Dependent Iodothyronine Deiodinase Suggests a Peroxiredoxin-Like Catalytic Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Dependent Iodothyronine Deiodinase Suggests a Peroxiredoxin-Like Catalytic Mechanism Crystal structure of mammalian selenocysteine- dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism Ulrich Schweizera,1,2, Christine Schlickerb,1, Doreen Brauna, Josef Köhrlec, and Clemens Steegbornd,2 aInstitut für Biochemie und Molekularbiologie, Rheinische Friedrich Wilhelms-Universität Bonn, 53115 Bonn, Germany; bDepartment of Physiological Chemistry, Ruhr University Bochum, 44801 Bochum, Germany; cInstitut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; and dDepartment of Biochemistry and Research Center for Bio-Macromolecules, University of Bayreuth, 95440 Bayreuth, Germany Edited* by Dieter Söll, Yale University, New Haven, CT, and approved June 9, 2014 (received for review December 23, 2013) Local levels of active thyroid hormone (3,3′,5-triiodothyronine) are of Mus musculus Dio3 (Dio3cat)withSec170 replaced by cysteine controlled by the action of activating and inactivating iodothyro- (Fig. 1 B and C and Table 1). The structure was solved by selenium nine deiodinase enzymes. Deiodinases are selenocysteine-depen- single-wavelength anomalous dispersion phasing using crystals of cat dent membrane proteins catalyzing the reductive elimination of selenomethionine (SeMet)-labeled Dio3 . Refinement of native cat iodide from iodothyronines through a poorly understood mecha- and SeMet-labeled Dio3 resulted in structures without recog- nism. We solved the crystal structure of the catalytic domain of nizable differences, neither for the backbone (rmsd for 186 Cα mouse deiodinase 3 (Dio3), which reveals a close structural simi- positions = 0.2 Å) nor for side chains, with slightly better statistics larity to atypical 2-Cys peroxiredoxin(s) (Prx). The structure suggests for the SeMet structure (Table 1). Further analyses were thus done a route for proton transfer to the substrate during deiodination and with the SeMet structure refined at a resolution of 1.9 Å to R/Rfree a Prx-related mechanism for subsequent recycling of the transiently values of 18.7% and 22.7%, respectively. oxidized enzyme. The proposed mechanism is supported by bio- cat chemical experiments and is consistent with the effects of muta- Overall Deiodinase Structure and Substrate Binding Site. Dio3 tions of conserved amino acids on Dio3 activity. Thioredoxin and adopts a thioredoxin (Trx) fold (6) as previously predicted (7), glutaredoxin reduce the oxidized Dio3 at physiological concentra- with deiodinase-specific modifications and insertions, resulting BIOCHEMISTRY tions, and dimerization appears to activate the enzyme by displac- in architecture with a five-stranded, mixed β-sheet flanked by ing an autoinhibitory loop from the iodothyronine binding site. four α-helices (Fig. 1 B and C). N-terminal to the Trx βαβ-motif Deiodinases apparently evolved from the ubiquitous Prx scaffold, lies a small, two-stranded, antiparallel β-sheet, βN, followed by Θ and their structure and catalytic mechanism reconcile a plethora of a short 310-helix, 1. The essential deiodinase-specific insertion partly conflicting data reported for these enzymes. (Dio-insertion, residues 201–225; Fig. 1 B and C) forms a large loop-D, followed by a helix αD and a short βD that aligns with β iodothyronine deiodination | thioredoxin fold | selenoprotein | the central mixed -sheet. The loop, which is critical for iodo- thiol cofactor | selenenyl-sulfide thyronine binding and was previously called an iduronidase-like insertion, forms a compact protrusion instead of the predicted hyroid hormones regulate mammalian development as well Tas energy expenditure and metabolism in the adult (1). The