Cep57, a NEDD1-Binding Pericentriolar Material Component, Is Essential for Spindle Pole Integrity

Total Page:16

File Type:pdf, Size:1020Kb

Cep57, a NEDD1-Binding Pericentriolar Material Component, Is Essential for Spindle Pole Integrity npg Cep57 maintains spindle pole integrity Cell Research (2012) 22:1390-1401. 1390 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity Qixi Wu1, *, Runsheng He1, *, Haining Zhou1, Albert CH Yu2, Bo Zhang1, Junlin Teng1, Jianguo Chen1, 3 1The State Key Laboratory of Biomembrane and Membrane Bioengineering and The Key Laboratory of Cell Proliferation and Dif- ferentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; 2Department of Neurobi- ology, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University, Beijing 100191, China; 3The Center for Theoretical Biology, Peking University, Beijing 100871, China Formation of a bipolar spindle is indispensable for faithful chromosome segregation and cell division. Spindle in- tegrity is largely dependent on the centrosome and the microtubule network. Centrosome protein Cep57 can bundle microtubules in mammalian cells. Its related protein (Cep57R) in Xenopus was characterized as a stabilization factor for microtubule-kinetochore attachment. Here we show that Cep57 is a pericentriolar material (PCM) component. Its interaction with NEDD1 is necessary for the centrosome localization of Cep57. Depletion of Cep57 leads to unaligned chromosomes and a multipolar spindle, which is induced by PCM fragmentation. In the absence of Cep57, cen- trosome microtubule array assembly activity is weakened, and the spindle length and microtubule density decrease. As a spindle microtubule-binding protein, Cep57 is also responsible for the proper organization of the spindle micro- tubule and localization of spindle pole focusing proteins. Collectively, these results suggest that Cep57, as a NEDD1- binding centrosome component, could function as a spindle pole- and microtubule-stabilizing factor for establishing robust spindle architecture. Keywords: Cep57; centrosome; spindle; cell cycle Cell Research (2012) 22:1390-1401. doi:10.1038/cr.2012.61; published online 17 April 2012 Introduction the spindle microtubule-based tensions during mitosis. The loss of centriole cohesion and PCM factors, such The centrosome, comprising two centrioles and a sur- as astrin [4], Kizuna [5] and tastin [6], leads to centriole rounding pericentriolar material (PCM), is the primary disengagement and PCM fragmentation. The collapse of microtubule-organizing center (MTOC) in animal cells. the centrosome yields new MTOCs and multiple spindle After duplication of the centrosome in interphase, sub- poles. Thus, abnormalities in number, structure and com- sequent mitosis centrosome maturation and separation position of the centrosome frequently result in abnormal is required for orchestrating the bipolar spindle microtu- spindle formation. bule arrays [1]. At the onset of mitosis, the centrosomes The spindle microtubule architecture is also governed generate a large number of microtubules, which form the by microtubule-associated proteins (MAPs), including mechanical structure of the spindle [2, 3]. Thus, the cen- motor [7] and non-motor MAPs [8] at the spindle poles trosome must form a strong structure that can withstand and kinetochores and along spindle microtubules, which modulate spindle microtubule organization spatially and temporally to determine spindle morphology. The spindle pole proteins NuMA [9] and TPX2 [10] focus the spindle *These two authors contributed equally to this work. microtubule minus end, while microtubule-dependent Correspondence: Junlin Tenga, Jianguo Chenb aTel: +86-10-62767044; Fax: +86-10-62755786 motor proteins Eg5 [11], MCAK [12] and the dynein E-mail: [email protected] complex [9] generate motor force in the microtubule and bTel: +86-10-62755786; Fax: +86-10-62755786 transport mitotic proteins to ensure spindle assembly. E-mail: [email protected] Defects in spindle MAPs often disrupt the balance of Received 28 December 2011; revised 1 February 2012; accepted 6 March 2012; published online 17 April 2012 spindle microtubule-mediated forces, which in turn affect Cell Research | Vol 22 No 9 | September 2012 Qixi Wu et al. npg 1391 the overall spindle assembly. by the Cep57 antibody, whereas other representative Cep57, originally named translokin, was shown to centrosome components, pericentrin, centrin and ninein be involved in cytoplasmic FGF-2 intracellular traf- were not precipitated (Figure 1D). Among the tested ficking [13, 14] and was identified as a centrosome γ-TuRC components, NEDD1 appeared