Tissue-Infiltrating Macrophages Mediate an Exosome-Based
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Wide Analysis of 5-Hmc in the Peripheral Blood of Systemic Lupus Erythematosus Patients Using an Hmedip-Chip
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1467-1479, 2015 Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip WEIGUO SUI1*, QIUPEI TAN1*, MING YANG1, QIANG YAN1, HUA LIN1, MINGLIN OU1, WEN XUE1, JIEJING CHEN1, TONGXIANG ZOU1, HUANYUN JING1, LI GUO1, CUIHUI CAO1, YUFENG SUN1, ZHENZHEN CUI1 and YONG DAI2 1Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002; 2Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China Received July 9, 2014; Accepted February 27, 2015 DOI: 10.3892/ijmm.2015.2149 Abstract. Systemic lupus erythematosus (SLE) is a chronic, Introduction potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range Systemic lupus erythematosus (SLE) is a typical systemic auto- of self-antigens. To investigate the role of the 5-hmC DNA immune disease, involving diffuse connective tissues (1) and modification with regard to the onset of SLE, we compared is characterized by immune inflammation. SLE has a complex the levels 5-hmC between SLE patients and normal controls. pathogenesis (2), involving genetic, immunologic and envi- Whole blood was obtained from patients, and genomic DNA ronmental factors. Thus, it may result in damage to multiple was extracted. Using the hMeDIP-chip analysis and valida- tissues and organs, especially the kidneys (3). SLE arises from tion by quantitative RT-PCR (RT-qPCR), we identified the a combination of heritable and environmental influences. differentially hydroxymethylated regions that are associated Epigenetics, the study of changes in gene expression with SLE. -
XPB Induces C1D Expression to Counteract UV-Induced Apoptosis
Published OnlineFirst June 8, 2010; DOI: 10.1158/1541-7786.MCR-09-0467 Molecular DNA Damage and Cellular Stress Responses Cancer Research XPB Induces C1D Expression to Counteract UV-Induced Apoptosis Guang Li1, Juhong Liu2, Mones Abu-Asab1, Shibuya Masabumi3, and Yoshiro Maru4 Abstract Although C1D has been shown to be involved in DNA double-strand break repair, how C1D expression was induced and the mechanism(s) by which C1D facilitates DNA repair in mammalian cells remain poorly understood. We and others have previously shown that expression of xeroderma pigmentosum B (XPB) pro- tein efficiently compensated the UV irradiation–sensitive phenotype of 27-1 cells, which lack functional XPB. To further explore XPB-regulated genes that could be involved in UV-induced DNA repair, differential dis- play analysis of mRNA levels from CHO-9, 27-1, and 27-1 complemented with wild-type XPB was done and C1D gene was identified as one of the major genes whose expression was significantly upregulated by restoring XPB function. We found that XPB is essential to induce C1D transcription after UV irradiation. The increase in C1D expression effectively compensates for the UV-induced proteolysis of C1D and thus maintains cellular C1D level to cope with DNA damage inflicted by UV irradiation. We further showed that although insufficient to rescue 27-1 cells from UV-induced apoptosis by itself, C1D facilitates XPB DNA repair through direct interaction with XPB. Our findings provided direct evidence that C1D is associated with DNA repair complex and may promote repair of UV-induced DNA damage. Mol Cancer Res; 8(6); 885–95. -
Oncogenic H-Ras Up-Regulates Expression of ERCC1 to Protect Cells from Platinum-Based Anticancer Agents
[CANCER RESEARCH 64, 4849–4857, July 15, 2004] Oncogenic H-Ras Up-Regulates Expression of ERCC1 to Protect Cells from Platinum-Based Anticancer Agents Cha-Kyung Youn,1 Mi-Hwa Kim,1 Hyun-Ju Cho,1 Hong-Beum Kim,1 In-Youb Chang,1 Myung-Hee Chung,3 and Ho Jin You1,2 1Research Center for Proteineous Materials and 2Department of Pharmacology, School of Medicine, Chosun University, Gwangju, and 3Department of Pharmacology, School of Medicine, Seoul National University, Seoul, Korea ABSTRACT elucidated, evidence suggests that the activated Ras may contribute to cisplatin resistance by stimulating the DNA repair activity (9, 12, 13). Tumors frequently contain mutations in the ras genes, resulting in the Hence, there has been considerable interest in determining which constitutive activation of the Ras-activated signaling pathway. The acti- vation of Ras is involved not only in tumor progression but also in the proteins mediate the altered DNA repair capacity in activated Ras- development of resistance of the tumor cells to platinum-based chemo- containing cells. However, the downstream target genes of the onco- therapeutic agents. To investigate the potential mechanisms underlying genic Ras, which are involved in the enhancement of the DNA repair this resistance, we analyzed the effect of activated H-Ras on the expression activity, are unclear. of the nucleotide excision repair genes. Here we identified ERCC1, which Cisplatin is one of the most effective and widely used anticancer is one of the key enzymes involved in nucleotide excision repair, as being drugs for treating human solid tumors (14). However, its therapeutic markedly up-regulated by the activated H-Ras. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
