In Nauru Using Male Annihilation and Protein Bait Application Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment of Waste Problems for the Buada Community, and Strategies Toward Community Waste Reduction in Nauru
ISSN 1818-5614 The way ahead: an assessment of waste problems for the Buada community, and strategies toward community waste reduction in Nauru By IWP-Nauru and Alice Leney IWP-Pacific Technical Report (International Waters Project) no. 9 Global United Nations Pacific Regional Environment Development Environment Facility Programme Programme SPREP IRC Cataloguing-in-Publication Data Leney, Alice The way ahead: an assessment of waste problems for the Buada community, and strategies toward community waste reduction in Nauru / prepared by International Waters Programme, Nauru and Alice Leney. - Apia, Samoa; SPREP, 2004. 77 p. ; 29 cm IWP-Pacific Technical Report (International Waters Project) no. 9 ISBN : 982-04-0278-6 ISSN : 1818-5614 1. Conservation of natural resources – Buada community - Nauru. 2.Waste reduction – Buada community - Nauru. 3. Waste minimization – Buada community – Nauru. 4. Waste management – Buada community - Nauru. 5. Ecological risk assessment – Buada community - Nauru. 6. Pollution – Risk assessment – Buada community – Nauru. I. Implementation of the Strategic Action Programme of the Pacific Small Developing States Project no. RAS/98/G32. II. International Waters Programme (IWP). III. Nauru IWP National Programme IV. Secretariat for the Pacific Regional Environment Programme (SPREP). V. Title. 363.73 This report was produced by SPREP’s International Waters Project that is implementing the Strategic Action Programme for the International Waters of the Pacific Small Island Developing States with funding from the Global Environment Facility. The views expressed in this report are not necessarily those of the publisher. Cover design by SPREP’s Publications Unit Editing: Ms. Talica Koroi Layout: Ms. Sasa’e Walter Printed by Marfleet Printing Co. -
Life History of the Melon Fly
LIFE HISTORY OF THE MELON FLY By E. A. BACK, Entomological assistant, and C. E. PEMBëRTON, Scientific Assistant, Mediterranean Fruit-Fly Investigations, Bureau of Entomology INTRODUCTION Aside from the Mediterranean fruit fly, Ceratitis capitata Wied., there is no other insect in the Hawaiian Islands that is causing such financial loss to fruit and vegetable interests as the melon fly, Bactrocera cucurbitae Coq. The damages caused by its ravages are placed by some even higher than those caused by C. capitata. While B. cucurbitae was not officially recorded until November, 1898, when it was first discovered by Mr. George Compere in the market gardens in the environs of Honolulu, it had been knownlocally about that city many years before. Mr. Albert Waterhouse, Acting President of the Hawaiian Board of Agriculture and Forestry, states that less than 30 years ago excellent cantaloupes (Cucumis meló) and watermelons (Citrullus vulgaris) and many kinds of pumpkins and squashes were grown in profusion the year round. Since that time the spread of the melon fly has been so rapid that this insect is now found on all the important islands of the Hawaiian group, and cantaloupes and water- melons can not be grown except on new land distant from old gardens. More than 95 per cent of the pumpkin (Cucúrbita pepo) crop is annually ruined, not to mention the havoc caused among the more resistant cucumbers (Cucumis sativus). ^ Not only does the adult melon fly oviposit in fruit that has already set, but more often—in the case of the pumpkin and the squash (Cucúrbita spp.)—in the unopened male and female flowers, in the stem of the vine, and even in the seedling itself, especially in seedlings of the watermelon and the cantaloupe. -
The State of Nauru's Biodiversity for Food and Agriculture
COUNTRY REPORTS THE STATE OF NAURU’S BIODIVERSITY FOR FOOD AND AGRICULTURE This country report has been prepared by the national authorities as a contribution to the FAO publication, The State of the World’s Biodiversity for Food and Agriculture. The report is being made available by the Food and Agriculture Organization of the United Nations (FAO) as requested by the Commission on Genetic Resources for Food and Agriculture. The information in this report has not been verified by FAO, and the content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of FAO, or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. SOW BIODIVERSITY FOR FOOD AND AGRICULTURE COUNTRY REPORTS 1.0 Assessment and monitoring of biodiversity for food and agriculture 1.1. General context: The South Pacific small island state of Nauru is one of the smallest countries in the world – with a land area of about 22 km2 and a coast line circumference of 30 km long. It is located in the dry belt of the equatorial oceanic zone and is situated 200 km East to North East of Papua New Guinea and 4450 km South to South East of the Philippines. -
