The Cell Wall of Green Microalgae and Its Role in Heavy Metal Removal

Total Page:16

File Type:pdf, Size:1020Kb

The Cell Wall of Green Microalgae and Its Role in Heavy Metal Removal Received: 14 December 2020 Accepted: 15 March 2021 DOI: 10.1111/ppl.13405 SPECIAL ISSUE ARTICLE Physiologia Plantarum The cell wall of green microalgae and its role in heavy metal removal Olivia Spain | Martin Plöhn | Christiane Funk Department of Chemistry, Umeå University, Umeå Abstract Heavy metals in industrial wastewaters are posing a serious threat to the environ- Correspondence Christiane Funk, Department of Chemistry, ment and to human health. Microalgae are increasingly being seen as potential solu- Umeå University, 901 87 Umeå, Sweden. tions to this problem as they can remove pollutants through biosorption. This Email: [email protected] process offers certain advantages over other more traditional metal removal tech- Funding information niques as it is simple, inexpensive, eco-friendly, and can be performed over a wide Energimyndigheten, Grant/Award Number: 2018-017772; NordForsk, Grant/Award range of experimental conditions. Biosorption is possible due to the unique and com- Number: 82845; Svenska Forskningsrådet plex structure of the microalgal cell wall. The variety of functional groups on the sur- Formas, Grant/Award Number: 2019-00492; Umeå Universitet; Vinnova, Grant/Award face of the cell wall (such as carboxyl or amino groups) can act as binding sites for the Number: 2017-03301 heavy metals, thus removing them from the environment. This review focuses on the Edited by P.-E. Jensen cell wall composition and structure of the most commonly used microalgae in heavy metal removal and shows the role of their cell wall in the biosorption process. This review also aims to report the most commonly used models to predict the velocity of microalgal biosorption and the removal capacities. 1 | INTRODUCTION can be seen either as an obstacle (e.g., for extraction of valuable com- pounds from within the cells) or as an opportunity (e.g., for bio- Microalgae are a diverse group of unicellular and simple multicellular sorption of heavy metals or the production of carbohydrates). A photosynthetic microorganisms that are present in all existing ecosys- precise and in-depth knowledge of the cell wall properties is therefore tems on Earth (Mata et al., 2010). Due to their very limited growth required to optimize microalgal industrial processes and thus to requirements and high adaptability, they can be grown in an extensive reduce their overall costs. However, surprisingly little is known about variety of environmental conditions and do not require fertile land algal cell wall properties, probably because their composition, struc- (Benedetti et al., 2018). Microalgae only need sunlight, simple nutri- ture, and thickness depend greatly on the strain, growth phase and ents including nitrogen, sulfur, phosphorous, and carbon dioxide environmental conditions in which the algae are grown. Due to its (Pignolet et al., 2013) and can complete a full growth cycle within high costs and energy requirements, cell wall disruption is considered hours. Their inexpensive growth requirements as well as their advan- to be one of the most challenging bottlenecks in algal industrial appli- tage of being utilized simultaneously for multiple technologies cations. Gaining knowledge of the composition of algal cell walls (e.g., carbon mitigation, biofuel production, and bioremediation) have would enable the enhancement and/or design of sustainable disrup- made microalgae more and more popular for various biotechnological tion techniques and a better understanding of processes which applications (Suresh Kumar et al., 2015) (Figure 1). The algal cell wall involve the cell wall such as heavy metal removal. has important implications in these biotechnological applications, and Heavy metals are natural elements that can be found in every ecosystem on Earth. Even though they are essential for basic bio- Olivia Spain and Martin Plöhn contributed equally to this study. chemical and physiological functions in both the animal and plant This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2021 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society. Physiologia Plantarum. 