City of Indian Harbour Beach

Total Page:16

File Type:pdf, Size:1020Kb

City of Indian Harbour Beach VOLUSIA COUNTY TSUNAMI WARNING AND EVACUATION PLAN Banda Aceh, Indonesia, December 2004, before/after tsunami photos 2019 Page 1 of 23 Table of Contents Introduction …………………………………………………………………………………………….. 3 Terms and Definitions………………………………………………………………………………. 4 Volusia County Profile……………………………………………………………………………… 5 Volusia County Demographics………………………………………………………………… 6 Contact Officials……………………………………………………………………………………….. 7 Volusia County Tsunami Hazard Analysis………………………………………………… 8 Volusia County Tsunami Ready Capabilities…………………………………………… 11 Tsunami Characteristics…………………………………………………………………………… 12 Tsunami Warning Procedure……………………………………………………………………. 14 DART II Buoy System………………………………………………………………………………. 15 National Weather Service Tsunami Warning Procedures……………………….. 16 Tsunami Warning Response Plan……………………………………………………………. 18 Tsunami Public Awareness Campaign……………………………………………………… 21 Training…………………………………………………………………………………………………….. 21 Tsunami Evacuation Warning Notice………………………………………………………..22 Tsunami Zone Warning and Tsunami Evacuation Route Sign………………… 23 Attachments: Peninsula fifteen foot contour elevation maps Condominium/Business Contacts (kept separate from the plan for confidentiality purposes). Page 2 of 23 INTRODUCTION Volusia County Emergency Management, in conjunction with Volusia County Beach Patrol and the Melbourne Office of the National Weather Service, has developed a Volusia County-specific Tsunami Warning and Evacuation Plan. In the event a Tsunami threatens Volusia County, the activation of this plan will guide the actions of the responsible agencies in the coordination and evacuation of Volusia County Barrier Island1 residents and visitors from the beach and other threatened areas. The goal of this plan is to provide for the timely evacuation of the population at risk on the Barrier Island in the event of a Tsunami Warning. This may include the majority of the Peninsula residents. An alternative to evacuating to mainland Volusia County involves vertical evacuation. Vertical evacuation consists of the evacuation of persons from an entire area, floor, or wing of a building to a higher floor or wing. The National Weather Service has determined that fifteen feet is the minimum acceptable level for vertical evacuation on the Barrier Island. The potential Tsunami threat—for planning purposes until further Tsunami models are developed—is a 15’ wall of water inundating 300’ of the Barrier Island. Plans for vertical evacuation of Peninsula residents and visitors would only be effective if designated structures are designed to withstand both strong near-source ground motions and the velocity and impact loads of tsunami inundation. Since no studies have been conducted to evaluate the level of protection current structures provide, vertical evacuation is only recommended from a near-source tsunami when public notification may not be possible (unlikely for Volusia County); or, when only a few hours or minutes of warning is available. This plan will include components from the Incident Command System. The highest priority is the safety of the public at large and our first responders. 1 The terms “Barrier Island” and “Peninsula” are used interchangeably. Page 3 of 23 Terms and Definitions Arrival Time - Time of arrival, usually of the first wave, of the tsunami at a particular location. EOC – Emergency Operations Center, for purposes of this plan the Volusia County Emergency Operations Center. ETA – Estimated Time of Arrival, computed arrival of the first tsunami wave to reach a coastal community after a specific ocean earthquake or other tsunami creating event. Mean Lower Low Water Level – The average low tide water elevation often used as a reference to measure run up. Mean Sea Level – An average of all high and low tides over an 18.6 year period. Mw Moment Magnitude – Magnitude based on the size and characteristics of the fault rupture, and determined from long-period seismic waves. Tsunami – the word “tsunami” is Japanese meaning “harbor wave”. A tsunami is a series of long waves created by a disturbance that displaces a large amount of water. This disturbance is primarily associated with earthquakes in oceanic or coastal regions. Landslides, volcanic eruptions, nuclear explosions, and even impacts from objects from outer space, such as meteorites, asteroids and comets could also create a tsunami. Tsunami Alert – an informative message indicating that an earthquake greater than 7.5 has occurred and the tsunami wave, if generated would take longer than 6 hours to arrive. Tsunami Warning – a bulletin issued by the Alaska Tsunami Warning Center defining the immediate threatened area, usually based on seismic information without tsunami confirmation. Provides earliest possible alert and is repeated hourly until cancelled. Page 4 of 23 Volusia County Profile Volusia County is a large, geographically diverse political subdivision of the State of Florida. The land area of the county is in excess of 1,200 square miles. In this area, approximately 504,000 residents are generally clustered into two major areas of development - the coastal areas east of I-95 and along the US 17/92 and I-4 corridors in the west and southwest. Sixteen municipalities comprise approximately 75% of the total population and range in size from approximately 2,000 (Oak Hill) to 86,000 (Deltona), based on the 2006 estimates. Ten municipalities are clustered in the eastern area while six are grouped in the west and southwest. The number of jurisdictions and wide-range of capabilities are important considerations for the Volusia County CEMP. Providing first response emergency services within the 16 municipalities and the unincorporated and specialized areas (beach, airport) are 16 local law enforcement agencies, 14 fire/rescue/EMS agencies (including EVAC), and 16 public works agencies. In addition, Volusia County has several large venues where residents and visitors gather throughout the year, including the Daytona International Speedway and the north and south beach areas that cross six jurisdictions. These sites are the focal points of several special events activities attracting international attention that increase the in-county populations by 50-75% at several times throughout the year. Geographic Information 1. Volusia County is located on the Atlantic coast in the north-central portion of the Florida coastline. The county is bordered on the south by Brevard and Seminole Counties, on the west by Marion, Seminole and Lake Counties, the north by Putnam and Flagler Counties, and on the east by the Atlantic Ocean. There are 832,000 acres (1,062 square miles of land and 238 square miles of water) located within the borders of Volusia County, including 47 miles of ocean beaches. The topography of the county is generally flat, with little variation in elevation. 2. Volusia County has 48 miles of coastline enveloping 1,090 acres. Coastal marshland covers 39,488 acres while inland swamps cover 135,808 acres. The coastal areas, beaches and inland swamps are considered to be environmentally sensitive areas. Volusia County has been divided into by the Water Quality Management Program of the Volusia Council of Governments. These are the Tomoka Basin, which remains largely in a natural state, with little urbanization. The Mosquito Lagoon Basin (North Indian River), in which land use is dominated by agricultural and forested lands, with approximately 20% of the area urbanized. The Spruce Creek/Turnbull Bay Basin is only slightly urbanized, with most of the land cover being forest or wetland. The Middle St. Johns River Basin contains a portion of the Interstate 4 corridor, although only 5% of the land in this basis is urbanized, with the remainder being forested and in agriculture. Finally, the Central Recharge Area, in the center of the county, has two major transportation corridors (Interstate 4 and U.S. 92), although most of the land use is forest, wetlands or rangelands. Developed lands account for only 3% of the basin. Page 5 of 23 Volusia County Demographics 1. The population of Volusia County has experienced dramatic increases over the past 25 years. The 1970 US Census placed Volusia County’s population at 169,500. Estimates released by the University of Florida, Bureau of Economic and Business Research as of April 1, 1995 place Volusia County’s population at 402,970 persons, and 2006 estimates at more than 504,000 people. A significant portion of this increase can be attributed to persons age 65 and over (greater than 25%). 2. The county has two distinct population regions. The eastern region (from Interstate 95 east to the ocean) supports approximately 60% of the total population with approximately 80% of this population living within incorporated areas. The western region (generally bordering US 17-92 and the Interstate 4 corridors) is home to the remaining 40% of the total population. This population is the inverse of the eastern region with over 80% residing in unincorporated areas. 3. Due to the popularity of the seashore, approximately 67 percent of the county’s population (330,000 people) resides in hurricane storm surge zones, along with a large portion of the county’s economic base. Eleven of Volusia County’s sixteen municipalities are located East of Interstate 95, with City populations alone totaling over 250,000. Much of this area is designated for evacuation for a Category 4 or 5 hurricane. Page 6 of 23 Contact Officials Melbourne National Weather Service Meteorologist Bart Hagemeyer: 321-255-0212; Cellular phone 321-698-0436. Melbourne
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • Current Block Motions and Strain Accumulation on Active Faults in the Caribbean S
    Current block motions and strain accumulation on active faults in the Caribbean S. Symithe, E. Calais, J.-B. de Chabalier, R. Robertson, M Higgins To cite this version: S. Symithe, E. Calais, J.-B. de Chabalier, R. Robertson, M Higgins. Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2015, 120 (5), pp.3748-3774. 10.1002/2014JB011779. insu-01470187 HAL Id: insu-01470187 https://hal-insu.archives-ouvertes.fr/insu-01470187 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Current block motions and strain accumulation on active 10.1002/2014JB011779 faults in the Caribbean 1 2 3 4 4 Key Points: S. Symithe , E. Calais , J. B. de Chabalier , R. Robertson , and M. Higgins • First Caribbean-wide, present-day, kinematic model 1Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana, USA, 2Ecole Normale • Strain accumulation rates on all major Supérieure, Department of Geosciences, PSL Research University, UMR CNRS 8538, Paris, France, 3Institut de Physique du active faults in the Caribbean Globe, Paris, France, 4Seismic Research Center, University of the West Indies, St.