Significance active, nuclear receptor-binding form of thyroid hormone is Deiodinases activate and inactivate thyroid hormones through 3,3′,5-triiodothyronine (T3). The thyroid gland mainly releases a unique biochemical reaction. Enzymes expand their catalytic thyroxine [3,3′,5,5′-tetraiodothyronine (T4); Fig. 1A], and T3 is formed and degraded through elimination of iodine atoms from capabilities through special heteroatoms in cofactors or in the the 5′- and 5-positions, respectively (2) (Fig. S1). Three types of rare but essential amino acid selenocysteine, and deiodinases deiodinase enzymes are involved in activation and inactivation use an active-site selenocysteine for the reductive elimination of thyroid hormones (Fig. S1). They form a family of trans- of iodide from the aromatic iodothyronine rings. The mecha- membrane enzymes with homologous catalytic domains (2). nism of deiodinases has remained elusive despite many mu- Type II deiodinase (Dio2) catalyzes the activating (outer ring) tational and enzymatic studies. We solved the crystal structure of the deiodinase catalytic domain and find that it resembles 5′-deiodination of the prohormone T4 to T3, whereas type III deiodinase (Dio3) catalyzes inactivating (inner ring) 5-deiodination a family of peroxiredoxin(s) (Prx). Structure and biochemical (2). Type I deiodinase (Dio1) is capable of both types of reac- data suggest a deiodinase catalytic mechanism with Prx-like tions (3). Cells targeted by the hormone can thereby fine-tune elements and enable us to assign unexpected functions to residues previously reported to contribute to deiodinase ca- intracellular T3 levels through deiodinase expression according to their needs during development or upon metabolic challenges. talysis. Our findings indicate how deiodinases may have evolved Dio1, Dio2, and Dio3 share a conserved amino acid sequence from a common reductase ancestor. and a selenocysteine residue essential for efficient deiodination, Author contributions: U.S. and C. Steegborn designed research; C. Schlicker and D.B. although nonmammalian cysteine-deiodinases have been found performed research; U.S., C. Schlicker, D.B., J.K., and C. Steegborn analyzed data; and (4, 5). Although most of the characterized selenoproteins act U.S., C. Schlicker, D.B., J.K., and C. Steegborn wrote the paper. as peroxidases or protein reductases, deiodinases are the only The authors declare no conflict of interest. selenoenzymes known to catalyze halogen eliminations from *This Direct Submission article had a prearranged editor. aromatic rings. Despite a large body of experimental data, there Data deposition: The atomic coordinates and diffraction data have been deposited in the is no coherent model for deiodinase catalysis that incorporates Protein Data Bank, www.pdb.org (PDB ID codes 4TR3 and 4TR4). the bulk of available data. 1U.S. and C. Schlicker contributed equally to this work. 2To whom correspondence may be addressed. Email: [email protected] or clemens. Results and Discussion [email protected]. To explore the unique deiodinase catalytic mechanism, we de- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. termined the crystal structure of the cytoplasmic catalytic domain 1073/pnas.1323873111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1323873111 PNAS Early Edition | 1of6 Downloaded by guest on September 25, 2021 Fig. 1. Crystal structure of Dio3cat.