2021;1–10. wileyonlinelibrary.com/journal/ppl 1 2 SPAIN ET AL. Physiologia Plantarum FIGURE 1 Schematic view of the product value chain of microalgae kingdoms, some heavy metals can be toxic to living cells. In certain applications such as heavy metal removal. In this review, we mainly concentrations and environmental conditions, metal ions can damage focus on the strains that have been reported in both cell wall studies DNA, causing conformational modifications that can then lead to car- and heavy metal removal studies. cinogenesis or cell death (Tchounwou et al., 2012). Due to anthropo- Chlorella and Scenedesmus are reported to be two of the most genic activities, the quantity of heavy metals in the environment has widely used algae for heavy metal removal, due to their high bio- significantly risen over the past decades. This increase in concentra- sorption capacities (Dwivedi, 2012). The genus Chlorella includes tion has inevitably led to an increase of our exposure to the metals single-celled, spherical green microalgae of about 2–10 μm in diame- and by consequence, an increase in heavy-metal related diseases. The ter. Chlorella is currently the most cultivated microalga worldwide, metals that are currently considered to be the most problematic are mainly due to its rapid growth rate, high photosynthetic efficiency copper (Cu), cadmium (Cd), chromium (Cr), magnesium (Mn), iron (Fe), and high nutritional value (Masojídek & Torzillo, 2008). Chlorella cells zinc (Zn), mercury (Hg), and lead (Pb) as these metals are toxic even in can contain up to 70% of protein (in dry weight), making the biomass low concentrations (Javanbakht et al., 2014). Industrial wastewaters very valuable to the food industry (Liu & Hu, 2013). Chlorella vulgaris from mining, agriculture, battery manufacturing etc. are often highly is one of the most commonly reported Chlorella species for heavy polluted with heavy metals. Conventional adsorbents (e.g., activated metal removal. carbons, zeolites, clays), nanostructures (reviewed in [Burakov The genus Scenedesmus includes the species Scenedesmus, et al., 2018]), as well as biosorbents (plant material, fungi) are used to Desmodesmus, and Acutodesmus, colonial green microalgae, which fre- remove heavy metals and other contaminants from the effluents quently exist in coenobia of four or eight cells inside a mother wall. (reviewed in Ajiboye et al., 2021). Found across the world, Scenedesmus is one of the most common In this review we will show that, due to the biochemical proper- freshwater algae and is commonly farmed for applications such as oil ties of microalgal cell walls, biosorption via microalgae has the poten- production or waste-water treatment (Pignolet et al., 2013). The pres- tial to offer a new eco-friendly, efficient, and cost-effective solution ence of a very thick cell wall makes Scenedesmus species very resistant to remove heavy metals from wastewater. As it is estimated that there to digestion and predation. are more than 50 000 species of microalgae (Richmond, 2003), each This review will also mention Nannochloropsis and Neochloris spe- with different cell wall structures and compositions, this review will cies, genera of unicellular green microalgae, as their cell wall struc- focus on a selected few industrially valuable and well-reported strains tures are well reported. Both Nannochloropsis and Neochloris are of Chlorophyceae. efficient lipid producers, making them extremely interesting for bio- fuel production (Rashidi & Trindade, 2018; Scholz et al., 2014). Certain species of Nannochloropsis have also been shown to be very effective 2 | CURRENT KNOWLEDGE OF CELL WALL biosorbents of heavy metals (Kaparapu & Krishna Prasad, 2018; STRUCTURE AND COMPOSITION OF GREEN Sjahrul, 2013). MICROALGAE 2.1 | Most frequently used strains for heavy metal 2.2 | Cell wall architecture removal As the interface between the cell cytoplasm and the outside environ- The cell wall composition of microalgae has only been studied for a ment, the cell wall is the first barrier between the cell and heavy very limited number of strains (Table 1). These strains do not always metals. The cell wall is mainly composed of carbohydrates, proteins, coincide with those that are currently used in biotechnological and lipids, who each offer negatively charged functional groups at SPAIN ET AL . TABLE 1 The cell wall structure and composition of different microalgal strains Genus Strain Cell wall structure (layers) Cell wall composition References Chlorella Chlorella vulgaris One phospholipidic inner layer Glucosamine-rigid wall (composed of galactose and rhamnose) Takeda (1991), Abo-Shady et al. (1993) 30% polysaccharides, 2.46% proteins, 15% lipids, 52.54% unknown substances Chlorella zofingiensis Inner layer and trilaminar 70% glucose and 30% mannose in its “rigid cell wall” and 65% Rodrigues and Da Silva Bon (2011) outer layer mannose, 30% glucose, plus minor amounts of rhamnose and galactose in its matrix cell wall Chlorella homosphaera 85% glucose 15% mannose in its “rigid cell wall” and 70% mannose, 20% glucose, and 10% galactose in its matrix cell wall Chlorella fusca Inner layer and
Recommended publications
  • Newsletter 4