to have the component by a proteomics screen [15]. There are two strongest binding affinity to Cep57. Immunostaining of Cep57 family members in vertebrate cells, Cep57 and HeLa cells showed that Cep57 colocalized extensively Cep57-related protein (Cep57R) [16]. Xenopus Cep57 with NEDD1 at the centrosome (Figure 2A). To further (xCep57), a Cep57R homologous protein, is localized to investigate their interaction at the centrosome, we per- the kinetochore and centrosome and required for stable formed fluorescence resonance energy transfer (FRET) microtubule-kinetochore attachment and centrosome- analyses in HeLa cells probed by Cep57 (Alexa Fluor microtubule anchorage [17]. Mammalian Cep57 is a 488) and NEDD1 (Alexa Fluor 568) using an acceptor multidomain centrosome protein with an unconventional photobleaching assay. Compared with the control cells N-terminal centrosome-localization domain and a C- probed by Cep57 and centrin-2, the fluorescence intensi- terminal microtubule-binding domain, which is not local- ty increased after NEDD1 bleaching (Figure 2A and 2B), ized to the kinetochore. Exogenously expressed Cep57 suggesting that the NEDD1-Cep57 FRET signal was not can bind, bundle and stabilize microtubules [16]. Thus, the consequence of experimental error. The presence of the two Cep57 family members may have different func- FRET confirmed the specific interaction between Cep57 tions during mitosis. Genetic analysis showed that Cep57 and NEDD1 (Figure 2B). mutations can cause mosaic variegated aneuploidy (MVA) We then sought to find the region of NEDD1 that en- syndrome [18]. The precise localization of Cep57 at the abled the interaction with Cep57. NEDD1 consists of centrosome and its role during mitosis in mammalian cells remain elusive. Here, we show that Cep57 acts as a PCM component through binding to NEDD1 and is required for spindle microtubule organization and main- tenance of spindle pole integrity. Results Cep57 is a PCM component and is associated with NEDD1 We generated polyclonal mouse and rabbit antibod- ies against recombinant mouse Cep57. Immunoblotting of HeLa cell lysates with the affinity-purified antibody recognized a specific band with the expected molecular weight (Supplementary information, Figure S1A). Im- munostaining of HeLa cells showed that Cep57 localized within the PCM proteins pericentrin and γ-tubulin (Figure 1A and Supplementary information, Figure S1B), and localized adjacent to centrin-2, a marker of the centrioles (Figure 1B). The centrosome localization of Cep57 was irrespective of cell-cycle status (Supplementary informa- tion, Figure S1B and S1C) and intact microtubule net- work (Supplementary information, Figure S1D). Immu- Figure 1 Cep57 is a PCM component. (A, B) Immunostaining of noelectron microscopy showed that Cep57 was localized Cep57 (green, A; red, B), pericentrin (red, A) or centrin-2 (green, to the electron-dense area around centrioles (Figure 1C, B) in HeLa cells. Nuclear DNA was stained with DAPI (blue) arrowheads and Supplementary information, Figure S1E in all figures of this paper. Boxed regions, close-up of the cen- and S1F), but not on the centriolar microtubule wall. The trosome. Bar, 5 µm. (C) Immunoelectron microscopy images of above data suggested that Cep57 is a PCM component HeLa cell centrosome. Arrowheads indicate 5 nm gold particles. rather than a centriole protein. Bar, 100 nm. (D) Cep57 is associated with γ-tubulin ring com- plex components. Asynchronized (A) or metaphase-arrested To identify the centrosome-binding partner of Cep57, (M) HeLa cell lysates were immunoprecipitated with anti-Cep57 we performed immunoprecipitation (IP) experiments antibody or non-specific rabbit IgG. The inputs (left) and im- with the antibody against Cep57. The γ-TuRC compo- munoprecipitants (right) were immunoblotted with the indicated nents γ-tubulin, GCP2 and NEDD1 were precipitated antibodies. www.cell-research.com | Cell Research npg Cep57 maintains spindle pole integrity 1392 Figure 2 Cep57 binds to the N-terminus of NEDD1. (A, B) Immunostaining of Cep57 (Alexa Fluro 488) and centrin-2 or NEDD1 (Alexa Fluro 568) in HeLa cells, which were subjected to acceptor photobleaching. Representative images show the pre- and post-photobleaching states of the centrosome. Insets show the FRET intensities encoded by using the scale bar on the right. Bar, 1 µm. The graph shows the FRET efficiencies. n = 10. Error bars represent mean ± SEM. (C) Lysates of 293T cells expressing Cep57-GFP were incubated with glutathione-agarose beads coated with GST or GST-NEDD1 fusion protein. The inputs and the proteins bound to the beads were immunoblotted with anti-GFP antibody. (D) Co-IP with anti-Myc and anti- GFP antibodies were performed in lysates of 293T cells coexpressing Cep57-GFP and Myc vector or Myc-NEDD1 constructs, followed by immunoblotting with the indicated antibodies. FL, Myc-NEDD1 full-length. 1-350, Myc-NEDD1 (1-350). 341-end, Myc-NEDD1