    [Show full text]
  • Emergent Tsunami Warning System for Puerto Rico and the Virgin Islands *
    EMERGENT TSUNAMI WARNING SYSTEM FOR PUERTO RICO AND THE VIRGIN ISLANDS * CHRISTA G. VON HILLEBRANDT-ANDRADE Puerto Rico Seismic Network, University of Puerto Rico, PO Box 9017 Mayagüez, PR 00681-9017, USA VÍCTOR HUÉRFANO MORENO Puerto Rico Seismic Network, University of Puerto Rico, PO Box 9017 Mayagüez, PR 00681-9017, USA A tsunami warning system has been under development for the Puerto Rico/Virgin Islands (PRVI) region since 2000 as part of the Puerto Rico Tsunami Warning and Mitigation Program (PRTWMP). This system is in response to the historical tsunamis which have impacted Puerto Rico and the Virgin Islands and the potential for tsunamis to affect the region in the future. This emergent warning system has five thrust areas: definition of the tsunami scenarios, tsunami detection, tsunami protocol, communication, dissemination and education. The detection capabilities of the system are based on the detection of potentially tsunamigenic earthquakes by the Puerto Rico Seismic Network (PRSN) and the Pacific Tsunami Warning Center (PTWC). A protocol to respond to a potential tsunami has been developed. The messages would be broadcast through the Civil Emergency Alert System of the San Juan Field Office of the U. S. National Weather Service in coordination with the Puerto Rico Seismic Network and the Puerto Rico State Emergency Management Agency. Educational initiatives have been taken so that the threatened population is aware of the hazards and can respond effectively in case of a tsunami. * This is a draft of a paper which is to be included in the proceedings of the Caribbean Tsunami Workshop which was sponsored by NSF, PR Emergency Maangement, Sea Grant and the UPR on March 30 and 31, 2004.
    [Show full text]
  • Plate Motion, Sedimentation, and Seismicity at a Restraining Bend
    Earth and Planetary Science Letters, 70 (1984) 311-324 311 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands [31 Neotectonics of Hispaniola: plate motion, sedimentation, and seismicity at a restraining bend Paul Mann 1, Kevin Burke 2 and Tosimatu Matumoto 1 Institute for Geophysics, University of Texas at Austin, Austin, TX 78712 (U.S.A.) 2 Lunar and Planetary Institute, 3303 NASA Road 1, Houston, TX 77058; and Department of Geosciences, University of Houston/Central Campus, Houston, TX 77004 (U.S.A.) Received November 28, 1983 Revised version received July 9, 1984 The pattern of Neogene faulting,volcanism, and sedimentation in Hispaniola helps to resolve a problem that arises in attempting to determine the direction of Caribbean plate motion from earthquakes alone, namely: How well do earthquake mechanisms define plate motion? Hispaniola occupies a compressional north-step or restraining bend in the generally east-west-trending Motagua-Cayman Trough-Puerto Rico Trench fault system which marks an active plate boundary zone (PBZ) of left-lateral strike-slip motion between the North America and Caribbean plates. Four areas are distinguishable in Hispaniola from field mapping and from the interpretation of satellite imagery and conventional aerial photographs. Two of these areas consist of active left-lateral strike-slip fault systems that roughly define the northern and southern coasts of the island. The structure of both fault systems suggest a roughly east-west-trending direction of relative plate motion consistent with previous findings. The intervening area consists of en echelon mountain ranges thrust up at the restraining bend from the early Miocene.
