Orbit Determination of Mars Explorer NOZOMI for All the Mission Period

Total Page:16

File Type:pdf, Size:1020Kb

Orbit Determination of Mars Explorer NOZOMI for All the Mission Period Orbit Determination of Mars Explorer NOZOMI for All the Mission Period Makoto Yoshikawa, Takaji Kato, Tsutomu Ichikawa, Hiroshi Yamakawa Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, JAPAN Phone/FAX: +81-42-759-8341, E-mail: [email protected] Takafumi Ohnishi, Shiro Ishibashi Fujitsu Limited 3-9-1 Nakase, Mihama-ku, Chiba-shi, Chiba 261-8588, JAPAN ABSTRACT Japanese first Mars explorer NOZOMI, which was launched in July 1998, suffered several problems during the operation period of more than five years. It reached near Mars at the end of 2003, but it was not put into the orbit around Mars. Although NOZOMI was not able to execute its main mission, it provided us a lot of good experiences from the point of the orbit determination of spacecraft. The related issues are the spin modulation, the solar radiation pressure, the small force related to the attitude change, the solar conjunction, and the orbit determination by the side lobe of the high gain antenna without the telemetry. We tried to solve these issues by the conventional way using range and Doppler data. We also tried the orbit determination by using the Delta-VLBI method (VLBI: Very Long Baseline Interferometry). In addition to this, we tried optical observations of NOZOMI at the earth swingbys. ¤NC?RWK;B-6_° j.$1.k¾y¶ l¢ ^½ÖÀ ¢Ê ¢Y²t{nbÅj ­ Ö ¡p×ɵ ·Ó ÁÍ._° j.$1/ à z-«47% #. ÃÑ5.ZÒi f-('.Ï®-¦u!%.$1/ Ã.5-/_.s-¯ !% _ak¾-¼Â/, 7,&%.$1/NC?RW.ÍÕ.θ8¯ "6*/),&% k¾y¶.e¹4/©.Ç-ÐÒ,w|8`-2%4 !(7%k¾y¶-gv!%*!(/ AJWP@QU?RW ªÔØX }-ÆÈ^¨» DUOET¿),q]).H:=:W9WDG .>:FVL-36k¾y¶,+o47674.Ï®-'(/ Õ4.U W@*FCMS8Ë)¬\!%0% !1*!( ¥¬ ³ ´h£ºÄdx-36e§8&% 4- ±mA:W<I:-/ ~cÌ[r- 36e§21% 1. Introduction end of 2003 or at the beginning of 2004 (Figure 3). In addition to this problem, NOZOMI The Japanese Mars explorer NOZOMI (Figure suffered several difficulties, such as the loss of 1) was launched in July 1998. It was planed to S-band downlink, the solar conjunction, and the arrive at Mars in October 1999 (Figure 2). loss of the telemetry. Particularly the damage However, when NOZOMI left form the earth to related to the power supply unit, which Mars, a problem occurred and the orbit plan occurred at the end of April 2002, was very was changed so that it would reach Mars at the serious. We were not able to get the telemetry such critical condition, we managed to get the solution of the orbit, and we were able to carry out two earth swingbys successfully as mentioned above. There are several other issues related the orbit determination of NOZOMI and they are the spin modulation, the solar radiation pressure, the small force related to the attitude change, and the solar conjunction. We tried to solve Fig. 1: NOZOMI spacecraft these issues by the conventional way using range and Doppler data. However, we also tried data after that and the radio link was the new method, that is the orbit determination completely lost for about two months. However, by using the Delta-VLBI method (VLBI: Very we were able to control NOZOMI by using Long Baseline Interferometry). In addition to very special method and we carried out two this, we tried optical observations of NOZOMI earth swingbys in December 2002 and June when it approached the earth at the earth 2003 successfully. NOZOMI was put into the swingbys. orbit that goes near Mars in the middle of December of 2003. But we were not able to Up to now, we have carried out many studied solve the trouble related the power supply unit about the orbit determination of and NOZOMI did not become the orbiter of NOZOMI1,2,3,4,5,6. In this paper, we summarize Mars. This trouble of the power supply unit all the issues related to the orbit determination occurred just after strong solar flare, but the of NOZOMI especially from the point of what direct relationship between the trouble and the we have done. The quantitative results such as solar flare is unknown. the accuracy of orbit determination will be reported in separate papers. Although NOZOMI was not able to execute its main mission, from the point of the orbit determination of spacecraft it provided us a lot 2. Orbit Determination in Normal Period of good experiences. The most difficult work was, of course, the orbit determination for the In this section, we summarize the orbit period without the telemetry. Fortunately it was determination in the normal period. The words possible to get the tracking data (range and "normal period" mean the period when we Doppler) in this period. But most of this period, could get the telemetry and when