Recommended publications
  • Title a New Centrosomal Protein Regulates Neurogenesis By
    Title A new centrosomal protein regulates neurogenesis by microtubule organization Authors: Germán Camargo Ortega1-3†, Sven Falk1,2†, Pia A. Johansson1,2†, Elise Peyre4, Sanjeeb Kumar Sahu5, Loïc Broic4, Camino De Juan Romero6, Kalina Draganova1,2, Stanislav Vinopal7, Kaviya Chinnappa1‡, Anna Gavranovic1, Tugay Karakaya1, Juliane Merl-Pham8, Arie Geerlof9, Regina Feederle10,11, Wei Shao12,13, Song-Hai Shi12,13, Stefanie M. Hauck8, Frank Bradke7, Victor Borrell6, Vijay K. Tiwari§, Wieland B. Huttner14, Michaela Wilsch- Bräuninger14, Laurent Nguyen4 and Magdalena Götz1,2,11* Affiliations: 1. Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 2. Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Germany. 3. Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilian University Munich, Germany. 4. GIGA-Neurosciences, Molecular regulation of neurogenesis, University of Liège, Belgium 5. Institute of Molecular Biology (IMB), Mainz, Germany. 6. Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain. 7. Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. 8. Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany. 9. Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 10. Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 11. SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig- Maximilian University Munich, Germany. 12. Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA 13.
    [Show full text]
  • Par6c Is at the Mother Centriole and Controls Centrosomal Protein
    860 Research Article Par6c is at the mother centriole and controls centrosomal protein composition through a Par6a-dependent pathway Vale´rian Dormoy, Kati Tormanen and Christine Su¨ tterlin* Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA *Author for correspondence ([email protected]) Accepted 3 December 2012 Journal of Cell Science 126, 860–870 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.121186 Summary The centrosome contains two centrioles that differ in age, protein composition and function. This non-membrane bound organelle is known to regulate microtubule organization in dividing cells and ciliogenesis in quiescent cells. These specific roles depend on protein appendages at the older, or mother, centriole. In this study, we identified the polarity protein partitioning defective 6 homolog gamma (Par6c) as a novel component of the mother centriole. This specific localization required the Par6c C-terminus, but was independent of intact microtubules, the dynein/dynactin complex and the components of the PAR polarity complex. Par6c depletion resulted in altered centrosomal protein composition, with the loss of a large number of proteins, including Par6a and p150Glued, from the centrosome. As a consequence, there were defects in ciliogenesis, microtubule organization and centrosome reorientation during migration. Par6c interacted with Par3 and aPKC, but these proteins were not required for the regulation of centrosomal protein composition. Par6c also associated with Par6a, which controls protein recruitment to the centrosome through p150Glued. Our study is the first to identify Par6c as a component of the mother centriole and to report a role of a mother centriole protein in the regulation of centrosomal protein composition.
    [Show full text]
  • Supplemental Information Proximity Interactions Among Centrosome
    Current Biology, Volume 24 Supplemental Information Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication Elif Nur Firat-Karalar, Navin Rauniyar, John R. Yates III, and Tim Stearns Figure S1 A Myc Streptavidin -tubulin Merge Myc Streptavidin -tubulin Merge BirA*-PLK4 BirA*-CEP63 BirA*- CEP192 BirA*- CEP152 - BirA*-CCDC67 BirA* CEP152 CPAP BirA*- B C Streptavidin PCM1 Merge Myc-BirA* -CEP63 PCM1 -tubulin Merge BirA*- CEP63 DMSO - BirA* CEP63 nocodazole BirA*- CCDC67 Figure S2 A GFP – + – + GFP-CEP152 + – + – Myc-CDK5RAP2 + + + + (225 kDa) Myc-CDK5RAP2 (216 kDa) GFP-CEP152 (27 kDa) GFP Input (5%) IP: GFP B GFP-CEP152 truncation proteins Inputs (5%) IP: GFP kDa 1-7481-10441-1290218-1654749-16541045-16541-7481-10441-1290218-1654749-16541045-1654 250- Myc-CDK5RAP2 150- 150- 100- 75- GFP-CEP152 Figure S3 A B CEP63 – – + – – + GFP CCDC14 KIAA0753 Centrosome + – – + – – GFP-CCDC14 CEP152 binding binding binding targeting – + – – + – GFP-KIAA0753 GFP-KIAA0753 (140 kDa) 1-496 N M C 150- 100- GFP-CCDC14 (115 kDa) 1-424 N M – 136-496 M C – 50- CEP63 (63 kDa) 1-135 N – 37- GFP (27 kDa) 136-424 M – kDa 425-496 C – – Inputs (2%) IP: GFP C GFP-CEP63 truncation proteins D GFP-CEP63 truncation proteins Inputs (5%) IP: GFP Inputs (5%) IP: GFP kDa kDa 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl Myc- 150- Myc- 100- CCDC14 KIAA0753 100- 100- 75- 75- GFP- GFP- 50- CEP63 50- CEP63 37- 37- Figure S4 A siCtl
