Physiology of Bone Formation, Remodeling, and Metabolism 2

Total Page:16

File Type:pdf, Size:1020Kb

Physiology of Bone Formation, Remodeling, and Metabolism 2 Physiology of Bone Formation, Remodeling, and Metabolism 2 Usha Kini and B. N. Nandeesh Contents 2.1 Introduction 2.1 Introduction ................................................ 29 Bone is a highly specialized supporting frame- 2.2 Physiology of Bone Formation .................. 30 2.2.1 Bone Formation ............................................ 30 work of the body, characterized by its rigidity, 2.2.2 Osteoblasts ................................................... 31 hardness, and power of regeneration and repair. It 2.2.3 Bone Matrix ................................................. 31 protects the vital organs, provides an environ- 2.2.4 Bone Minerals .............................................. 32 ment for marrow (both blood forming and fat 2.2.5 Osteocytes .................................................... 32 2.2.6 Intramembranous (Mesenchymal) storage), acts as a mineral reservoir for calcium Ossification ................................................ 32 homeostasis and a reservoir of growth factors and 2.2.7 Intracartilaginous (Endochondral) cytokines, and also takes part in acid–base bal- Ossification ................................................ 33 ance (Taichman 2005 ) . Bone constantly under- 2.2.8 Biological Factors Involved in Normal Bone Formation and Its Regulation ........... 37 goes modeling (reshaping) during life to help it 2.2.9 Bone Modeling ............................................. 37 adapt to changing biomechanical forces, as well 2.2.10 Determinants of Bone Strength .................... 37 as remodeling to remove old, microdamaged 2.3 Physiology of Bone Metabolism ................ 38 bone and replace it with new, mechanically stron- 2.3.1 Cellular and Intracellular Calcium ger bone to help preserve bone strength. and Phosphorus Metabolism ...................... 38 The bones have two components – the cortical 2.3.2 Regulation of Skeletal Metabolism .............. 38 bone which is dense, solid, and surrounds the 2.4 Bone Remodeling ........................................ 42 marrow space and the trabecular bone which is 2.4.1 Mediators of Remodeling ............................. 43 composed of a honeycomb-like network of trabe- 2.4.2 Remodeling Phases ...................................... 44 2.4.3 Regulatory Factors in Bone Remodeling ..... 46 cular plates and rods interspersed in the bone 2.4.4 Markers of Bone Metabolism ....................... 51 marrow compartment. Cortical bone has an outer 2.4.5 Pathophysiology of Bone Remodeling ......... 53 periosteal surface and inner endosteal surface. References ............................................................... 55 The periosteum is a fi brous connective tissue sheath that surrounds the outer cortical surface of bone, except at joints where bone is lined by articular cartilage. It contains blood vessels, nerve fi bers, osteoblasts, and osteoclasts. It pro- tects, nourishes, and aides in bone formation. It U. Kini , M.D., DCP, DNB, FICP () plays an important role in appositional growth B. N. Nandeesh , M.D., DNB and fracture repair. The endosteum is a membra- Department of Pathology , nous structure covering the inner surface of corti- St. John’s Medical College and Hospital , Koramangala , Bangalore , Karnataka 560034 , India cal and cancellous bone and the blood vessel e-mail: [email protected] ; [email protected] canals (Volkmann’s canals) present in bone. I. Fogelman et al. (eds.), Radionuclide and Hybrid Bone Imaging, 29 DOI 10.1007/978-3-642-02400-9_2, © Springer-Verlag Berlin Heidelberg 2012 30 U. Kini and B.N. Nandeesh Fig. 2.1 Woven bone/ immature bone ( W ) rimmed by osteoblasts ( B ) with peripheral lamellar bone (L ) showing a Haversian canal ( H ) Further, based on the pattern of collagen form- within the matrix. During life, the bones undergo ing the osteoid, two types of bone are identi fi ed: processes of longitudinal and radial growth, mod- woven bone , which is characterized by a haphaz- eling (reshaping), and remodeling (Clarke 2008 ) . ard organization of collagen fi bers (Eriksen et al. Longitudinal growth occurs at the growth plates, 1994 ) , and lamellar bone , which is characterized where cartilage proliferates in the epiphyseal and by a regular parallel alignment of collagen into metaphyseal areas of long bones, before subse- sheets (lamellae) (Fig. 2.1 ). Lamellar bone, as a quently undergoing mineralization to form pri- result of the alternating orientations of collagen mary new bone. fi brils, has a signi fi cant mechanical strength sim- ilar to plywood. This normal lamellar pattern is absent in woven bone, in which the collagen 2.2.1 Bone Formation fi brils are laid down in a disorganized manner. Hence, the woven bone is weaker than lamellar Ossi fi cation (or osteogenesis) is the process of for- bone. Woven bone is produced when osteoblasts mation of new bone by cells called osteoblasts. produce