P38 MAPK-Mediated Activation of NF-Kb by the Rhogef Domain of Bcr
Oncogene (2002) 21, 4601 – 4612 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc p38 MAPK-mediated activation of NF-kB by the RhoGEF domain of Bcr Malgorzata Korus1,2, Gwendolyn M Mahon1,2, Li Cheng1 and Ian P Whitehead*,1 1Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, New Jersey, NJ 07103, USA The oncogenic fusion protein p210 Bcr-Abl is causally et al., 1988; Fainstein et al., 1987; Konopka et al., associated with virtually all cases of chronic myelogenous 1984; Kurzrock et al., 1987; Walker et al., 1987). leukemia. The wild-type Bcr product has several Although animal models suggest that elevated levels of recognizable structural and functional motifs including Abl tyrosine kinase activity contribute to Bcr-Abl a domain that contains guanine nucleotide exchange mediated leukemogenesis (Lugo et al., 1990), the activity for Rho family GTPases (DH/PH domain). residues that distinguish the rearrangements associated Although this domain is retained within p210 Bcr-Abl, it with ALL (p185 Bcr-Abl) from the rearrangements has no known signaling activities in vivo. Here we report associated with CML (p210 Bcr-Abl) reside within the that a fragment of Bcr that encodes the isolated DH/PH Bcr protein. Thus, a complete understanding of the domain is a potent activator of the NF-kB transcription biological mechanisms that distinguish ALL from factor. Within the context of full length Bcr, this activity CML may depend upon the characterization of the is regulated by proximal flanking sequences that suppress signaling activities that reside within Bcr. -
Supplementary Materials
1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No. -
Chromosomal Rearrangements Are Commonly Post-Transcriptionally Attenuated in Cancer
bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Chromosomal rearrangements are commonly post-transcriptionally attenuated in cancer 1 3 1 3, 4, 5 Emanuel Gonçalves , Athanassios Fragoulis , Luz Garcia-Alonso , Thorsten Cramer , 1,2# 1# Julio Saez-Rodriguez , Pedro Beltrao 1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK 2 RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen 52057, Germany 3 Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany 4 NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands 5 ESCAM – European Surgery Center Aachen Maastricht, Germany and The Netherlands # co-last authors: [email protected]; [email protected] Running title: Chromosomal rearrangement attenuation in cancer Keywords: Cancer; Gene dosage; Proteomics; Copy-number variation; Protein complexes 1 bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chromosomal rearrangements, despite being detrimental, are ubiquitous in cancer and often act as driver events. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/Mtor Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance
www.impactjournals.com/oncotarget/ Oncotarget, October, Vol.3, No 10 Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance James A. McCubrey1, Linda S. Steelman1, William H. Chappell1, Stephen L. Abrams1, Richard A. Franklin1, Giuseppe Montalto2, Melchiorre Cervello3, Massimo Libra4, Saverio Candido4, Grazia Malaponte4, Maria C. Mazzarino4, Paolo Fagone4, Ferdinando Nicoletti4, Jörg Bäsecke5, Sanja Mijatovic6, Danijela Maksimovic- Ivanic6, Michele Milella7, Agostino Tafuri8, Francesca Chiarini9, Camilla Evangelisti9, Lucio Cocco10, Alberto M. Martelli9,10 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA 2 Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy 3 Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy 4 Department of Bio-Medical Sciences, University of Catania, Catania, Italy 5 Department of Medicine, University of Göttingen, Göttingen, Germany 6 Department of Immunology, Instititue for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia 7 Regina Elena National Cancer Institute, Rome, Italy 8 Sapienza, University of Rome, Department of Cellular Biotechnology and Hematology, Rome, Italy 9 Institute of Molecular Genetics, National Research Council-Rizzoli Orthopedic Institute, Bologna, Italy. 10 Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy Correspondence to: James A. McCubrey, email: [email protected] Keywords: Targeted Therapy, Therapy Resistance, Cancer Stem Cells, Raf, Akt, PI3K, mTOR Received: September 12, 2012, Accepted: October 18, 2012, Published: October 20, 2012 Copyright: © McCubrey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Discovery of the Essential Roles of CRK9 in Gene Expression and Of