the high gain the high gain antenna did not point to the earth antenna could be pointed toward the earth. because of a constraint of the attitude of the These analyses are also discussed in previous spacecraft. Therefore the quality of the tracking papers2,3,4. The orbit determination in the data was not good, and for some period it was critical period is discussed in the next section. impossible to get the tracking data at all. Under Fig. 2: Original orbit plan Fig. 3: New orbit plan 2.1 Software orientation maneuver. Such acceleration was We have been developing software for orbit not expected before the launch. After the determination of spacecraft from more than 20 trouble of S-band downlink, the re-orientation years ago. This software is called ISSOP (ISAS maneuvers are executed much more frequently, Orbit Determination Program)7,8. It was first because X-band, which has narrower beam size, used for the mission of SAKIGAKE and was used for downlink. This acceleration acts SUISEI, which were launched in 1985 to the as perturbations of several 10-12 km/s2 comet Halley. And then it was used for HITEN, acceleration. It corresponds to several percent which was launched 1990 for experiments of of solar radiation pressure, which has a swingbys. As for NOZOMI, we tried to modify significant influence on the orbit determination ISSOP in several points to carry out much results. We tried to estimate this acceleration, accurate orbit determination. And also we are but the estimated values seemed to be not modifying this software in order to include accurate enough. Such estimation of small VLBI data. forces remained as one of the future problems. 2.2 Spin modulation 2.5 Solar conjunction Since NOZOMI was rotating about 7 rpm, At the beginning of the year 2001, the angle of there were spin effects in the observed data of Sun-Earth-NOZOMI became very small. This range and Doppler. In order to carry out the meant that NOZOMI was observed very close accurate orbit determination, we should remove to the sun. When such conjunction occurs, we the effects of spin. We obtained a function that cannot establish the link between spacecraft simulated the effects of spin, and eliminated and the ground stations. Actually for NOZOMI them. For example, Doppler data of LGA-B the communication was stopped for about three shows spin modulation with the amplitude of weeks around the conjunction. In addition to about 20 cm/s, and after the elimination of spin this, the range and Doppler data were affected modulation, the amplitude becomes about 1 by noise. Especially the noise level of Doppler mm/s. After the elimination of spin effect, the became very large near the conjunction. As for accuracy of orbit determination became a little the range, the effect of conjunction was small. better. The accuracy of orbit determination became worse around the conjunction. 2.3 Solar radiation pressure As for the solar radiation pressure, we modified our previous model largely. In our new model, 3. Orbit Determination in Critical Period the geometry and material properties of the spacecraft are taken into consideration. The After the loss of telemetry from NOZOMI, we spacecraft is treated as a combination of a could not get range and Doppler data stably. spinning box and two flat plates, representing Figure 4 shows O-C of Doppler just around the the spacecraft body, solar panels, and HGA telemetry loss. Until 27 April 2002, the dish respectively. The surface properties are Doppler data were normal. But the data shows area, reflectance, diffused reflectance, strange behaviors after this. This is because the transparency, and direction against the spin axis. beam of HGA was straying off from the Daily change of the spacecraft orientation is direction of the earth. Since the heater also also taken into account. By these modifications, stopped, the fuel on board was frozen. the accuracy of our orbit determination became Therefore it was impossible to control the better. However, we should still improve our attitude and orbit of NOZOMI. In order to model to achieve much better accuracy. operate NOZOMI without telemetry, we established a special method by using an 2.4 Small force caused by re-orientation autonomous function. And we used the sunlight maneuvers to melt a part of the fuel. Thus we succeeded to When re-orientation maneuvers were carried control of attitude and orbit of NOZOMI out, we found that there are variations about 1 without telemetry and heater. mm/s in the Doppler. This means that there exists acceleration in the orbital motion at re- However, a big problem remained. That was Fig. 4: O-C of Doppler data from April 15, 2002 to May 7, 2002 Fig.