(A) Chemical structure of T4 with numbering of iodine positions (underlined). (B) Overall structure of the Dio3 catalytic domain, with sec- ondary structure elements present in Trx in cyan and la- beled according to convention. The N-terminal Prx-like module is highlighted in magenta, the Dio-insertion is highlighted in blue, and α2 is highlighted in green. (C) Dio3cat topology diagram. Catalytically relevant amino acids are labeled. (D) Active site region of Dio3cat, with residues conserved and/or involved in catalysis shown in stick presentation. Sec170* indicates the catalytic seleno- cysteine replaced by cysteine in our construct. (E) Close-up view of a model for Dio3 in complex with iodothyronine ligand, based on the Arg-T3-His clamp in T3Rβ (Dio3 sub- strate would be T4). (F) 5-Deiodinase activity of WT Dio3 and mutants with changes in the α2/β3- and β4/α3-loops in the presence of DTT. Error bars indicate SEM (n = 3). α-helix (7). The catalytic Sec170 (replaced by a cysteine in our Dio3-His202, which corresponds to the catalytically essential Dio1- construct, as indicated by *) is positioned in the loop connecting His158, protrudes from the Dio-insertion into the substrate binding β1toα1, in the same position as the peroxidatic cysteine of thiol cleft (Fig. 1D). Its distance to the catalytic selenocysteine and reductases with a Trx-like fold [Trx, peroxiredoxins (Prx), and position at the end of this cleft suggest that rather than acting glutathione (GSH) peroxidases GPX (see below); Fig. 1D]. It catalytically, His202 serves as a binding partner for the 4′-phe- 435 points toward an elongated cleft that likely represents the iodo- nolic end of the substrate, similar to His in the T3-receptor β 435 282 thyronine binding site. Two conserved deiodinase histidines are (T3Rβ) complex (9). Superimposing the His -T3-Arg clamp 158 174 202 275 important for Dio1 activity, His and His (8). The side chain from the T3/T3Rβ complex on Dio3-His -Arg provides a first of Dio3-His219 (corresponding to Dio1-His174) is buried between substrate complex model and places the iodothyronine into the loop-D and helix αD and appears to contribute to catalysis proposed Dio3 substrate binding cleft (Fig. 1E). The targeted 5- through an interaction with the conserved Glu200 (see below). iodine atom is positioned ∼3–4 Å from the Se atom of Sec170, Table 1. Data collection and refinement statistics SeMet Dio3 Native Dio3 Space group P212121 P212121 Unit
Recommended publications
  • The Deiodination of Thyroid Hormone in Rat Liver
    The deiodination of thyroid hormone in rat liver De dejodering van schildklierhormoon in de lever van de rat PROEFSCHRIFT T er verkrijging van de graad van doctor in de geneeskunde aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus prof. dr. M. W. van Hof en vo1gens bes1uit van het college van dekanen. De openbare verdediging zal p1aatsvinden op woensdag 12 juni 1985 te 15.45 uur door Jan Adrianus Mol geboren te Dordrecht BEGELEIDINGSCOMMISSIE PROMOTOR PROF. DR. G. HENNEMANN OVERIGE LEDEN PROF. DR. W.C. HuLSMANN PROF. DR. H.J. VANDER MOLEN PROF. DR. H.J. VAN EIJK The studies in this thesis were carried out under the direction of Dr. T.J. Visser in the laboratory of the Thyroid Hormone Research Unit (head Prof. Dr. G. Hennemann) at the Department of Internal Medicine III and Clinical ·Endocrinology (head Prof. Dr. J.c. Birkenhager), Erasmus University Medical School, Rotterdam, The Netherlands. The investigations were supported by grant 13-34-108 from the Foundation for Medical Research FUNGO. Kennis, zij zal afgedaan hebben •... zo blijven dan: Geloof, hoop en liefde •.•. (I Korintiers 13) aan mijn Ouders aan Ellen, Gerben en Jurjan CONTENTS List of abbreviations. 7 Chapter I General introduction. 9 Chapter II The liver, a central organ for iodothyronine 17 metabolism? Chapter III Synthesis and some properties of sulfate 45 esters and sulfamates o_f iodothyronines. Chapter IV Rapid and selective inner ring deiodination 61 of T4 sulfate by rat liver deiodinase. Chapter V Modification of rat liver iodothyronine 75 5'-deiodinase activity with diethylpyrocarbo­ nate and Rose Bengal: evidence for an active site histidine residue.