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 5-27-2015 Lessons from Trypanosome TFIIH: Discovery of the Essential Roles of CRK9 in Gene Expression and of the Divergent Helicase Paralog XPB-R in Nucleotide Excision Repair Nitika Badjatia University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Badjatia, Nitika, "Lessons from Trypanosome TFIIH: Discovery of the Essential Roles of CRK9 in Gene Expression and of the Divergent Helicase Paralog XPB-R in Nucleotide Excision Repair" (2015). Doctoral Dissertations. 866. https://opencommons.uconn.edu/dissertations/866 Lessons from Trypanosome TFIIH: Discovery of the Essential Roles of CRK9 in Gene Expression and of the Divergent Helicase Paralog XPB-R in Nucleotide Excision Repair Nitika Badjatia University of Connecticut, [2015] Eukaryotic TFIIH consists of a core of seven subunits, including the DNA helicase Xeroderma Pigmentosum B (XPB), and a cyclin-dependent kinase (CDK)-activating complex (CAK) that contains CDK7. XPB is crucial for DNA unwinding during transcription and nucleotide excision repair (NER) while the CAK complex phosphorylates RNA polymerase II (RNAPII) carboxy terminal domain (CTD), enabling the enzyme’s promoter clearance. Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are lethal human parasites, belonging to the early-diverged order Kinetoplastida. They transcribe genes polycistronically and require spliced leader (SL) trans splicing for the maturation of mRNAs from polycistronic precursors. SL RNA gene (SLRNA) transcription by RNAPII depends on trypanosome TFIIH complex which contains orthologs of all core subunits but lacks the CAK complex. Despite this, the trypanosome CTD is phosphorylated and essential for SLRNA transcription. -
Melanomas Are Comprised of Multiple Biologically Distinct Categories
Melanomas are comprised of multiple biologically distinct categories, which differ in cell of origin, age of onset, clinical and histologic presentation, pattern of metastasis, ethnic distribution, causative role of UV radiation, predisposing germ line alterations, mutational processes, and patterns of somatic mutations. Neoplasms are initiated by gain of function mutations in one of several primary oncogenes, typically leading to benign melanocytic nevi with characteristic histologic features. The progression of nevi is restrained by multiple tumor suppressive mechanisms. Secondary genetic alterations override these barriers and promote intermediate or overtly malignant tumors along distinct progression trajectories. The current knowledge about pathogenesis, clinical, histological and genetic features of primary melanocytic neoplasms is reviewed and integrated into a taxonomic framework. THE MOLECULAR PATHOLOGY OF MELANOMA: AN INTEGRATED TAXONOMY OF MELANOCYTIC NEOPLASIA Boris C. Bastian Corresponding Author: Boris C. Bastian, M.D. Ph.D. Gerson & Barbara Bass Bakar Distinguished Professor of Cancer Biology Departments of Dermatology and Pathology University of California, San Francisco UCSF Cardiovascular Research Institute 555 Mission Bay Blvd South Box 3118, Room 252K San Francisco, CA 94158-9001 [email protected] Key words: Genetics Pathogenesis Classification Mutation Nevi Table of Contents Molecular pathogenesis of melanocytic neoplasia .................................................... 1 Classification of melanocytic neoplasms -
University of Florida Thesis Or Dissertation Formatting
AAA ATPASE CDC48A AND ITS ASSOCIATION WITH UBIQUITIN-LIKE SAMP1 AND DNA REPAIR IN ARCHAEA By SWATHI DANTULURI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Swathi Dantuluri I dedicate this to my family and friends for their endless love, support and company.Everybody who has taken the time and energy to teach me everything small or big. ACKNOWLEDGMENTS During my graduate career at the University of Florida, there are many people to whom I will be eternally indebted to for supporting and advising me along the way. Firstly, I would like to thank my advisor, Dr. Julie A. Maupin-Furlow for providing me the opportunity to work under her guidance as well as for all her help, advice, support, and encouragement throughout my time in her lab. I would also like to thank my committee members Dr. Sixue Chen, Dr.Tony Romeo and Dr. Nemat.O.Keyhani for their constructive advice and guidance. I must also express my gratitude to all the past and current Maupin lab members with whom I developed a warm and friendly working relationship over time, especially Dr. Nathaniel Hepowit who patiently taught me all the lab techniques, Dr. Xian Fu, Dr. Lana J. McMillan, Dr. Shiyun Cao, Dr. Sungmin Hwang, Zachary Adams, Cuper Ramirez, Paula Mondragon, and Jou Chin Chan. I also would like to thank all the undergraduate researchers in our lab for their dedication: Shae Marguiles, Sonam Parag, Gayathri Srinivasan, and Whinkie Leung.