Seismicity of the Earth 1900

Total Page:16

File Type:pdf, Size:1020Kb

Seismicity of the Earth 1900 U.S. DEPARTMENT OF THE INTERIOR Map not approved for release by Director USGS U.S. GEOLOGICAL SURVEY 14 January 2010 t n S i e g s b m Seismicity of thee e E s c aEr p arth 1900 - 2007 N a r e s P l a i n Caribbean Plate and Vicinity Eleuthera A T L A N T I C O C E A N a d New Providence I. ys i e A E K r n G u l f o f M e x i c o ida o d x Compiled by Arthur C. Tarr, Susan Rhea, Gavin Hayes, Antonio Villaseñor, Kevin P. FuKeyr Wlesot ng, anor d Harley Benz r u Fl l o m Cat Island TECTONIC SUMMARY G s F I a r s f l o e a T s a n r i t d o 95° 90° 85° r a 80° t 75° San Salvador 70° 65° 60° S t u S i g s b e e D e e p B g a h Extensive diversity of tectonic regimes characterizes the perimeter of the Caribbean plate, involving no fewer h B A H A M A S a B m Great a than four major adjacent plates (North America, South America, Nazca, and Cocos. Inclined zones of deep a h -300 -200 -100 0 M e x i c o B a s i n B Exuma a a Long I. m earthquakes (Wadati-Benioff zones), deep ocean trenches, and arcs of volcanoes clearly indicate subduction of Havana n a k I s oceanic lithosphere along the Central American and Atlantic Ocean margins of the Caribbean plate, while Crooked I. l a 0 100 200 300 400 n 0 C a m p e c h e B a n k d s shallow seismicity and focal mechanisms of major shocks in Guatemala, northern Venezuela, and the Cayman Mayaguana I. Acklins I. Ridge and Cayman Trench indicate transform fault and pull-apart basin tectonics. 0 Caicos Is. (U.K.) -100 T U R K S A N D The depth profile panels on this map portray earthquakes that extend from the Middle America Trench axis in Isla de la Caicos C A I C O S I S . ( U . K . ) Juventud Camaguey Bank Turks Island the west to depths as great as 300 km beneath Guatemala, and from the Lesser Antilles Trench axis in the east C U B A PROFILE G -100 to depths of approximately 200 km beneath Guadeloupe and the NE Caribbean. In contrast, seismicity along Merida -200 Grand Inagua the segments of the Caribbean plate margins from Guatemala to Hispaniola and from Trinidad to western Island Silver Bank Venezuela is indicative of transform fault tectonics. Isla Cozumel H i s -200 Santiago p a n i o l G' a T r o u Navidad PROFILE A De Cuba g h Bank Along the northern margin of the Caribbean plate, relative North America moves toward the west at 20° U E R T O R I C O T R E N 20° .K.) 1946 P C H i n Is. (U s man approximately 20 mm/yr, resulting in major transcurrent faults (e.g., Motagua fault in Guatemala) and troughs a Cay -300 B H Grand Cayman Island C BRITISH (e.g., Cayman Trench). Farther east, the North America plate subducts beneath the Caribbean plate resulting in Veracruz n E N h 1943 a R 1946 g VIRGIN Île de la H A I T I u t g e T D O M I N I C A N surface expression of the deep Puerto Rico Trench and a zone of intermediate focus earthquakes in the a i d o ISLANDS (U.K.) R N Gonâve r h c n R E P U B L I C o u g m a A Port-au- T T r u a y M Santo P U E R T O R I C O ( U . S . ) o -300 -200 -100 0 subducted slab. Y C a r Y Prince Domingo r e h n b A o San Juan g m St. Martin C u M o Anguilla (U.K.) S o U.S. VIRGIN (France & Neth. Antilles) J A M A I C A r 0 The plate boundary curves around Puerto Rico and the northern Lesser Antilles where the plate motion vector Villahermosa Kingston T ISLANDS (U.S.) Mona I. a 5 0 of the Caribbean plate relative to the North and South America plates is less oblique, resulting in active island m Vieques (U.S.) S T . K I T T ' S A' u St. Croix Barbuda k Y A N D N E V I S P n arc tectonics. The North and South America plates