    PHYCOLOGICAL NEWSLETTER A PUBLICATION OF THE PHYCOLOGICAL SOCIETY OF AMERICA WINTER INSIDE THIS ISSUE: 2008 PSA Meeting 1 SPRING 2008 Meetings and Symposia 2 Editor: Courses 5 Juan Lopez-Bautista VOLUME 44 Job Opportunities 11 Department of Biological Sciences Trailblazer 28: Sophie C. Ducker 12 University of Alabama Island to honor UAB scientists 18 Tuscaloosa, AL 35487 Books 19 [email protected] Deadline for contributions 23 ∗Dr. Karen Steidinger (Florida Fish and 1 2008 Meeting of Wildlife Research Institute) presenting The Phycological Society of America a plenary talk entitled “Harmful algal blooms in North America: Common risks.” New Orleand, Louisiana, USA NUMBER 27-30 July The associated mini-symposium speakers will be Dr. Leanne Flewelling (Florida Fish he Phycological Society of America (PSA) will and Wildlife Research Institute) present- hold its 2008 annual meeting on July 27-30, ing a talk entitled “Unexpected vectors of 1 T2008 in New Orleans, Louisiana, USA. The brevetoxins to marine mammals” and Dr. meeting will be held on the campus of Loyola Jonathan Deeds (US FDA Center for Food University and is being hosted by Prof. James Wee Safety and Applied Nutrition) present- (Loyola University). The meeting will kick-off with ing a talk entitled “The evolving story of an opening mixer on the evening of Sunday, 27 July Gyrodinium galatheanum = Karlodinium and the scientific program will be Monday through micrum = Karlodinium veneficum. A ten- Wednesday, 28-30 July. The PSA banquet will be year perspective.” Wednesday evening at the Louisiana Swamp Ex- hibit at the Audubon Zoo. Optional field trips are *Dr. John W.
    [Show full text]
  • History Department Botany
    THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT I - ._-------------------- THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT TABLE OF CONTENTS Preface 1-11 Chapter One: 1889-1916 1-18 Chapter Two: 1917-1935 19-38 Chapter Three: 1936-1954 39-58 Chapter Four: 1955-1973 59-75 Epilogue 76-82 Appendix 83-92 Bibliography 93-94 -------------------------------------- Preface (formerly the College of Science, Literature and the Arts), the College of Agriculture, or The history that follows is the result some other area. Eventually these questions of months ofresearch into the lives and work were resolved in 1965 when the Department of the Botany Department's faculty members joined the newly established College of and administrators. The one-hundred year Biological Sciences (CBS). In 1988, The overview focuses on the Department as a Department of Botany was renamed the whole, and the decisions that Department Department of Plant Biology, and Irwin leaders made to move the field of botany at Rubenstein from the Department of Genetics the University of Minnesota forward in a and Cell Biology became Plant Biology's dynamic and purposeful manner. However, new head. The Department now has this is not an effort to prove that the administrative ties to both the College of Department's history was linear, moving Biological Sciences and the College of forward in a pre-determined, organized Agriculture. fashion at every moment. Rather I have I have tried to recognize the attempted to demonstrate the complexities of accomplishments and individuality of the the personalities and situations that shaped Botany Department's faculty while striving to the growth ofthe Department and made it the describe the Department as one entity.
    [Show full text]
  • BOT 4404 Phycology Spring 2018
    BOT 4404 Phycology Spring 2018 Instructor: Dr. Ligia Collado-Vides-(Claudia) Date: January 8th – April 23th, 2018 Lecture: Monday and Wednesday 9:00-10:15 CP 117 Lab section: Thursday 12:00- 2:50 PM, second section 3:00 to 5:50 OE 169 Office: MMC- OE 211 Office Hours: T 3:00 to 5:00 PM and W 11:00-1:00 PM By appointment only Email: [email protected] Introduction This course is an introduction to the world of algae. It will cover algal systematics, biogeography and taxonomy; will address algal physiological and ecological aspects, and will discuss algal responses to human dimension issues such as global change, nutrient cycling, biogeochemical products and toxicity with an emphasis on marine macroalgae. Course description The course employs active learning and sometimes group strategies to increase students’ engagement. Learning will be achieved through lectures, invited speakers and different learning strategies that will provide information on biological concepts as well as methods for the study and use of algae. Objectives 1- Provide students with a basic knowledge of the evolution, taxonomy and biogeography of major algal groups. This will be achieved by critically reading scientific literature and analyzing particular cases. 2- Provide students with a good understanding of the anatomical, morphological and physiological features of major algal groups. This will be achieved through active learning exercises and linking structure and function aspects of algae. 3- Prepare students to critically analyze the role of algae in ecological processes related with global change. This will be achieved by understanding algal responses to global change analyzing study cases.
