nodes, 10188 elements). .................................... 24 Figure 16 - One half of the crucible of the selected model [35,36].............................................. 25 Figure 17 - Comparison of the experimentally determined shape of the molten zone (left