Recommended publications
  • Gravimetric Missions in Japanese Lunar Explorer, SELENE
    Gravimetric Missions in Japanese Lunar Explorer, SELENE H. Hanada1), T. Iwata2), N. Namiki3), N. Kawano1), K. Asari1), T. Ishikawa1), F. Kikuchi1), Q. Liu1), K. Matsumoto1), H. Noda1), J. Ping4), S. Tsuruta1), K. Iwadate1), O. Kameya1), S. Kuji1), Y. Tamura1), X. Hong4), Y. Aili5), S. Ellingsen6) 1) National Astronomical Observatory of Japan 2) Japan Aerospace Exploration Agency 3) Kyushu University 4) Shanghai Astronomical Observatory, Chinese Academy of Sciences 5)Urumqi Astronomical Observatory,Chinese Academy of Sciences 6) University of Tasmania ABSTRACT SELENE (SElenological and Engineering Explorer), is a mission in preparation for launch in 2007 by JAXA (Japan Aerospace Exploration Agency), it carries 15 missions, two of which (RSAT and VRAD) are gravimetric experiments using radio waves. The RSAT (Relay Satellite Transponder) mission will undertake 4-way Doppler measurements of the main orbiter through the Rstar sub-satellite. This is in addition to 2-way Doppler and ranging measurements of the satellites and will realize the first direct observation of the gravity fields on the far side of the Moon. The VRAD (Differential VLBI Radio Source) mission involves observing the trajectories of Rstar and Vstar using differential VLBI with both a Japanese network (VERA), and an international network. We have already finished development of the onboard instruments and are carrying out proto-flight tests under various conditions. We have also performed test VLBI observations of orbiters with the international network. 1. INTRODUCTION Although it is the nearest astronomical body to the Earth, there are many unsolved problems relating to the origin and the evolution of the Moon. Numerous lunar explorations have been made with the aim of elucidating these problems, however, we still know little of the deep interior of the Moon.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Alactic Observer
    alactic Observer G John J. McCarthy Observatory Volume 14, No. 2 February 2021 International Space Station transit of the Moon Composite image: Marc Polansky February Astronomy Calendar and Space Exploration Almanac Bel'kovich (Long 90° E) Hercules (L) and Atlas (R) Posidonius Taurus-Littrow Six-Day-Old Moon mosaic Apollo 17 captured with an antique telescope built by John Benjamin Dancer. Dancer is credited with being the first to photograph the Moon in Tranquility Base England in February 1852 Apollo 11 Apollo 11 and 17 landing sites are visible in the images, as well as Mare Nectaris, one of the older impact basins on Mare Nectaris the Moon Altai Scarp Photos: Bill Cloutier 1 John J. McCarthy Observatory In This Issue Page Out the Window on Your Left ........................................................................3 Valentine Dome ..............................................................................................4 Rocket Trivia ..................................................................................................5 Mars Time (Landing of Perseverance) ...........................................................7 Destination: Jezero Crater ...............................................................................9 Revisiting an Exoplanet Discovery ...............................................................11 Moon Rock in the White House....................................................................13 Solar Beaming Project ..................................................................................14