subduct beneath the Caribbean plate along the Lesser e a St. Kitt's A N T I G U A A N D Turneffe Is. d B H M E X I C O r M U E R T O S T R O U G B A R B U D A -100 Antilles Trench at rates of about 20 mm/yr; consequently, there are both intermediate focus earthquakes within o n L Nevis B o R a t ee Antigua Tuxtla n k e w B E L I Z E o s g G a the subducted South America plate and a chain of active volcanoes along the island arc. s g Gutierrez d rd a n i i R Port-Au Prince I Montserrat (U.K.) Isla de la l s PROFILE F K i la n a n F' Roatán e d t d G u l f o f Alice a g s Guadeloupe -200 e B d The southern Caribbean plate boundary with the South America plate strikes east-west across Trinidad and 1902 B i (France) H o n d u r a s a Shoal 12 January 2010 21:52:09 UTC R n Serranilla k 1 western Venezuela and is characterized by major strike-slip faults (e.g., El Pilar and Boconó faults) and Bank s 0 Marie-Galante 0 B' San Pedro L i g h t n i n g B a n k o e y shallow seismicity, resulting from relative plate motion of about 20 mm/yr. Further to the west, a broad zone Sula g a d 18.451° N., 72.444° W. g G U A T E M A L A 1976 i e D O M I N I C A R a B' g Dominica of convergent deformation trends southwest across western Venezuela and central Columbia. Plate boundaries e p u Depth 10 km d S a i P F R are not well defined across northern South America, but there is a transition from Caribbean/South America Mw = 7 (USGS) 15° s 15° . Martinique e Z s Guatemala n convergence in the east to Nazca/South America convergence in the west, described in more detail below. The . v d H O N D U R A S e i (France) F n A g s 1950 a c C' l Cayos Miskitos d a s transition zone is characterized by high seismic hazard. i I e V e n e z u e l a n B a s i n 20 B S E A d N R p 0 C A R I B B E A Tegucigalpa r e 1902 a r a t e A 0 S T . L U C I A M d w g E e 0 n L n d a d S n i I 2 u A n i L i St. Lucia D n i The Nazca-Caribbean plate boundary offshore of Columbia is characterized by convergence (Nazca plate V s 1942 e a R San A r D D e W a h O a g c L R r d e E Salvador M B G subducting under South America plate) at about 65 mm/yr. The 6 January 1906 Mw = 8.5 megathrust e i T Isla de Providencia p A o 2001 R B A R B A D O S M St. Vincent e g t subduction earthquake occurred on a shallow-dipping interface of this plate boundary segment. The 1906 E s n R ca i n a Barbados e o ua I ns s b N I C A R A G U A d au C Fo a o earthquake occurred in the Colombia-Ecuador region, with a seismic moment (Mo; equivalent to radiated A e B S T . V IT N C E N T aA N D h d N E T H E R L A N D S E e T lfo 30 n b T H E G R E N A D rI N E S T R Go 0 Isla de San Andres i a A N T I L L E S The Grenadines energy) of 6x10**28 dyne-cm (Okal, 1992), and a moment magnitude (Mw) of 8.5 (Tarr and others, 2009.) E 50 b Aruba (Neth.) a N m Islas B C Managua l o B H I. del Maiz Grande o Curaçao Bonaire Los Roques The nucleation point of this earthquake is indicated on the map ( rupture area is from Kanamori and McNally, C (Venez.) Grenada G R E N A D A 1 Isla 1992 L 1982.) 0 a 0 N g Orchilla ic o Isla Blanquilla (Venez.) a d ra e G o l f o d e (Venez.) g u 0 100 200 300 400 a Ve n e z u e l a 1900 Isla La Tortuga Tobago Along the western coast of Central America, the Cocos plate subducts beneath the Caribbean plate at rates of Barranquilla (Venez.) Isla de Margarita (Venez.) 72-81 mm/yr, resulting in a relatively high seismic hazard and a chain of numerous active volcanoes; here C Maracaibo T R I N I D A D A N D C l a r k B a s i n Caracas T O B A G O intermediate-focus earthquakes occur within the subducted Cocos plate to depths of nearly 300 km.