Restocking of Nile Tilapia (O
Final report for Mini-project MS0603: Eradication of Mozambique tilapia (Oreochromis mossambicus), restocking of Nile tilapia (O. niloticus) and improved aquaculture pond management in Nauru Margo Deiye, Ricky Star and Lucky Burramen1 Satya Nandlal 2 1 Nauru Fisheries and Marine Resources Autority 2 Secretariat of the Pacific Community, Noumea, New Caledonia 1 1.0 Introduction for deepwater or pelagic fisheries, people have resorted to catching tilapia from the lagoon and Nauru is a single, raised coral limestone island ponds using gill nets and hook and lines. It has be- (land area 21 sq. km and length of coastline 24 come a source of protein for some of the com- km), encircled by a fringing coral reef which is ex- munities. posed at low tide. The ground rises from a narrow In 1981, Food and Agriculture Organization (FAO) sandy beach forming a 100-300 meters wide fer- initiated an aquaculture program, commencing with tile belt around the island. Inland, coral cliffs rise an eradication program for O. mossambicus. The up to 30-40 meters above sea level, merging into eradication of O. mossambicus was not success- a central plateau which reaches 60-70 meters in ful. Later, several other attempts were made by some places. FAO and other agencies to demonstrate culture of Nauru had a very unique tradition of milkfish (Cha- milkfish, tilapia etc. For example, a Taiwanese gov- nos chanos) farming dating back hundreds of years. ernment funded project was able to achieve faster The juvenile milkfish were collected from the in- growth rates of imported milkfish fry [from Kiri- ter-tidal reefs and reared in the islands main ‘lake’, bati] using intensive culture methods but the costs the Buada Lagoon and other ponds. -
Studies on Insect Pest Succession and Natural Enemies of Ash Gourd in Chhattisgarh
Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 6 Special issue [3] 2017: 431-434 ©2017 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal’s URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.533 Universal Impact Factor 0.9804 NAAS Rating 4.95 FULL LENGTH ARTICLE OPEN ACCESS Studies on Insect Pest Succession and natural enemies of ash gourd in Chhattisgarh Manmohan Singh Bisen1*, Vikas Singh1, V. K. Dubey1 and Dhananjay Sharma2 1Department of Entomology, Indira Gandhi Agricultural University, Raipur (C.G.) 2Department of Horticulture, Indira Gandhi Agricultural University, Raipur (C.G.) Pin code- 492012 Corresponding author*: [email protected] ABSTRACT The present investigation entitled “Record and identification of different insect pests and natural enemies of ash-gourd during reproductive phase along with insect pest succession on it” was conducted during Kharif season of the year 2014-15 at Horticultural Instructional cum Research Farm of Department of Horticulture, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.).During the course of studies, ash gourd was found attack by five species of insect pest belonging to four order and four families in which viz.redpumpkin beetle (Aulacophora foveicollis Lucas) (Coleoptera: Chrysomelidae), fruit fly (Bactrocera cucurbitaeCoq.),cucumber moth (Diaphania indica),Hadda beetle (Henosepilachna vigintioctopunctataFabricius) and aphid (Aphis gossypii)were observed. Population of insect pest other than red pumpkin beetle and fruit flies appeared in trace number.First appearance of Red pumpkin beetle, Fruit fly, Cucumber moth on the crop was observed from first week of September (36th SMW), and active from September to December. -
The Chemical Ecology of the Oriental Fruit Fly Bactrocera Dorsalis and the Potential for Novel Odor-Based Management Tools
The chemical ecology of the oriental fruit fly Bactrocera dorsalis and the potential for novel odor-based management tools Tibebe Dejene Biasazin Faculty of Landscape Architecture, Horticulture and Crop Protection Science Department of Plant Protection Biology Alnarp Doctoral thesis Swedish University of Agricultural Sciences Alnarp 2017 Acta Universitatis agriculturae Sueciae 2017:62 Cover: Left: Bactrocera dorsalis flies feeding from a SPLAT-ME-spinosad dollop on a leaf of mango tree. Right: B. dorsalis hold inside a pippete tip exposing antennae ready for electrophysiological recordings. (photo: Tibebe Dejene) ISSN 1652-6880 ISBN (print version) 978-91-7760-014-5 ISBN (electronic version) 978-91-7760-015-2 © 2017 Tibebe Dejene Biasazin, Alnarp Print: SLU Service/Repro, Alnarp 2017 The chemical ecology of the oriental fruit fly Bactrocera dorsalis and the potential for novel odor-based management tools Abstract Over the last few years, several tephritid species have invaded sub-Saharan Africa, competitively displacing native fruit fly pests, and severely affecting horticulture production. In two different farming scales, small and large, we verified the influence of suppressing the invasive Bactrocera dorsalis using the male specific attractant, methyl eugenol (ME), formulated in SPLAT-spinosad. In small-scale farm plots, use of ME did reduce B. dorsalis populations, but population levels remained high throughout the study. In mark-release-recapture studies, male flies were found to disperse fast and beyond one km from the release point. In large-scale farm plots, the invasive pest was controlled within eight months of suppression using ME-based suppression in combination with other pest management techniques. However, this was paralleled by a quick resurgence of the native fruit fly Ceratitis capitata, likely due to competition release. -