    [Show full text]
  • A Short History of Botany in the United States</Article
    would have extended the value of the classes (the chapter on plant ecology book to the layman, the high school to my environmental biology class, for ScienceFilmstrips biology student, and even the elemen- example) in order to give students a tary-school child. fine historical overview of the particu- R. E. Barthelemy lar discipline's development in this BIOLOGY CHEMISTRY University of Minnesota country. Meanwhile I read the book PHYSICS MICROBIOLOGY Minneapolis piecemeal myself for biohistorical ap- ATOMICENERGY preciation and background; it shouldn't at one sit- ATOMICCONCEPT be read from cover to cover HISTORYAND PHILOSOPHY ting! HOWTO STUDY Never before has such a fund of di- on American botani- GENERALSCIENCE A SHORT HISTORY OF BOTANY IN THE UNITED verse information in FIGURE DRAWING STATES, ed. by Joseph Ewan. 1969. cal endeavor been brought together LABORATORYSAFETY Hafner Publishing Co., N.Y. 174 pp. one handy volume. We might hope that American zoologists, undaunted by HEALTHAND SAFETY(Campers) Price not given. Engelmann of St. having been upstaged, can shortly man- SAFETYIN AN ATOMICATTACK In 1846 George Louis, after finally receiving some fi- age to compile a comparable volume SCHOOLBUS SAFETY nancial encouragement for the pursuit for their discipline. BICYCLESAFETY of botany in the American West, opti- Richard G. Beidleman Colorado College mistically wrote that he could "hope a Downloaded from http://online.ucpress.edu/abt/article-pdf/32/3/178/339753/4442993.pdf by guest on 28 September 2021 WATERCONSERVATION Springs little more from this country for sci- Colorado ence." Today, Engelmann would be de- CARL LINNAEUS, Alvin and Virginia Ask for free folder and information lighted and amazed by what his adopted by Silverstein.
    [Show full text]
  • Cell Wall Chemistry Roger M
    3 Cell Wall Chemistry Roger M. Rowell1,3, Roger Pettersen1, James S. Han1, Jeffrey S. Rowell2, and Mandla A. Tshabalala 1USDA, Forest Service, Forest Products Laboratory, Madison, WI 2Department of Forest Ecology and Management, University of Wisconsin, Madison, WI 3Department of Biological Systems Engineering, University of Wisconsin, Madison, WI CONTENTS 3.1 Carbohydrate Polymers ..........................................................................................................37 3.1.1 Holocellulose ..............................................................................................................37 3.1.2 Cellulose .....................................................................................................................37 3.1.3 Hemicelluloses............................................................................................................39 3.1.3.1 Hardwood Hemicelluloses ..........................................................................41 3.1.3.2 Softwood Hemicelluloses............................................................................42 3.1.4 Other Minor Polysaccharides .....................................................................................43 3.2 Lignin......................................................................................................................................43 3.3 Extractives ..............................................................................................................................45 3.4 Bark.........................................................................................................................................46
    [Show full text]
  • STRUCTURE of M.Sc. SYLLABUS (SEMESTER COURSE, 2007-2008)