    [Show full text]
  • Protons in the Near Lunar Wake Observed by the SARA Instrument on Board Chandrayaan-1
    FUTAANA ET AL. PROTONS IN DEEP WAKE NEAR MOON 1 Protons in the Near Lunar Wake Observed by the SARA 2 Instrument on Board Chandrayaan-1 3 Y. Futaana, 1 S. Barabash, 1 M. Wieser, 1 M. Holmström, 1 A. Bhardwaj, 2 M. B. Dhanya, 2 R. 4 Sridharan, 2 P. Wurz, 3 A. Schaufelberger, 3 K. Asamura 4 5 --- 6 Y. Futaana, Swedish Institute of Space Physics, Box 812, Kiruna, SE-98128, Sweden. 7 ([email protected]) 8 9 10 1 Swedish Institute of Space Physics, Box 812, Kiruna, SE-98128, Sweden 11 2 Space Physics Laboratory, Vikram Sarabhai Space Center, Trivandrum 695 022, India 12 3 Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland 13 4 Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Japan 14 Index Terms 15 6250 Moon 16 5421 Interactions with particles and fields 17 2780 Magnetospheric Physics: Solar wind interactions with unmagnetized bodies 18 7807 Space Plasma Physics: Charged particle motion and acceleration 19 Abstract 20 Significant proton fluxes were detected in the near wake region of the Moon by an ion mass 21 spectrometer on board Chandrayaan-1. The energy of these nightside protons is slightly higher than 22 the energy of the solar wind protons. The protons are detected close to the lunar equatorial plane at 23 a 140˚ solar zenith angle, i.e., ~50˚ behind the terminator at a height of 100 km. The protons come 24 from just above the local horizon, and move along the magnetic field in the solar wind reference 25 frame.
    [Show full text]
  • Lunar Trajectories
    Transportation for Exploration: New Thoughts About Orbital Dynamics Ed Belbruno Innovative Orbital Design, Inc & Courant Insitiute(NYU) January 4, 2012 NASA FISO 1 Evolution of Astrodynamics Conic; Stable (Hohmann, 20s) (Hohmann transfers, Gravity assist(Voyager, Galileo)) Nonlinear; Stable (Apollo, 60s) Nonlinear; Unstable (ISEE-3, 70s) (Transfer to and from halo orbits, no utilization of fuel savings via dynamics – Farquhar …) Nonlinear; Unstable; Low Energy/Fuel (Hiten, 91) (First use of utilization of chaotic dynamics/manifolds to achieve new approach to space travel for ballistic capture(EB, 86, 91) and for the study of halo orbit dynamics (Llibre-Simo, 85 – Genesis, 2001) Weak Stability Boundary Theory (EB 86) 2 Hohmann Transfer Conic, Stable – 2-body 3 Figure Eight(Apollo) Nonlinear, Stable – 3-body 4 ISEEC-3 Nonlinear-Unstable – 4 body 5 Ballistic Capture Transfers Weak Stability Boundary Theory(EB 86) • Way to transfer to the Moon, and other bodies, where no DeltaV is needed for capture • New methodology to trajectory design • Thought in 1985 to be impossible 6 Background • Capture Problem Earth -> Moon (LEO -> LLO) • Hohmann Transfer: Fast (3days), Fuel Hog (Need to slow down! 1 km/s to be captured – large maneuver ) Risky Used in Apollo 7 Idea of Achieving Ballistic Capture • Sneak up on Moon - very carefully (next figure A-B-C-D) • Like a surfer catching a wave • Want to ride the „gravity transition(weak stability) boundary‟ between the Earth-Moon-Sun 8 Top – Lagrange points Bottom – Sneaking up on Moon 9 Ballistic capture is chaotic (chaos – leaf blowing in wind) 10 • WSB – generalization of Lagrange points • Forces(GM, GE, CF) balance while spacecraft moving wrt Earth-Moon (L-points – forces balance for spacecraft fixed wrt Earth-Moon) • Get a multi-dimensional region about Moon.