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Virginia B. Sisson
    Virginia B. Sisson Education: Ph.D., Princeton University, 1985, Dissertation: Contact Metamorphism and Fluid Evolution Associated with the Ponder pluton, Coast Plutonic Complex, British Columbia, Canada M.A., Princeton University, 1981 A.B., Bryn Mawr College cum laude with honors in geology, 1979 Research Interests and Skills: Field oriented petrotectonic studies in Alaska and Guatemala on convergent margins, triple junction interactions, granite emplacement, subduction zone metamorphism and exhumation processes, and jadeitite formation. Have also done field work in Venezuela, British Columbia, India, Malaysia, Norway, California, Washington, Montana, Nevada, Maine, Pennsylvania, and Myanmar Fluid inclusion studies and boron geochemistry of metamorphic rocks Languages Spanish and French at a basic level. Employment: 2008 - present Research Associate Professor, Director Geology Field Course, Co-Director Learning Center, Department of Earth and Atmospheric Sciences, University of Houston 2001 - present Research Associate, American Natural History Museum 2003 - present Research Associate, Department of Geology, University of Utah 2001 - 2004 Research Scientist, Department of Earth Science, Rice University 2001 - 2003 Research Associate Professor, Department of Geology, University of Utah 1999 - 2001 Clinical Assistant Professor, Department of Geology and Geophysics, Rice University 1999 - 2001 Advisor for Encyclopedia Britannica on Rocks and Minerals 1992 - 1999 Assistant Professor, Department of Geology and Geophysics, Rice University
    [Show full text]
  • The Caribbean-North America-Cocos Triple Junction and the Dynamics of the Polochic-Motagua Fault Systems
    The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models Christine Authemayou, Gilles Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, E. N. Chiquin, S. Moran To cite this version: Christine Authemayou, Gilles Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, et al.. The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models. Tectonics, American Geophysical Union (AGU), 2011, 30, pp.TC3010. 10.1029/2010TC002814. insu-00609533 HAL Id: insu-00609533 https://hal-insu.archives-ouvertes.fr/insu-00609533 Submitted on 19 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 30, TC3010, doi:10.1029/2010TC002814, 2011 The Caribbean–North America–Cocos Triple Junction and the dynamics of the Polochic–Motagua fault systems: Pull‐up and zipper models C. Authemayou,1,2 G. Brocard,1,3 C. Teyssier,1,4 T. Simon‐Labric,1,5 A. Guttiérrez,6 E. N. Chiquín,6 and S. Morán6 Received 13 October 2010; revised 4 March 2011; accepted 28 March 2011; published 25 June 2011.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • A GPS and Modelling Study of Deformation in Northern Central America
    Geophys. J. Int. (2009) 178, 1733–1754 doi: 10.1111/j.1365-246X.2009.04251.x A GPS and modelling study of deformation in northern Central America M. Rodriguez,1 C. DeMets,1 R. Rogers,2 C. Tenorio3 and D. Hernandez4 1Geology and Geophysics, University of Wisconsin-Madison, Madison, WI 53706 USA. E-mail: [email protected] 2Department of Geology, California State University Stanislaus, Turlock, CA 95382,USA 3School of Physics, Faculty of Sciences, Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras 4Servicio Nacional de Estudios Territoriales, Ministerio de Medio Ambiente y Recursos Naturales, Km. 5 1/2 carretera a Santa Tecla, Colonia y Calle Las Mercedes, Plantel ISTA, San Salvador, El Salvador Accepted 2009 May 9. Received 2009 May 8; in original form 2008 August 15 SUMMARY We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west–northwest at rates that increase gradually from 3.3 ± 0.6 mm yr−1 in central Honduras to 4.1 ± 0.6 mm yr−1 in western Honduras to as high as 11–12 mm yr−1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region.