    STRUCTURE OF M.Sc. SYLLABUS (SEMESTER COURSE, 2007-2008) SEMESTER-I Bot/General/Theory/(101) Microbiology (45 + 5) = 50 50 Bot/General/Theory/(102) Mycology (45 + 5) = 50 50 Bot/General/Theory/(103) Phycology (45 + 5) = 50 50 Bot/General/Theory/(104 Bryology (Unit-I) (22.5 + 2.5) = 25 50 Unit-I &II) Anatomy (Unit –II) (22.5 + 2.5) = 25 Internal assessment of Theory papers (10%) Bot/General/Prac./(105) Microbiology (25) & Mycology (25) 50 Bot/General/Prac./(106) Phycology (20), Bryology (15) & Anatomy (15) 50 SEMESTER-II Bot/General/Theory/(201) Pteridology 50 Bot/General/Theory/(202) Paleobotany (Unit-I), Palynology and Reproductive Biology (Unit- 50 II). Bot/General/Theory/(203) Taxonomy of Angiosperms - & Plant Geography 50 Bot/General/Theory/(204) Cell Biology and Genetics 50 Internal assessment of Theory papers (10%) Bot/General/Prac./(205) Pteridology, Paleobotany, Palynology and Reproduction Biology 50 Bot/General/Prac./(206) Taxonomy of Angiosperms (25), Cell Biology and Genetics (25) 50 SEMESTER-III Bot/General/Theory/(301) Plant Pathology (45 + 5) = 50 50 Bot/General/Theory/(302) Gymnosperms 50 Bot/Spl./Theory/(303) Special theory – 1 (45 + 5) = 50 50 Bot/Spl./Theory/(304) Special theory – 2 (45 + 5) = 50 50 Internal assessment of Theory papers (10%) Bot/General/Prac./(305) Plant Pathology (25), Gymnosperms (25) 50 Bot/Special/Prac/(306) Special Practical 50 SEMESTER-IV Bot/General/Theory/(401) Plant Physiology (45 + 5) = 50 50 Bot/General/Theory/(402) Biochemistry (45 + 5) = 50 50 Bot/General/Theory/(403) Ecology (25), Molecular
    [Show full text]
  • Influence of Microalgae Cell Wall Characteristics on Protein
    Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors Carl Safi, Michael Charton, Olivier Pignolet, Françoise Silvestre, Carlos Vaca-Garcia, Pierre-Yves Pontalier To cite this version: Carl Safi, Michael Charton, Olivier Pignolet, Françoise Silvestre, Carlos Vaca-Garcia, et al..Influ- ence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to- protein conversion factors. Journal of Applied Phycology, Springer Verlag, 2013, 25 (2), pp.523-529. 10.1007/s10811-012-9886-1. hal-02064796 HAL Id: hal-02064796 https://hal.archives-ouvertes.fr/hal-02064796 Submitted on 12 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/23265 Official URL: https://doi.org/10.1007/s10811-012-9886-1 To cite this version: Safi, Carl and Charton, Michael and Pignolet, Olivier and Silvestre, Françoise and Vaca-Garcia, Carlos and Pontalier, Pierre-Yves Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Cell Wall Ribosomes Nucleus Chloroplast Cytoplasm
    Cell Wall Ribosomes Nucleus Nickname: Protector Nickname: Protein Maker Nickname: Brain The cell wall is the outer covering of a Plant cell. It is Ribosomes read the recipe from the The nucleus is the largest organelle in a cell. The a strong and stiff and made of DNA and use this recipe to make nucleus directs all activity in the cell. It also controls cellulose. It supports and protects the plant cell by proteins. The nucleus tells the the growth and reproduction of the cell. holding it upright. It ribosomes which proteins to make. In humans, the nucleus contains 46 chromosomes allows water, oxygen and carbon dioxide to pass in out They are found in both plant and which are the instructions for all the activities in your of plant cell. animal cells. In a cell they can be found cell and body. floating around in the cytoplasm or attached to the endoplasmic reticulum. Chloroplast Cytoplasm Endoplasmic Reticulum Nickname: Oven Nickname: Gel Nickname: Highway Chloroplasts are oval structures that that contain a green Cytoplasm is the gel like fluid inside a The endoplasmic reticulum (ER) is the transportation pigment called chlorophyll. This allows plants to make cell. The organelles are floating around in center for the cell. The ER is like the conveyor belt, you their own food through the process of photosynthesis. this fluid. would see at a supermarket, except instead of moving your groceries it moves proteins from one part of the cell Chloroplasts are necessary for photosynthesis, the food to another. The Endoplasmic Reticulum looks like a making process, to occur.