    [Show full text]
  • FACTORS" with Multiple Compact Satellites for the Space-Earth Coupling Mechanisms
    PCG21-05 Japan Geoscience Union Meeting 2018 Science Objectives and Mission Plan of "FACTORS" with Multiple Compact Satellites for the Space-Earth Coupling Mechanisms *Masafumi Hirahara1, Yoshifumi Saito2, Hirotsugu Kojima3, Naritoshi Kitamura2, Kazushi Asamura 2, Ayako Matsuoka2, Takeshi Sakanoi4, Yoshizumi Miyoshi1, Shin-ichiro Oyama1, Masatoshi Yamauchi5, Yuichi Tsuda2, Nobutaka Bando2 1. Institute of Space-Earth Environmental Research, Nagoya University, 2. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3. Research Institute for Sustainable Humanosphere, Kyoto University, 4. Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, 5. Swedish Institute of Space Physics After the successful launch and the recent observational progresses of the ERG(Arase) satellite mission, we have been leading the next community exploration mission in the Japanese space physics research. In the ERG mission, we are focusing on the unique space plasma mechanisms and conditions causing the terrestrial radiation belt through the wave-particle interaction analyses and the triangle-type research system consisting the satellite and ground-based observations and the data analyses/modelings/simulations. Our next exploration target is the space-Earth connection processes/mechanisms responsible for the formation and coupling of the terrestrial magnetosphere/ionoshere/thermosphere and the acceleration and transportation of the space plasma and neutral atmospheric particles, which could be
    [Show full text]
  • Solar System Exploration Strategic Road Map and Venus Exploration
    Solar System Exploration Strategic Road Map and Venus Exploration Presentation at Lunar and Planetary Science Conference James A. Cutts Solar System Exploration Directorate, JPL James R. Robinson Science Missions Directorate, NASA HQ March 16, 2005 03/16/2005 Predecisional - for discussion purposes only 1 Purpose of this briefing • To inform the Venus Science community about the status of the solar system exploration strategic planning process that is currently being carried out by NASA • To seek inputs on future priorities for Venus exploration for inclusion in the nation’s solar system exploration program for input to this process 03/16/2005 Predecisional - for discussion purposes only 2 Strategic Planning and Venus Exploration? • NASA is conducting a strategic planning activity that builds upon the President’s Vision for Space Exploration published in January 2004. • Three Strategic Road Map teams are formulating plans for exploration of the solar system. – Mars Exploration – Lunar Exploration – Solar System Exploration (covering Venus exploration) – co chaired by • Orlando Figueroa (Assoc Director, Science NASA HQ) • Scott Hubbard (Director, ARC) • Jonathan Lunine, University of Arizona and Chair of NASA Solar System Exploration subcommittee • The Solar System Exploration Road Map team is on a very aggressive schedule. It is scheduled to submit its report for review by the National Research Council by June 1, 2005 An important function of this plan will be to guide the NASA investment in new technologies and related capabilities over the next decade. 03/16/2005 Predecisional - for discussion purposes only 3 Strategic Road Map - Solar System Exploration Committee Members • Orlando Figueroa, NASA Science Mission Directorate co-chair G.