osteoid rapidly. This occurs initially in These cells and the bone matrix are the two all fetal bones and in fracture healing, but the most crucial elements involved in the formation resulting woven bone is replaced by a process of bone. This process of formation of normal called remodeling by the deposition of more healthy bone is carried out by two important pro- resilient lamellar bone. Virtually all the bone in cesses, namely: the healthy mature adult is lamellar bone. 1. Intramembranous ossi fi cation characterized by laying down of bone into the primitive connective tissue (mesenchyme) resulting in 2.2 Physiology of Bone Formation the formation of bones (skull, clavicle, man- dible). It is also seen in the healing process of Bone is composed of support cells, namely, fractures (compound fractures) treated by osteoblasts and osteocytes ; remodeling cells, open reduction and stabilization by metal namely, osteoclasts ; and non-mineral matrix of plate and screws. collagen and noncollagenous proteins called 2. Endochondral ossi fi cation where a cartilage osteoid , with inorganic mineral salts deposited model acts as a precursor (e.g., femur, tibia, 2 Physiology of Bone Formation, Remodeling, and Metabolism 31 humerus, radius). This is the most important Mesenchymal stem cell process occurring during fracture healing when treated by cast immobilization. Hemopoietic If the process of formation of bone tissue stem cell occurs at an extraskeletal location, it is termed as Osteoblast heterotopic ossi fi cation . precursor Three basic steps involved in osteogenesis Osteoclast precursors are: Osteoblasts Osteoclast (a) Synthesis of extracellular organic matrix (osteoid) (b) Matrix mineralization leading to the forma- Bone tion of bone (c) Remodeling of bone by the process of resorp- tion and reformation Fig. 2.2 Diagram to show evolution of osteoblasts and osteoclasts in the formation of bone 2.2.2 Osteoblasts tors, physical activity, and other stimuli act mainly through osteoblasts to bring about their Osteoblasts originate from mesenchymal stem effects on bone (Harada and Rodan 2003 ) . cells (osteoprogenitor cells) (Fig. 2.2) of the bone marrow stroma and are responsible for bone 2.2.2.1 Wnt Pathway on matrix synthesis and its subsequent mineraliza- Osteoblastogenesis tion. Commitment of mesenchymal stem cells to Wnts are secreted glycoproteins that regulate a the osteoblast lineage requires the canonical Wnt/ variety of cellular activities, such as cell fate, deter- j3-catenin pathway and associated proteins mination, proliferation, migration, survival, polar- (Logan and Nusse 2004 ) . ity and gene expression (Cadigan and Liu 2006 ; Osteoblasts are mononucleated, and their shape Caetano-Lopes et al. 2007 ) . This pathway is essen- varies from fl at to plump, re fl ecting their level of tial for the differentiation of mature osteoblasts cellular activity, and, in later stages of maturity, and consequently for bone formation. Reduced lines up along bone-forming surfaces (Fig. 2.1 ). Wnt signaling has been associated with osteoporo- Osteoblasts are responsible for regulation of sis (Krishnan et al. 2006 ) . The Wnt system is also osteoclasts and deposition of bone matrix (Mackie important in chondrogenesis and hematopoiesis 2003 ) . As they differentiate, they acquire the and may be stimulatory or inhibitory at different ability to secrete bone matrix. Ultimately, some stages of osteoblast differentiation. osteoblasts become trapped in their own bone matrix, giving rise to osteocytes which, gradu- ally, stop secreting osteoid. Osteocytes are the 2.2.3 Bone Matrix most abundant cells in bone; these cells commu- nicate with each other and with the surrounding The structure of bone is constituted by: medium through extensions of their plasma mem- (a) Inorganic (69 %) component, consisting of brane. Therefore, osteocytes are thought to act as hydroxyapatite (99 %) mechanosensors, instructing osteoclasts where (b) Organic (22 %), constituted by collagen (90 %) and when to resorb bone and osteoblasts where and noncollagen structural proteins which and when to form it (Boulpaep and Boron 2005 ; include proteoglycans, sialoproteins, gla- Manolagas 2000 ) . The osteoblasts, rich in alka- containing proteins, and 2HS-glycoprotein line phosphatase, an organic phosphate-splitting The functional component of the bone includes enzyme, possess receptors for parathyroid hor- growth factors and cytokines. The hardness and mone and estrogen. Also, hormones, growth fac- rigidity of bone is due to the presence of mineral 32 U. Kini and B.N. Nandeesh salt in the osteoid matrix, which is a crystalline important mediators of calcium regulation,
Recommended publications
  • Parathyroid Hormone Stimulates Bone Formation and Resorption In