Revised Irradiation Doses to Control Melon Fly, Mediterranean Fruit Fly, and Oriental Fruit Fly (Diptera: Tephritidae) and a Generic Dose for Tephritid Fruit Flies
Exhibit 2a, #48 COMMODITY TREATMENT AND QUARANTINE ENTOMOLOGY Revised Irradiation Doses to Control Melon Fly, Mediterranean Fruit Fly, and Oriental Fruit Fly (Diptera: Tephritidae) and a Generic Dose for Tephritid Fruit Flies 1 PETER A. FOLLETT AND JOHN W. ARMSTRONG USDAÐARS, U.S. PaciÞc Basin Agricultural Research Center, P.O. Box 4459, Hilo, Hawaii 96720 J. Econ. Entomol. 97(4): 1254Ð1262 (2004) ABSTRACT Currently approved irradiation quarantine treatment doses for Bactrocera cucurbitae (Coquillet), melon ßy; Ceratitis capitata (Wiedemann), Mediterranean fruit ßy; and Bactrocera dorsalis (Hendel), oriental fruit ßy, infesting fruits and vegetables for export from Hawaii to the continental United States are 210, 225, and 250 Gy, respectively. Irradiation studies were initiated to determine whether these doses could be reduced to lower treatment costs, minimize any adverse effects on quality, and support a proposed generic irradiation dose of 150 Gy for fruit ßies. DoseÐ response tests were conducted with late third instars of wild and laboratory strains of the three fruit ßy species, both in diet and in fruit. After x-ray irradiation treatment, data were taken on adult emergence, and adult female fecundity and fertility. Melon ßy was the most tolerant of the three species to irradiation, and oriental fruit ßy was more tolerant than Mediterranean fruit ßy. Laboratory and wild strains of each species were equally tolerant of irradiation, and larvae were more tolerant when irradiated in fruit compared with artiÞcial diet. An irradiation dose of 150 Gy applied to 93,666 melon ßy late third instars in papayas resulted in no survival to the adult stage, indicating that this dose is sufÞcient to provide quarantine security. -
Improved Attractants for the Melon Fly,Bactrocera Cucurbitae
Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 283–290 Improved attractants for the melon fly, Bactrocera cucurbitae J.E. Oliver1*, V. Casaña-Giner1, E.B. Jang2, G.T. McQuate2 & L. Carvalho2 1U.S. Department of Agriculture, Agricultural Research Service, Chemicals Affecting Insect Behavior Laboratory, Beltsville, MD 20705, U.S.A. 2U.S. Department of Agriculture, Agricultural Research Service, Pacific Basin Research Agricultural Center, Hilo, HI 96720, U.S.A. Virtually all of the standard lures for the melon fly, Bactrocera cucurbitae, are based on raspberry ketone, and of these, cuelure (the acetate of raspberry ketone), has for many years been the most widely used. We have synthesized and evaluated additional potential melon fly attractants whose structures are also related to that of raspberry ketone, focusing in particular on analogs with enhanced volatility. We have found that raspberry ketone formate is a superior attractant, even to cuelure. Reasons for its superior performance are discussed. INTRODUCTION 92 species that responded to raspberry ketone, The history of melon fly attractants goes back at with about 40 responding to methyl eugenol). least to 1957 when Barthel et.al.(1957) reported in Both methyl eugenol and raspberry ketone are Science that anisylacetone attracted sexually natural products, occurring in various plants, and mature males. The authors commented on its Metcalf (1990) and Metcalf et al. (1979) discussed resemblance to methyl eugenol, which was this subject in an evolutionary context. Various already known to be an excellent attractant for authors have shown that the male flies are able to the oriental fruit fly (Fig. -
NAURU: National Assessment Report