    [Show full text]
  • VOWOX^ >OMRXYVYQSO] PY\ >\KTOM^Y\C .O]SQX PY\ 6 XK
    !" #$! %&#! & ' ($ ! # "" !" ($ ' ) ' ! ## * # ! '! ! " !" !#$! !&#! & ' ! & !+ ,&! &-&# ! !.,/0! & ! 1 !* && 2 ! $# ! " ! ! # #! !2 #2! ! "2 $ & ' ! * !#$! %&#! & ' + ! )'#$! + ! + # #& &$# !&#! -&# !#$! -&# ! ) & $ !) %$% $ % &$ ) &&' * $% $ ,$ + ' $$ % &+ !$ && 6 !"##$ % & $ ' ) ! & $'/ $& $ ($ % & ) % $ % ( & & $ ! * $ + (* ,$ +) & %+($ $$ R(& $+ (+ $ '- % (* ,$ $ $ 6 ) & ' + ) & * $$%& . $ 7)' * $ *$ 6 ) & $ & )+$&( )% * $ ( %& $ % ( & ,$ +) & & + $ &+& $%' *(! $ $6 / 0& & $ 11#' & $&)&+& ! 6 ) & ,$ +) & % $ $+ ) & $ % ( &*&&% $! 6 ) $ %& % & $ R ! *&& & ( & + $$ & & +& 2& + ,$' 0& +! ) & 2& + $& & + ! !$'' $ )$& & + & &% ! % ) 3( * ) + $ $ $! *% *+ $ + & $ +' 4 &+! ) & $* * !% $ & $ R& $($& &$ &$& *)$ +$ )$ ) (% & $ )$& & +' $ % $ & $ 3 *4 #$! + ! + !&.40* 456 & # $ !& 3 *5 !& " $'##$! 78* 3 *6 #$! + ! + !&.60* %&+ ):&R& *! ) (+ ! & % 6 $ ' ) (+ ' % / $! $& &&$ &! & $ + % $ $$ ,$ +) & 2& $ $ ) & $%& $ ) + ' % & ( &'$ (!& $* * & ) * % & $ &$& &$$ & & $ & * $ !$ )% % 8 $' $%$ & & ! ( ) # %) & $ $+' * )+- $ 4 $ ) ) ,$ % ! $! % ( 4## + * ) && + 6) &* &$%$ & & & &3 )) (+ &% $& & +' *#6) & )&$$ & & ' ) .$ ) - ( & %! * $$& ( ) % ' $& !% 6 & % ) ;
    [Show full text]
  • Orbit Determination of the NOZOMI Spacecraft Using Differential VLBI Technique Radio Astronomy Applications Group Kashima Space Research Center IUGG2003, Sapporo
    Orbit Determination of The NOZOMI Spacecraft using Differential VLBI Technique Radio Astronomy Applications Group Kashima Space Research Center IUGG2003, Sapporo (C) ISAS According to the ISAS announcement the NOZOMI has completed its final Earth swingby operation on June 19, and is on its way to Mars. NOZOMI passed within 11,000 km of the NOZOMI Earth in a manuever. (C) ISAS ts Quasar Algonquin (SGL, CRESTech ) tq B: baseline vector Basic Concept of Differential Tomakomai (Hokkaido Univ.) VLBI (DVLBI) observation Mizusawa (NAO) Usuda (ISAS) Gifu Data Sampling Data Sampling (Gifu Univ.) Boards Boards Tsukuba (GSI) K5 VLBI System K5 VLBI System Yamaguchi (Yamaguchi Univ.) Koganei (CRL) Kagoshima(ISAS) Kashima (uplink) (CRL) VLBIVLBI stationsstations participatingparticipating toto DVLBIDVLBI experimentsexperiments Detected NOZOMI fringe Orbit Determination We performed more than 30 differential VLBI (DVLBI) experiments for the NOZOMI spacecraft from September 2002 until June 2003. NOZOMI, which means “Hope” in Japanese, is the Japan's first Mars probe developed and launched by the Institute of Space and Astronautical Science (ISAS). NOZOMI was originally scheduled to reach its destination in October 1998, but an earlier Earth swingby failed to give it sufficient speed, forcing a drastic rescheduling of its flight plan. According to the new trajectory strategy, NOZOMI's arrival at Mars is scheduled early in 2004 through two additional earth swingbys in Dec. 2002 and June 2003. Our main concern was to determine the NOZOMI orbit just before the second earth swingby on June 19, 2003. It was significantly important to get the timing to maneuver the NOZOMI before the swingby. ISAS scientists were afraid that the range and range rate (R&RR) orbit determination might not be available because it was difficult to point the high-gain antenna mounted the spacecraft toward the earth during the period between two swingby events.