    [Show full text]
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]
  • Cep57, a NEDD1-Binding Pericentriolar Material Component, Is Essential for Spindle Pole Integrity
    Cell Research (2012) :1-12. © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity Qixi Wu1, *, Runsheng He1, *, Haining Zhou1, Albert CH Yu2, Bo Zhang1, Junlin Teng1, Jianguo Chen1, 3 1The State Key Laboratory of Biomembrane and Membrane Bioengineering and The Key Laboratory of Cell Proliferation and Dif- ferentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; 2Department of Neurobi- ology, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University, Beijing 100191, China; 3The Center for Theoretical Biology, Peking University, Beijing 100871, China Formation of a bipolar spindle is indispensable for faithful chromosome segregation and cell division. Spindle in- tegrity is largely dependent on the centrosome and the microtubule network. Centrosome protein Cep57 can bundle microtubules in mammalian cells. Its related protein (Cep57R) in Xenopus was characterized as a stabilization factor for microtubule-kinetochore attachment. Here we show that Cep57 is a pericentriolar material (PCM) component. Its interaction with NEDD1 is necessary for the centrosome localization of Cep57. Depletion of Cep57 leads to unaligned chromosomes and a multipolar spindle, which is induced by PCM fragmentation. In the absence of Cep57, cen- trosome microtubule array assembly activity is weakened, and the spindle length and microtubule density decrease. As a spindle microtubule-binding protein, Cep57 is also responsible for the proper organization of the spindle micro- tubule and localization of spindle pole focusing proteins. Collectively, these results suggest that Cep57, as a NEDD1- binding centrosome component, could function as a spindle pole- and microtubule-stabilizing factor for establishing robust spindle architecture.
    [Show full text]
  • CPTC-CDK1-1 (CAB079974) Immunohistochemistry
    CPTC-CDK1-1 (CAB079974) Uniprot ID: P06493 Protein name: CDK1_HUMAN Full name: Cyclin-dependent kinase 1 Tissue specificity: Isoform 2 is found in breast cancer tissues. Function: Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis.
    [Show full text]
  • Downloaded the “Top Edge” Version
    bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects.
    [Show full text]
  • Integrated Analysis of the Critical Region 5P15.3–P15.2 Associated with Cri-Du-Chat Syndrome
    Genetics and Molecular Biology, 42, 1(suppl), 186-196 (2019) Copyright © 2019, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2018-0173 Research Article Integrated analysis of the critical region 5p15.3–p15.2 associated with cri-du-chat syndrome Thiago Corrêa1, Bruno César Feltes2 and Mariluce Riegel1,3* 1Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. 2Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. 3Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Abstract Cri-du-chat syndrome (CdCs) is one of the most common contiguous gene syndromes, with an incidence of 1:15,000 to 1:50,000 live births. To better understand the etiology of CdCs at the molecular level, we investigated theprotein–protein interaction (PPI) network within the critical chromosomal region 5p15.3–p15.2 associated with CdCs using systemsbiology. Data were extracted from cytogenomic findings from patients with CdCs. Based on clin- ical findings, molecular characterization of chromosomal rearrangements, and systems biology data, we explored possible genotype–phenotype correlations involving biological processes connected with CdCs candidate genes. We identified biological processes involving genes previously found to be associated with CdCs, such as TERT, SLC6A3, and CTDNND2, as well as novel candidate proteins with potential contributions to CdCs phenotypes, in- cluding CCT5, TPPP, MED10, ADCY2, MTRR, CEP72, NDUFS6, and MRPL36. Although further functional analy- ses of these proteins are required, we identified candidate proteins for the development of new multi-target genetic editing tools to study CdCs.