REPUBLIC OF NAURU: National Assessment Report National Assessment Report Republic of Nauru Ten Year Review of the Barbados Programme of Action 1 REPUBLIC OF NAURU: National Assessment Report TABLE OF CONTENTS Page Foreword 3 Map 4 Chapter 1: Socio-Economic Context 5 Key Characteristics 5 Key Challenges 8 Key Responses 17 Chapter 2: National Framework for Sustainable Development 19 Sustainable Development Policy Framework (National Environmental Management 19 Strategy (NEMS) and National Environmental Action Plan) Chapter 3: Sectoral Progress Made and Problems Encountered in the 23 implementation of the BPOA Climate Change and Sea level rise 23 Environment 24 Management of waste 24 Coastal and marine resources 26 Freshwater resources 27 Land resources 27 Energy resources 29 Tourism resources 29 Biodiversity resources 30 Transport and roads 31 Human resource development 31 Chapter 4: Cross Sectoral Areas 33 Financing and Investment for Sustainable Development 33 Trade and Investment 33 Capacity building 34 Infrastructure and Services 34 Chapter 5: Millennium Development Goals and Sustainable Development in 36 SIDS Poverty eradication 36 Education and Reduction of Child Mortality 36 Health and Nutrition Deterioration and Diseases such as HIV/AIDS 37 Gender equality and empowerment of women 38 Global/Regional partnership for development 39 Chapter 6: Emerging Concerns and Special Needs 41 2 REPUBLIC OF NAURU: National Assessment Report Foreword The Republic of Nauru’s National Assessment Report has been prepared following consultations with stakeholders and two National Workshops on Sustainable Development held in April 2002 and February 2004. Discussions at these two workshops focused on achievements and constraints faced by the country in the context of economic, social and environment issues. -
Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species. -
Nauru’S Biodiversity Strategy and Action Plan
FINAL DRAFT NAURU’S BIODIVERSITY STRATEGY AND ACTION PLAN Rehabilitate and Conserve Government of the Republic of Nauru 1 Nauru’s Biodiversity Strategy & Action Plan Prepared by: Dr Komeri Onorio and Tyrone Deiye for the National Environmental Coordinating Committee (NECC), Department of Commerce Industries and Environment Funded under: GEF/UNDP – Enabling Activities: The Convention on Biological Diversity 2 nauru vision for the future We are proceeding with the rehabilitation of our beloved island home in three overlapping and interlocking steps – physical, biological and cultural. Each step will be fully integrated with the other two so our process of future development rehabilitation and sustainable development will be interconnected. Physical rehabilitation must first deal with the land and water systems. The coral pinnacles will be dismantled, sawed and polished into building materials for homes and buildings. The coral pinnacles will also be crushed to make land fill, land will be graded, catchment areas and reservoirs built for storage of rainwater, and the freshwater underground lens are tapped for sustainable use. As part of the physical rehabilitation of Nauru island, topsoil, which we have stockpiled and carefully preserved, will be spread where it is needed for forests and fields, according to the land use plan that has been developed with maximum possible participation of all Nauruans. Biological rehabilitation will address the fields and forests, the coral reefs, and the surrounding seas. Areas of biological diversity will be established at strategically placed locations on the periphery of the island, and expanding gradually into the rainforest of tomorrow. Horticultural stations will be built at each of these strategic locations to nurse seedlings into trees, trees into forests, all according to the overall land use plan under development. -
Melon Fly, Bactrocera Cucurbitae Coquillett (Insecta: Diptera: Tephritidae)1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY199 Melon Fly, Bactrocera cucurbitae Coquillett (Insecta: Diptera: Tephritidae)1 H. V. Weems, Jr., J. B. Heppner, and T. R. Fasulo2 Introduction Synonyms Within its range, the melon fly, Bactrocera Bactrocera cucurbitae Coquillett has also been cucurbitae Coquillett, is one of the most important known as: pests with which vegetable growers have to contend. Although found in Hawaii, it is not present in the Chaetodacus cucurbitae (Coquillett) continental United States. Dacus cucurbitae Coquillett Strumeta cucurbitae (Coquillett) Zeugodacus cucurbitae (Coquillett) Distribution The melon fly is well distributed over most of India, which is considered its native home, and throughout most of southeastern Asia, the Mariana Islands, and the Hawaiian Islands. It was introduced into the Hawaiian Islands from Japan about 1895, and by 1897, when it was first observed, it was already a Figure 1. Adult melon fly, Bactrocera cucurbitae Coquillett. serious pest. Other populations are reported in Africa Credits: Scott, Bauer, USDA (Egypt, Kenya and Tanzania),all of southeast Asia as far north as Nepal and China as as far west as Pakistan, the islands in the New Guinea area, Philippines, and Taiwan. 1. This document is EENY-199 (originally published as DPI Entomology Circulars 29 and 315), one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: March 2001. Revised: July, 2004. This document is also available on Featured Creatures Website at http://creatures.ifas.ufl.edu.