    [Show full text]
  • The Planetary Report (Lssn 0736-3680) Is Published Six Times Yearly at Dozens of People Clamoring to Come
    A Publication of THEPLANETA SOCIETY o ¢ 0 0 o o • 0-e Board of Directors FROI\II THE CARL SAGAN BRUCE MURRAY EDITOR President Vice President Director. Laboratory for Planetary Professor of Planetary Studies. Cornell University Science, California Institute of Technology LO UIS FR IEDMAN Executive Director JOSEPH RYAN O'Me/veny & Myers MICHAEL COLLINS Apollo 11 astronaut STEVEN SPIELBERG . he way we explore planets is chang­ its 1994 budget a new Discovery class of director and producer THOMAS O. PAINE former Administrator, NASA; HENRY J. TANNER T ing. Gone are the days when we could missions to cost no more than $150 mil­ Chairman, National financial consultant Commission on Space build space-traveling, multipurpose vehi­ lion each and to be accomplished in three Board of Advisors cles, load them with a profusion of years or less. Whether or not Congress instruments and send them off to answer will fund these missions remains to be DIANE ACKERMAN HANS MARK poet and author Chancellor. a multitude of scientific questions. seen. University of Texas System RICHARD BERENDZEN The Cassini mission to the saturnian Meanwhile, there are other concepts for educator and astrophysicist JAMES MICHENER author system, if it survives the congressional small spacecraft missions, many of which JACQUES BLAMONT Chief Scientist. Centre MARVIN MINSKY budget process, will probably be the last grew out of papers presented at the Soci­ National dEludes Spatia/es. France Toshiba Professor of Media Arts and Sciences, Massachusetts "flagship" mission launched for a long ety's workshop. Rather than bring you RAY BRADBURY Institute of Technology poet and author time.
    [Show full text]
  • Celestial Mechanics Theory Meets the Nitty-Gritty of Trajectory Design
    From SIAM News, Volume 37, Number 6, July/August 2004 Celestial Mechanics Theory Meets the Nitty-Gritty of Trajectory Design Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers. By Edward Belbruno, Princeton University Press, Princeton, New Jersey, 2004, xvii + 211 pages, $49.95. In January 1990, ISAS, Japan’s space research institute, launched a small spacecraft into low-earth orbit. There it separated into two even smaller craft, known as MUSES-A and MUSES-B. The plan was to send B into orbit around the moon, leaving its slightly larger twin A behind in earth orbit as a communications relay. When B malfunctioned, however, mission control wondered whether A might not be sent in its stead. It was less than obvious that this BOOK REVIEW could be done, since A was neither designed nor equipped for such a trip, and appeared to carry insufficient fuel. Yet the hope was that, by utilizing a trajectory more energy-efficient than the one By James Case planned for B, A might still reach the moon. Such a mission would have seemed impossible before 1986, the year Edward Belbruno discovered a class of surprisingly fuel-efficient earth–moon trajectories. When MUSES-B malfunctioned, Belbruno was ready and able to tailor such a trajectory to the needs of MUSES-A. This he did, in collaboration with J. Miller of the Jet Propulsion Laboratory, in June 1990. As a result, MUSES-A (renamed Hiten) left earth orbit on April 24, 1991, and settled into moon orbit on October 2 of that year.
    [Show full text]
  • Genomics on the Brain on 9 September, the Father of the Hydrogen Bomb Passed Away
    2003 in context Neuroscience GOODBYE Edward Teller Genomics on the brain On 9 September, the father of the hydrogen bomb passed away. He was a controversial he 1990s may have been designated the creating transgenic mice that carry these figure, who was vilified by many physicists after T‘Decade of the Brain’,but they will also be BACs,the researchers can identify — by sight testifying in 1954 that Robert Oppenheimer, remembered as the time when genomics — the cells in which a gene of interest is nor- leader of the wartime Manhattan Project, was a came to the fore.This year,neuroscience and mally active,and can work out how these cells security risk. Teller later championed President genomics teamed up in projects that promise connect with the rest of the brain. The same Ronald Reagan’s ‘Star Wars’ missile-defence to propel the study of the brain into the realm BACs can also be used to introduce other initiative. But colleagues at the Lawrence of‘big science’. genetic modifications into these cells,provid- Livermore National Laboratory, co-founded by Working on Parkinson’s disease? One of ing a unique tool to investigate their biology. Teller, say that he should also be remembered the projects that surfaced this year might pro- GENSAT’s first images can already be seen for his passion for teaching physics. vide you with a transgenic mouse that offers on its website,which was launched in October fluorescent neurons in key neural pathways. alongside a paper introducing the project Galileo Another could offer you structural brain (S.
    [Show full text]