    [Show full text]
  • Cephaleuros Species, the Plant-Parasitic Green Algae
    Plant Disease Aug. 2008 PD-43 Cephaleuros Species, the Plant-Parasitic Green Algae Scot C. Nelson Department of Plant and Environmental Protection Sciences ephaleuros species are filamentous green algae For information on other Cephaleuros species and and parasites of higher plants. In Hawai‘i, at least their diseases in our region, please refer to the technical twoC of horticultural importance are known: Cephaleu- report by Fred Brooks (in References). To see images of ros virescens and Cephaleuros parasiticus. Typically Cephaleuros minimus on noni in American Samoa, visit harmless, generally causing minor diseases character- the Hawai‘i Pest and Disease Image Gallery (www.ctahr. ized by negligible leaf spots, on certain crops in moist hawaii.edu/nelsons/Misc), and click on “noni.” environments these algal diseases can cause economic injury to plant leaves, fruits, and stems. C. virescens is The pathogen the most frequently reported algal pathogen of higher The disease is called algal leaf spot, algal fruit spot, and plants worldwide and has the broadest host range among green scurf; Cephaleuros infections on tea and coffee Cephaleuros species. Frequent rains and warm weather plants have been called “red rust.” These are aerophilic, are favorable conditions for these pathogens. For hosts, filamentous green algae. Although aerophilic and ter- poor plant nutrition, poor soil drainage, and stagnant air restrial, they require a film of water to complete their are predisposing factors to infection by the algae. life cycles. The genus Cephaleuros is a member of the Symptoms and crop damage can vary greatly depend- Trentepohliales and a unique order, Chlorophyta, which ing on the combination of Cephaleuros species, hosts and contains the photosynthetic organisms known as green environments.
    [Show full text]
  • Photosynthesis... Using Algae Wrapped in Jelly Balls
    Student Sheet 23 www.saps.org.uk Photosynthesis... using algae wrapped in jelly balls Algae can be considered as one-celled plants, and they usually live in water. You are going to use algae to look at the rate of photosynthesis. The algae are tiny and are difficult to work with directly in the water so the first part of the practical involves ‘immobilising’ the algae. This effectively traps large numbers of algal cells in ‘jelly like’ balls so that we can keep them in one place and not lose them. We use sodium alginate to help make the jelly. Sodium alginate is not harmful to the algae. When these algae are ‘wrapped up’ in the jelly balls they are excellent to use in experiments on photosynthesis. These algal balls are: • cheap to grow and easy to make – you will be able to make hundreds in a very short time • easy to get a standard quantity of plant material because each of the balls is approximately the same volume • easy to keep alive for several weeks so you can keep them for future experiments 1. First you need to obtain a 2. Now you have millions of algal 3. Finally we’re going to make the concentrated suspension of algae. cells in a small volume of liquid. balls… Do this by removing some of the It’s time to mix them into your liquid medium in which they are ‘jelly’. Pour the green mixture through growing in one of two ways. an open-ended syringe into a 2% Pour about 2.5cm3 of jelly (sodium solution of calcium chloride.
    [Show full text]
  • CYANOBACTERIA (BLUE-GREEN ALGAE) BLOOMS When in Doubt, It’S Best to Keep Out!
    Cyanobacteria Blooms FAQs CYANOBACTERIA (BLUE-GREEN ALGAE) BLOOMS When in doubt, it’s best to keep out! What are cyanobacteria? Cyanobacteria, also called blue-green algae, are microscopic organisms found naturally in all types of water. These single-celled organisms live in fresh, brackish (combined salt and fresh water), and marine water. These organisms use sunlight to make their own food. In warm, nutrient-rich (high in phosphorus and nitrogen) environments, cyanobacteria can multiply quickly, creating blooms that spread across the water’s surface. The blooms might become visible. How are cyanobacteria blooms formed? Cyanobacteria blooms form when cyanobacteria, which are normally found in the water, start to multiply very quickly. Blooms can form in warm, slow-moving waters that are rich in nutrients from sources such as fertilizer runoff or septic tank overflows. Cyanobacteria blooms need nutrients to survive. The blooms can form at any time, but most often form in late summer or early fall. What does a cyanobacteria bloom look like? You might or might not be able to see cyanobacteria blooms. They sometimes stay below the water’s surface, they sometimes float to the surface. Some cyanobacteria blooms can look like foam, scum, or mats, particularly when the wind blows them toward a shoreline. The blooms can be blue, bright green, brown, or red. Blooms sometimes look like paint floating on the water’s surface. As cyanobacteria in a bloom die, the water may smell bad, similar to rotting plants. Why are some cyanbacteria blooms harmful? Cyanobacteria blooms that harm people, animals, or the environment are called cyanobacteria harmful algal blooms.
    [Show full text]