    [Show full text]
  • Microtubule Regulation in Cystic Fibrosis Pathophysiology
    MICROTUBULE REGULATION IN CYSTIC FIBROSIS PATHOPHYSIOLOGY By: SHARON MARIE RYMUT Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Thomas J Kelley Department of Pharmacology CASE WESTERN RESERVE UNIVERSITY August 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/ dissertation of Sharon Marie Rymut candidate for the Doctor of Philosophy degree* Dissertation Advisor: Thomas J Kelley Committee Chair: Paul N MacDonald Committee Member: Ruth E Siegel Committee Member: Craig A Hodges Committee Member: Danny Manor Committee Member: Rebecca J Darrah Date of Defense: April 29, 2015 * We also certify that written approval has been obtained for any proprietary material contained therein. ii Dedication There are five chapters in this dissertation. To Mom, Dad, Joe, Marie and Susan, I dedicate one chapter to each of you. You can fight about which chapter you want later. iii Table of Contents Table of Contents................................................................................................................iv List of Tables .................................................................................................................... vii List of Figures .................................................................................................................. viii Acknowledgements ............................................................................................................. x List of Abbreviations .......................................................................................................
    [Show full text]
  • Cep57 and Cep57l1 Cooperatively Maintain Centriole Engagement During 8 Interphase to Ensure Proper Centriole Duplication Cycle 9 10 11 AUTHORS
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.10.086702; this version posted May 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 6 7 Cep57 and Cep57L1 cooperatively maintain centriole engagement during 8 interphase to ensure proper centriole duplication cycle 9 10 11 AUTHORS 12 Kei K. Ito1,2, Koki Watanabe1,2, Haruki Ishida1, Kyohei Matsuhashi1, Takumi 13 Chinen1, Shoji Hata1and Daiju Kitagawa1,3,4 14 15 16 AFFILIATIONS 17 1 Department of Physiological Chemistry, Graduate school of Pharmaceutical 18 Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan. 19 2 These authors equally contributed to this work. 20 3 Corresponding author, corresponding should be addressed to D.K. 21 ([email protected]) 22 4 Lead contact 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.10.086702; this version posted May 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Centrioles duplicate in the interphase only once per cell cycle. Newly 25 formed centrioles remain associated with their mother centrioles. The two 26 centrioles disengage at the end of mitosis, which licenses centriole 27 duplication in the next cell cycle. Therefore, timely centriole 28 disengagement is critical for the proper centriole duplication cycle. 29 However, the mechanisms underlying centriole engagement during 30 interphase are poorly understood.
    [Show full text]
  • Investigation of Differentially Expressed Genes in Nasopharyngeal Carcinoma by Integrated Bioinformatics Analysis
    916 ONCOLOGY LETTERS 18: 916-926, 2019 Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis ZhENNING ZOU1*, SIYUAN GAN1*, ShUGUANG LIU2, RUjIA LI1 and jIAN hUANG1 1Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023; 2Department of Pathology, The Eighth Affiliated hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China Received October 9, 2018; Accepted April 10, 2019 DOI: 10.3892/ol.2019.10382 Abstract. Nasopharyngeal carcinoma (NPC) is a common topoisomerase 2α and TPX2 microtubule nucleation factor), malignancy of the head and neck. The aim of the present study 8 modules, and 14 TFs were identified. Modules analysis was to conduct an integrated bioinformatics analysis of differ- revealed that cyclin-dependent kinase 1 and exportin 1 were entially expressed genes (DEGs) and to explore the molecular involved in the pathway of Epstein‑Barr virus infection. In mechanisms of NPC. Two profiling datasets, GSE12452 and summary, the hub genes, key modules and TFs identified in GSE34573, were downloaded from the Gene Expression this study may promote our understanding of the pathogenesis Omnibus database and included 44 NPC specimens and of NPC and require further in-depth investigation. 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal Introduction tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database Nasopharyngeal carcinoma (NPC) is a common malignancy of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of occurring in the head and neck. It is prevalent in the eastern Genes and Genomes (KEGG) pathway enrichment analysis and southeastern parts of Asia, especially in southern China, were applied.
    [Show full text]
  • The Transformation of the Centrosome Into the Basal Body: Similarities and Dissimilarities Between Somatic and Male Germ Cells and Their Relevance for Male Fertility
    cells Review The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility Constanza Tapia Contreras and Sigrid Hoyer-Fender * Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany; [email protected] * Correspondence: [email protected] Abstract: The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An Citation: Tapia Contreras, C.; articular structure is formed around the centriole pair known as the connecting piece, situated in the Hoyer-Fender, S. The Transformation neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, of the Centrosome into the Basal in short, HTCA.
    [Show full text]