    [Show full text]
  • Biochemical Mechanisms of Thyroid Hormone Deiodination
    THYROID Volume 15, Number 8, 2005 © Mary Ann Liebert, Inc. Biochemical Mechanisms of Thyroid Hormone Deiodination George G.J.M. Kuiper, Monique H.A. Kester, Robin P. Peeters, and Theo J. Visser Deiodination is the foremost pathway of thyroid hormone metabolism not only in quantitative terms but also because thyroxine (T4) is activated by outer ring deiodination (ORD) to 3,3’,5-triiodothyronine (T3), whereas both T4 and T3 are inactivated by inner ring deiodination (IRD) to 3,3’,5-triiodothyronine and 3,3’- diiodothyronine, respectively. These reactions are catalyzed by three iodothyronine deiodinases, D1-3. Although they are homologous selenoproteins, they differ in important respects such as catalysis of ORD and/or IRD, deiodination of sulfated iodothyronines, inhibition by the thyrostatic drug propylthiouracil, and regulation during fetal and neonatal development, by thyroid state, and during illness. In this review we will briefly discuss recent developments in these different areas. These have resulted in the emerging view that the biological activity of thyroid hormone is regulated locally by tissue-specific regulation of the different deiodinases. HYROID HORMONE is essential for growth, development, thyrostatic drug 6-propyl-2-thiouracil (PTU). D1 activity is Tand regulation of energy metabolism (1–3). Amphibian positively regulated by T3, reflecting regulation of D1 ex- metamorphosis is an important example of thyroid hormone pression by T3 at the pretranslational level. actions on development (4). Equally well known is the crit- In humans, D2 activity is found in brain, anterior pitu- ical role of thyroid hormone in development and function itary, placenta, thyroid and skeletal muscle, and D2 mRNA of the human central nervous system (5,6).
    [Show full text]
  • Illness-Induced Changes in Thyroid Hormone Metabolism: Focus on the Tissue Level
    r e V i e W illness-induced changes in thyroid hormone metabolism: focus on the tissue level J. Kwakkel*, E. Fliers, A. Boelen Department of Endocrinology & Metabolism, Academic Medical Center, University of Amsterdam, the Netherlands, *corresponding author: tel.: +31 (0)20-566 67 01, fax: +31 (0)20-691 76 82, e-mail: [email protected] a b s t r a C t during illness changes in thyroid hormone metabolism ring and the outer (tyrosyl) ring of T4 can be deiodinated, occur, collectively known as the non-thyroidal illness ultimately leading to the formation of 3,3’-di-iodothyronine syndrome (NTIS). NTIS is characterised by low serum (T2) (figure 1). thyroid hormone levels without the expected rise in serum thyroid-stimulating hormone, indicating a major change in thyroid hormone feedback regulation. recent studies n o n - t H yroidal illness syndro M e have made clear that during NTIS differential changes in thyroid hormone metabolism occur in various tissues, the During illness many aspects of thyroid hormone net effect of which may be either activation or inhibition of metabolism change, collectively known as the thyroid hormone action. in this review we discuss systemic non-thyroidal illness syndrome (NTIS). The hallmark of and local changes in thyroid hormone metabolism during NTIS is decreased serum thyroid hormone levels without illness, highlighting their physiological implications in an increase in TSH and TRH expression, indicating terms of disease course. the absence of negative feedback regulation. This may represent a useful adaptation of the body to counteract excessive catabolism observed during illness and can be K e y W o r d s viewed as a part of the acute phase response.4 However, especially during prolonged critical illness in the ICU Deiodinase, inflammation, non-thyroidal illness syndrome, setting NTIS may be maladaptative.5 thyroid hormone figure 1.
    [Show full text]
  • Thyroid-Modulating Activities of Olive and Its Polyphenols: a Systematic Review
    nutrients Review Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review Kok-Lun Pang 1,† , Johanna Nathania Lumintang 2,† and Kok-Yong Chin 1,* 1 Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] 2 Faculty of Applied Sciences, UCSI University Kuala Lumpur Campus, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-3-91459573 † These authors contributed equally to this work. Abstract: Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension, and neurodegenerative disease. These unique properties are attributed to the phytochemicals with potent antioxidant activities in olive oil. Olive leaf also harbours similar bioactive compounds. Several studies have reported the effects of olive phenolics, olive oil, and leaf extract in the modulation of thyroid activities. A systematic review of the literature was conducted to identify relevant studies on the effects of olive derivatives on thyroid function. A comprehensive search was conducted in October 2020 using the PubMed, Scopus, and Web of Science databases. Cellular, animal, and human studies reporting the effects of olive derivatives, including olive phenolics, olive oil, and leaf extracts on thyroid function were considered. The literature search found 445 articles on this topic, but only nine articles were included based on the inclusion and exclusion criteria. All included articles were animal studies involving the administration of olive oil, olive leaf extract, or olive pomace residues orally.