    [Show full text]
  • Current Block Motions and Strain Accumulation on Active Faults in the Caribbean S
    Current block motions and strain accumulation on active faults in the Caribbean S. Symithe, E. Calais, J.-B. de Chabalier, R. Robertson, M Higgins To cite this version: S. Symithe, E. Calais, J.-B. de Chabalier, R. Robertson, M Higgins. Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2015, 120 (5), pp.3748-3774. 10.1002/2014JB011779. insu-01470187 HAL Id: insu-01470187 https://hal-insu.archives-ouvertes.fr/insu-01470187 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Current block motions and strain accumulation on active 10.1002/2014JB011779 faults in the Caribbean 1 2 3 4 4 Key Points: S. Symithe , E. Calais , J. B. de Chabalier , R. Robertson , and M. Higgins • First Caribbean-wide, present-day, kinematic model 1Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana, USA, 2Ecole Normale • Strain accumulation rates on all major Supérieure, Department of Geosciences, PSL Research University, UMR CNRS 8538, Paris, France, 3Institut de Physique du active faults in the Caribbean Globe, Paris, France, 4Seismic Research Center, University of the West Indies, St.
    [Show full text]
  • Emergent Tsunami Warning System for Puerto Rico and the Virgin Islands *
    EMERGENT TSUNAMI WARNING SYSTEM FOR PUERTO RICO AND THE VIRGIN ISLANDS * CHRISTA G. VON HILLEBRANDT-ANDRADE Puerto Rico Seismic Network, University of Puerto Rico, PO Box 9017 Mayagüez, PR 00681-9017, USA VÍCTOR HUÉRFANO MORENO Puerto Rico Seismic Network, University of Puerto Rico, PO Box 9017 Mayagüez, PR 00681-9017, USA A tsunami warning system has been under development for the Puerto Rico/Virgin Islands (PRVI) region since 2000 as part of the Puerto Rico Tsunami Warning and Mitigation Program (PRTWMP). This system is in response to the historical tsunamis which have impacted Puerto Rico and the Virgin Islands and the potential for tsunamis to affect the region in the future. This emergent warning system has five thrust areas: definition of the tsunami scenarios, tsunami detection, tsunami protocol, communication, dissemination and education. The detection capabilities of the system are based on the detection of potentially tsunamigenic earthquakes by the Puerto Rico Seismic Network (PRSN) and the Pacific Tsunami Warning Center (PTWC). A protocol to respond to a potential tsunami has been developed. The messages would be broadcast through the Civil Emergency Alert System of the San Juan Field Office of the U. S. National Weather Service in coordination with the Puerto Rico Seismic Network and the Puerto Rico State Emergency Management Agency. Educational initiatives have been taken so that the threatened population is aware of the hazards and can respond effectively in case of a tsunami. * This is a draft of a paper which is to be included in the proceedings of the Caribbean Tsunami Workshop which was sponsored by NSF, PR Emergency Maangement, Sea Grant and the UPR on March 30 and 31, 2004.
    [Show full text]
  • Plate Motion, Sedimentation, and Seismicity at a Restraining Bend
    Earth and Planetary Science Letters, 70 (1984) 311-324 311 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands [31 Neotectonics of Hispaniola: plate motion, sedimentation, and seismicity at a restraining bend Paul Mann 1, Kevin Burke 2 and Tosimatu Matumoto 1 Institute for Geophysics, University of Texas at Austin, Austin, TX 78712 (U.S.A.) 2 Lunar and Planetary Institute, 3303 NASA Road 1, Houston, TX 77058; and Department of Geosciences, University of Houston/Central Campus, Houston, TX 77004 (U.S.A.) Received November 28, 1983 Revised version received July 9, 1984 The pattern of Neogene faulting,volcanism, and sedimentation in Hispaniola helps to resolve a problem that arises in attempting to determine the direction of Caribbean plate motion from earthquakes alone, namely: How well do earthquake mechanisms define plate motion? Hispaniola occupies a compressional north-step or restraining bend in the generally east-west-trending Motagua-Cayman Trough-Puerto Rico Trench fault system which marks an active plate boundary zone (PBZ) of left-lateral strike-slip motion between the North America and Caribbean plates. Four areas are distinguishable in Hispaniola from field mapping and from the interpretation of satellite imagery and conventional aerial photographs. Two of these areas consist of active left-lateral strike-slip fault systems that roughly define the northern and southern coasts of the island. The structure of both fault systems suggest a roughly east-west-trending direction of relative plate motion consistent with previous findings. The intervening area consists of en echelon mountain ranges thrust up at the restraining bend from the early Miocene.