    [Show full text]
  • Coulomb Stress Evolution in Northeastern Caribbean Over the Past 250 Years Due to Coseismic, Postseismic and Interseismic Deformation
    Geophys. J. Int. (2008) 174, 904–918 doi: 10.1111/j.1365-246X.2008.03634.x Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation Syed Tabrez Ali,1 Andrew M. Freed,1 Eric Calais,1 David M. Manaker1,∗ and William R. McCann2 1Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907, USA. E-mail: [email protected] 2Earth Scientific Consultants, 10210 West 102nd Ave, Westminster, CO 80021,USA Accepted 2007 September 24. Received 2007 September 19; in original form 2007 July 21 SUMMARY The Northeastern Caribbean region accommodates ∼20 mm yr−1 of oblique convergence be- tween the North American and Caribbean plates, which is distributed between the subduction interface and major strike-slip faults within the overriding plate. As a result, this heavily populated region has experienced eleven large (M ≥ 7.0) earthquakes over the past 250 yr. In an effort to improve our understanding of the location and timing of these earthquakes, with an eye to understand where current seismic hazards may be greatest, we calculate the evolution of Coulomb stress on the major faults since 1751 due to coseismic, postseismic, and interseismic deformation. Our results quantify how earthquakes serve to relieve stress accumulated due to interseismic loading and how fault systems communicate with each other, serving both to advance or retard subsequent events. We find that the observed progressive westwards propagation of earthquakes on the Septentrional and Enriquillo strike-slip faults and along the megathrust was encouraged by coseismic stress changes associated with prior earthquakes.
    [Show full text]
  • Reducing Risk Where Tectonic Plates Collide—A Plan to Advance Subduction Zone Science
    Reducing Risk Where Tectonic Plates Collide— A Plan to Advance Subduction Zone Science Circular 1428 U.S. Department of the Interior U.S. Geological Survey Front cover. A U.S. Geological Survey scientist surveys Loowit Creek drainage on Mount St. Helens, part of a long-term project to track sediment erosion and deposition in the channel. View to the north, with Spirit Lake and Mount Rainier in the background. U.S. Geological Survey photograph by Kurt Spicer. Reducing Risk Where Tectonic Plates Collide—A Plan to Advance Subduction Zone Science By Joan S. Gomberg, Kristin A. Ludwig, Barbara A. Bekins, Thomas M. Brocher, John C. Brock, Daniel Brothers, Jason D. Chaytor, Arthur D. Frankel, Eric L. Geist, Matthew Haney, Stephen H. Hickman, William S. Leith, Evelyn A. Roeloffs, William H. Schulz, Thomas W. Sisson, Kristi Wallace, Janet T. Watt, and Anne Wein Circular 1428 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]
  • Caribbean Tsunami Hazard
    ESTIMATING THE THREAT OF TSUNAMIGENIC EARTHQUAKES AND EARTHQUAKE INDUCED-LANDSLIDE TSUNAMI IN THE CARIBBEAN WILLIAM R. MCCANN Earth Scientific Consultants Westminster, CO 80021, USA Deformation along the margin of the Caribbean Plate is the principal cause of the tsunami threat in the Caribbean. That margin parallels the northern coast of South America, the Lesser Antilles, and extends along the Greater Antilles from Puerto Rico through Jamaica. The eastern boundary of the Caribbean plate near the Lesser Antilles is the locus of subduction of Atlantic seafloor. At least three distinct, shallow tectonic regimes parallel the margin. They are: an outer tectonic belt where the North America Plate bends to enter the subduction zone, the main interface or zone of contact between the plates, and an inner zone of intraplate activity in the overriding Caribbean Plate. The level of seismic activity and tsunami potential in each of these zones is influenced by the presence of aseismic ridges on the downgoing plate. Ridges may increase the probability of tsunami or slow earthquakes, by reactivating thrust faults in the accretionary prism. The northeastern corner of the Caribbean Plate margin has a smooth transition from the relatively simple subduction zone in the Northern Lesser Antilles into a region of oblique convergence. It is a complex margin dominated by microplate tectonics from near Puerto Rico through Hispaniola. Here too the same three tectonic zones can be defined, but the third zone, “intraplate activity in the Caribbean Plate”, is more clearly delineated as microplate deformation in a wide plate boundary zone. Strike-slip tectonics dominates the region from Haiti westward to the northern coast of Honduras.