    [Show full text]
  • REVIEW Iodothyronine Deiodinase Structure and Function
    189 REVIEW Iodothyronine deiodinase structure and function: from ascidians to humans Veerle M Darras and Stijn L J Van Herck Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, Naamsestraat 61, PO Box 2464, B-3000 Leuven, Belgium (Correspondence should be addressed to V M Darras; Email: [email protected]) Abstract Iodothyronine deiodinases are important mediators of thyroid of each of them, however, varies amongst species, develop- hormone (TH) action. They are present in tissues throughout mental stages and tissues. This is especially true for 0 the body where they catalyse 3,5,3 -triiodothyronine (T3) amphibians, where the impact of D1 may be minimal. D2 production and degradation via, respectively, outer and inner and D3 expression and activity respond to thyroid status in ring deiodination. Three different types of iodothyronine an opposite and conserved way, while the response of D1 is deiodinases (D1, D2 and D3) have been identified in variable, especially in fish. Recently, a number of deiodinases vertebrates from fish to mammals. They share several have been cloned from lower chordates. Both urochordates common characteristics, including a selenocysteine residue and cephalochordates possess selenodeiodinases, although in their catalytic centre, but show also some type-specific they cannot be classified in one of the three vertebrate types. differences. These specific characteristics seem very well In addition, the cephalochordate amphioxus also expresses conserved for D2 and D3, while D1 shows more evolutionary a non-selenodeiodinase. Finally, deiodinase-like sequences diversity related to its Km, 6-n-propyl-2-thiouracil sensitivity have been identified in the genome of non-deuterostome and dependence on dithiothreitol as a cofactor in vitro.
    [Show full text]
  • Type 3 Lodothyronine Deiodinase: Cloning, in Vitro Expression, and Functional Analysis of the Placental Selenoenzyme
    Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. D Salvatore, … , D L St Germain, P R Larsen J Clin Invest. 1995;96(5):2421-2430. https://doi.org/10.1172/JCI118299. Research Article Type 3 iodothyronine deiodinase (D3) catalyzes the conversion of T4 and T3 to inactive metabolites. It is highly expressed in placenta and thus can regulate circulating fetal thyroid hormone concentrations throughout gestation. We have cloned and expressed a 2.1-kb human placental D3 cDNA which encodes a 32-kD protein with a Km of 1.2 nM for 5 deiodination of T3 and 340 nM for 5' deiodination of reverse T3. The reaction requires DTT and is not inhibited by 6n- propylthiouracil. We quantitated transiently expressed D3 by specifically labeling the protein with bromoacetyl [125I]T3. The Kcat/Km ratio for 5 deiodination of T3 was over 1,000-fold that for 5' deiodination of reverse T3. Human D3 is a selenoenzyme as evidenced by (a) the presence of an in frame UGA codon at position 144, (b) the synthesis of a 32-kD 75Se-labeled protein in D3 cDNA transfected cells, and (c) the presence of a selenocysteine insertion sequence element in the 3' untranslated region of the mRNA which is required for its expression. The D3 selenocysteine insertion sequence element is more potent than that in the type 1 deiodinase or glutathione peroxidase gene, suggesting a high priority for selenocysteine incorporation into this enzyme. The conservation of this enzyme from Xenopus laevis tadpoles to humans implies an essential role for regulation of thyroid hormone inactivation during embryological development.
    [Show full text]
  • Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood.