    [Show full text]
  • Earthquake-Induced Landslides in Central America
    Engineering Geology 63 (2002) 189–220 www.elsevier.com/locate/enggeo Earthquake-induced landslides in Central America Julian J. Bommer a,*, Carlos E. Rodrı´guez b,1 aDepartment of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2BU, UK bFacultad de Ingenierı´a, Universidad Nacional de Colombia, Santafe´ de Bogota´, Colombia Received 30 August 2000; accepted 18 June 2001 Abstract Central America is a region of high seismic activity and the impact of destructive earthquakes is often aggravated by the triggering of landslides. Data are presented for earthquake-triggered landslides in the region and their characteristics are compared with global relationships between the area of landsliding and earthquake magnitude. We find that the areas affected by landslides are similar to other parts of the world but in certain parts of Central America, the numbers of slides are disproportionate for the size of the earthquakes. We also find that there are important differences between the characteristics of landslides in different parts of the Central American isthmus, soil falls and slides in steep slopes in volcanic soils predominate in Guatemala and El Salvador, whereas extensive translational slides in lateritic soils on large slopes are the principal hazard in Costa Rica and Panama. Methods for assessing landslide hazards, considering both rainfall and earthquakes as triggering mechanisms, developed in Costa Rica appear not to be suitable for direct application in the northern countries of the isthmus, for which modified approaches are required. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Landslides; Earthquakes; Central America; Landslide hazard assessment; Volcanic soils 1.
    [Show full text]
  • Coulomb Stress Evolution in Northeastern Caribbean Over the Past 250 Years Due to Coseismic, Postseismic and Interseismic Deformation
    Geophys. J. Int. (2008) 174, 904–918 doi: 10.1111/j.1365-246X.2008.03634.x Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation Syed Tabrez Ali,1 Andrew M. Freed,1 Eric Calais,1 David M. Manaker1,∗ and William R. McCann2 1Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907, USA. E-mail: [email protected] 2Earth Scientific Consultants, 10210 West 102nd Ave, Westminster, CO 80021,USA Accepted 2007 September 24. Received 2007 September 19; in original form 2007 July 21 SUMMARY The Northeastern Caribbean region accommodates ∼20 mm yr−1 of oblique convergence be- tween the North American and Caribbean plates, which is distributed between the subduction interface and major strike-slip faults within the overriding plate. As a result, this heavily populated region has experienced eleven large (M ≥ 7.0) earthquakes over the past 250 yr. In an effort to improve our understanding of the location and timing of these earthquakes, with an eye to understand where current seismic hazards may be greatest, we calculate the evolution of Coulomb stress on the major faults since 1751 due to coseismic, postseismic, and interseismic deformation. Our results quantify how earthquakes serve to relieve stress accumulated due to interseismic loading and how fault systems communicate with each other, serving both to advance or retard subsequent events. We find that the observed progressive westwards propagation of earthquakes on the Septentrional and Enriquillo strike-slip faults and along the megathrust was encouraged by coseismic stress changes associated with prior earthquakes.
    [Show full text]
  • Reducing Risk Where Tectonic Plates Collide—A Plan to Advance Subduction Zone Science
    Reducing Risk Where Tectonic Plates Collide— A Plan to Advance Subduction Zone Science Circular 1428 U.S. Department of the Interior U.S. Geological Survey Front cover. A U.S. Geological Survey scientist surveys Loowit Creek drainage on Mount St. Helens, part of a long-term project to track sediment erosion and deposition in the channel. View to the north, with Spirit Lake and Mount Rainier in the background. U.S. Geological Survey photograph by Kurt Spicer. Reducing Risk Where Tectonic Plates Collide—A Plan to Advance Subduction Zone Science By Joan S. Gomberg, Kristin A. Ludwig, Barbara A. Bekins, Thomas M. Brocher, John C. Brock, Daniel Brothers, Jason D. Chaytor, Arthur D. Frankel, Eric L. Geist, Matthew Haney, Stephen H. Hickman, William S. Leith, Evelyn A. Roeloffs, William H. Schulz, Thomas W. Sisson, Kristi Wallace, Janet T. Watt, and Anne Wein Circular 1428 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]