    [Show full text]
  • Seismicity of the Earth 1900
    U.S. DEPARTMENT OF THE INTERIOR Map not approved for release by Director USGS U.S. GEOLOGICAL SURVEY 14 January 2010 t n S i e g s b m Seismicity of thee e E s c aEr p arth 1900 - 2007 N a r e s P l a i n Caribbean Plate and Vicinity Eleuthera A T L A N T I C O C E A N a d New Providence I. ys i e A E K r n G u l f o f M e x i c o ida o d x Compiled by Arthur C. Tarr, Susan Rhea, Gavin Hayes, Antonio Villaseñor, Kevin P. FuKeyr Wlesot ng, anor d Harley Benz r u Fl l o m Cat Island TECTONIC SUMMARY G s F I a r s f l o e a T s a n r i t d o 95° 90° 85° r a 80° t 75° San Salvador 70° 65° 60° S t u S i g s b e e D e e p B g a h Extensive diversity of tectonic regimes characterizes the perimeter of the Caribbean plate, involving no fewer h B A H A M A S a B m Great a than four major adjacent plates (North America, South America, Nazca, and Cocos. Inclined zones of deep a h -300 -200 -100 0 M e x i c o B a s i n B Exuma a a Long I. m earthquakes (Wadati-Benioff zones), deep ocean trenches, and arcs of volcanoes clearly indicate subduction of Havana n a k I s oceanic lithosphere along the Central American and Atlantic Ocean margins of the Caribbean plate, while Crooked I.
    [Show full text]
  • Interseismic Plate Coupling and Strain Partitioning in the Northeastern Caribbean
    Geophys. J. Int. (2008) 174, 889–903 doi: 10.1111/j.1365-246X.2008.03819.x Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean D. M. Manaker,1∗ E. Calais,1 A. M. Freed,1 S. T. Ali,1 P. Przybylski,1 G. Mattioli,2 P. Jansma,2 C. Prepetit´ 3 and J. B. de Chabalier4 1Purdue University, Department of Earth and Atmospheric Sciences, West Lafayette, IN 47907, USA. E-mail: [email protected] 2University of Arkansas, Department of Geosciences, Fayetteville, AK, USA 3Bureau of Mines and Energy, Port-au-Prince, Haiti 4Institut de Physique du Globe, Laboratoire de Sismologie, Paris, France Accepted 2008 April 11. Received 2008 April 10; in original form 2007 July 21 SUMMARY The northeastern Caribbean provides a natural laboratory to investigate strain partitioning, its causes and its consequences on the stress regime and tectonic evolution of a subduction plate boundary. Here, we use GPS and earthquake slip vector data to produce a present-day kinematic model that accounts for secular block rotation and elastic strain accumulation, with variable interplate coupling, on active faults. We confirm that the oblique convergence between Caribbean and North America in Hispaniola is partitioned between plate boundary parallel motion on the Septentrional and Enriquillo faults in the overriding plate and plate- boundary normal motion at the plate interface on the Northern Hispaniola Fault. To the east, the Caribbean/North America plate motion is accommodated by oblique slip on the faults bounding the Puerto Rico block to the north (Puerto Rico subduction) and to the south (Muertos thrust), with no evidence for partitioning.
    [Show full text]
  • Seismic Evidence for a Slab Tear at the Puerto Rico Trench Hallie E
    JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 118, 1–9, doi:10.1002/jgrb.50227, 2013 Seismic evidence for a slab tear at the Puerto Rico Trench Hallie E. Meighan,1 Jay Pulliam,1 Uri ten Brink,2 and Alberto M. López-Venegas 3 Received 12 November 2012; revised 17 May 2013; accepted 20 May 2013. [1] The fore-arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land-based seismic data reveal that the swarms are located at depths of 50–150 km. Focal mechanism solutions, found by jointly fitting P wave first-motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike- and dip-slip mechanisms at depths of 50–100 km, while events at depths of 100–150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65W longitude is dominated by trench-normal tensile stresses at shallower depths (50–100 km) and by trench-parallel tensile stresses at deeper depths (100–150 km), whereas the slab segment west of 65W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50–100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench-normal tension and deeper trench-normal compression, is consistent with flexure of the slab due to rollback.
    [Show full text]