    [Show full text]
  • Association of Antiepileptic Drug Usage, Trace Elements and Thyroid Hormone Status
    C Zevenbergen, Trace elements and thyroid 174:4 425–432 Clinical Study T I M Korevaar, hormones A Schuette and others Association of antiepileptic drug usage, trace elements and thyroid hormone status Chantal Zevenbergen1,2,*, Tim I M Korevaar1,2,*, Andrea Schuette3,*, Robin P Peeters1,2, Marco Medici1,2, Theo J Visser1,2, Lutz Schomburg3 and W Edward Visser1,2 1Department of Internal Medicine and 2Rotterdam Thyroid Center, Erasmus Medical Center, Wytemaweg 80, 3015 Correspondence CN Rotterdam, The Netherlands and 3Institut fu¨ r Experimentelle Endokrinologie, Charite´ -Universita¨ tsmedizin should be addressed Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany to W E Visser *(C Zevenbergen, T I M Korevaar, A Schuette contributed equally to this work) Email [email protected] Abstract Background: Levels of thyroid hormone (TH) and trace elements (copper (Cu) and selenium (Se)) are important for development and function of the brain. Anti-epileptic drugs (AEDs) can influence serum TH and trace element levels. As the relationship between AEDs, THs, and trace elements has not yet been studied directly, we explored these interactions. Method: In total 898 participants, from the Thyroid Origin of Psychomotor Retardation study designed to investigate thyroid parameters in subjects with intellectual disability (ID), had data available on serum Se, Cu, thyroid stimulating hormone (TSH), free thyroxine (FT4), tri-iodothyronine (T3), reverse T3,T4, and thyroxine-binding globulin (TBG); 401 subjects were on AED treatment. Differences in trace elements according to medication usage was investigated using ANOVA, and associations between trace elements and thyroid parameters were analysed using (non-) linear regression models. Results: Study participants were not deficient in any of the trace elements analyzed.
    [Show full text]
  • Ata Grant Recipients: Publications
    American Thyroid Association Grant Recipients: PUBLICATIONS 2003 KNAUF, J. “Tyrosine kinase receptor oncogenes and prostanoid biosynthesis: Role of RET/PTC-induced activation of PGE2 synthase in thyroid tumorigenesis” 1. Puxeddu E, Mitsutake N, Knauf JA, Moretti S, Kim HW, Seta KA, Brockman D, Myatt L, Millhorn DE, Fagin JA 2003. Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway. J Biol Chem 278:52131- 52138. 2. Knauf JA, Ouyang B, Croyle M, Kimura E, Fagin JA 2003. Acute expression of RET/PTC induces isozyme-specific activation and subsequent downregulation of PKCepsilon in PCCL3 thyroid cells. Oncogene 22:6830-6838. 3. Knauf JA, Kuroda H, Basu S, Fagin JA 2003. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22:4406-4412. 4. Wang J, Knauf JA, Basu S, Puxeddu E, Kuroda H, Santoro M, Fusco A, Fagin JA 2003. Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels. Mol Endocrinol 17:1425-1436. JACOBSON, E. “Molecular determinants of the presentation of immunogenic thyroglobulin peptides by HLA-DR3” New to the thyroid field; no prior thyroid publications XU, XIULONG* “BRAF gene mutation and oncogenesis of papillary thyroid carcinomas” * ThyCa award 1. Xu X, Quiros RM, Maxhimer JB, Jiang P, Marcinek R, Ain KB, Platt JL, Shen J, Gattuso P, Prinz RA 2003. Inverse correlation between heparan sulfate composition and heparanase-1 gene expression in thyroid papillary carcinomas: a potential role in tumor metastasis.
    [Show full text]
  • Thyroxine Binding to Type III Iodothyronine Deiodinase Craig A
    www.nature.com/scientificreports OPEN Thyroxine binding to type III iodothyronine deiodinase Craig A. Bayse*, Eric S. Marsan, Jenna R. Garcia & Alexis T. Tran‑Thompson Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X‑ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s n‑terminus to the active site Ser‑cys-Thr‑Sec sequence. A key long‑lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the fexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type- specifc loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins. Iodothyronine deiodinase (Dio) membrane selenoproteins regulate thyroid hormone (TH) activity through regioselective deiodination (Fig. 1a)1–10.
    [Show full text]
  • The Interactions Between Selenium and Iodine Deficiencies in Man And
    Nutrition Research Reviews (1999), 12, 55±73 55 The interactions between selenium and iodine de®ciencies in man and animals John R. Arthur1*, Geoffrey J. Beckett2 and Julie H. Mitchell1 1Division of Micronutrient and Lipid Metabolism, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK 2University Department of Clinical Biochemistry, The Royal In®rmary, Edinburgh EH3 9YW, UK Abstract Up to one billion people live in areas where they may be at risk from I de®ciency. Many of the debilitating effects of the de®ciency may be irreversible, consequently it is essential to understand the mechanisms whereby lack of I can cause disease 0 through decreased thyroxine and 3,3 ,5-triiodothyronine (T3) synthesis. Since Se has an essential role in thyroid hormone metabolism, it has the potential to play a major part in the outcome of I de®ciency. These effects of Se derive from two aspects of its biological function. First, three Se-containing deiodinases regulate the synthesis and degradation of the biologically active thyroid hormone, T3. Second, selenoperoxidases and possibly thioredoxin reductase (EC 1.6.4.5) protect the thyroid gland from H2O2 produced during the synthesis of thyroid hormones. The mechanisms whereby Se de®ciency exacerbates the hypothyroidism due to I de®ciency have been elucidated in animals. In contrast to these adverse effects, concurrent Se de®ciency may also cause changes in deiodinase activities which can protect the brain from low T3 concentrations in I de®ciency. Animals with Se and I de®ciency have changes in serum thyroid hormone concentrations that are similar to those observed in patients with I de®ciency disease.
    [Show full text]
  • 74Th Annual Meeting Program
    74th Annual Meeting of the American Thyroid Association Millennium Biltmore Hotel Los Angeles, California October 10 – 13, 2002 Thursday, October 10, 2002 6:00 – 7:45 am Crystal Ballroom Defining Thyroid Hypofunction: Perspectives from Populations and the Clinic Moderator: Paul W. Ladenson The Spectrum of Thyroid Hypofunction in Populations E. Chester Ridgway Getting Practical: How to Treat Patients with Thyroid Hypofunction Gilbert H. Daniels Case Discussion: Now It’s Normal, Now It’s Not Paul W. Ladenson “Early Riser” CME Symposium and breakfast supported by an unrestricted educational grant from Abbott Laboratories 8:00 – 8:15 am Biltmore Bowl Welcome and Introductions Carole A. Spencer ATA President Paul W. Ladenson ATA Secretary Gregory A. Brent ATA Program Chair, Scientific Leonard Wartofsky ATA Program Chair, Clinical 8:15 – 9:00 am Biltmore Bowl Keynote Clinical Address Thyroid Disease in Pregnancy Daniel Glinoer, MD, PhD University Hospital St. Pierre Department of Internal Medicine Brussels, Belgium Supported by an educational grant from Abbott Laboratories 9:00 – 10:00 am Biltmore Bowl Plenary Session – Topic Highlights Oral Abstract Presentations Chairs: Gregory A. Brent and Leonard Wartofsky 1 9:00 am Thyroid Hormone Metabolism The Gene Coding for the Type 3 Iodothyronine Deiodinase Is Imprinted and Required for Normal Neonatal Growth and Survival A. Hernandez1,2, S. Fiering3, E. Martinez1,2, V. Galton2, D. St. Germain1,2 Departments of 1Medicine, 2Physiology, and 3Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA 57 Thursday, October 10, 2002 Morning Session 2 9:15 am Thyroid Diseases NHANES III: Impact of TSH:TPOAb Relationships on Redefining the Serum TSH Normal Reference Range C.
    [Show full text]