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 5, pp. 3204-3208, May 1981 Medical Sciences Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism (endocrine/mineralization/bone metabolism/cartilage/regulation) GuY A. HOWARD, BRIAN L. BOTTEMILLER, RUSSELL T. TURNER, JEANNE I. RADER, AND DAVID J. BAYLINK American Lake VA Medical Center, Tacoma, Washington 98493; and Department of Medicine, University of Washington, Seattle, Washington 98195 Communicated by Clement A. Finch, January 26, 1981 ABSTRACT We have developed an in vitro system, using em- growing rats with PTH results in an increase in formation and bryonic chicken tibiae grown in a serum-free medium, which ex- resorption (4) and a net gain in bone volume (10-12). We have hibits simultaneous bone formation and resorption. Tibiae from recently obtained similar results in vitro for the acute and 8-day embryos increased in mean (±SD) length (4.0 ± 0.4 to 11.0 chronic effects of PTH (13). Moreover, as reported earlier for ± 0.3 mm) and dry weight (0.30 ± 0.04 to 0.84 ± 0.04 mg) during resorption in rat bone (14), the in vitro effect of PTH in our 12 days in vitro. There was increased incorporation of [3H]proline system is an inductive one in that the continued presence of into hydroxyproline (120 ± 20 to 340 ± 20 cpm/mg of bone per PTH is unnecessary for bone resorption and bone formation to 24 hr) as a measure of collagen synthesis, as well as a 62 ± 5% increase in total calcium and 45Ca taken up as an indication of ac- be stimulated for several days (13).
    [Show full text]
  • Direct Measurement of Bone Resorption and Calcium
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 4, pp. 1818-1822, April 1980 Biochemistry Direct measurement of bone resorption and calcium conservation during vitamin D deficiency or hypervitaminosis D ([3Hltetracycline/collagen/chicks/growth modeling/kinetics) LEROY KLEIN Departments of Orthopaedics, Biochemistry, and Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106 Communicated by Oscar D. Ratnoff, December 20,1979 ABSTRACT When bone is remodeled during the growth of complication, various workers (11, 12) have expressed the need a given size bone to a larger size, some bone is resorbed and for a more direct measurement of bone turnover. In addition, some is deposited. Much of the resorbed bone mineral, calcium, tracer methods for calcium kinetics involve only plasma tracer can be reutilized during bone formation. The net and absolute effects of normal growth, vitamin D deficiency, or vitamin D concentrations and focus on net pool turnover rather than on excess were compared on bone resortion, bone formation, and more absolute measurements of bone turnover (13). calcium reutilization. Growing chic were relabeled exten- Bone resorptiont has been observed directly by using histo- sively with three isotopes: 45Ca, [3Htetracycline, and [3H]pro- logical measurements of the increase in diameter of the bone line. Data were obtained weekly during 3 weeks of control marrow space in rapidly growing rats (14). Resorption has been growth, vitamin D deficiency, or vitamin D overdosage while measured kinetically by either 45Ca under steady-state condi- on a nonradioactive diet. Bone resorption as measured by in- creases in the marrow (inner) diameter of the midshaft of the tions in adult rats (15) or 40Ca dilution of the natural isotope femur and humerus and by the weekly losses of total [3Hjtetra- 48Ca in human subjects (16).
    [Show full text]
  • The Unknown Process Osseointegration
    biology Editorial The Unknown Process Osseointegration Nansi López-Valverde , Javier Flores-Fraile and Antonio López-Valverde * Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; [email protected] (N.L.-V.); j.fl[email protected] (J.F.-F.) * Correspondence: [email protected] Received: 3 July 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Although it was already described more than fifty years ago, there is yet no in-depth knowledge regarding the process of osseointegration as far as its mechanism of action is concerned. It could be one of the body’s ways of reacting to a foreign body, where the individual’s immune response capacity is involved. It is known that the nervous system has an impact on bone health and that the role of the autonomic nervous system in bone remodeling is an attractive field for current research. In the future, immuno/neuromodulatory techniques will open new and exciting lines of research. Keywords: osseointegration; foreign-body reaction; bone remodeling; immuno/neuromodulatory techniques Although the process of osseointegration was first described by Brånemark and colleagues [1], 50 years later, the real mechanism of this process, remains unknown and has not been studied in depth. The model proposed by Koka and Zarb marked genetics as one of the patient’s inherent variables, necessary, to achieve “sufficient” and lasting results [2]. Among the proposed theories, two have acquired particular interest: “foreign-body reaction”, which interprets osseointegration from the point of view of adverse immune processes [3]; and the so-called by certain authors “brain-bone axis” theory [4].
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Osteomalacia and Hyperparathyroid Bone Disease in Patients with Nephrotic Syndrome
    Osteomalacia and Hyperparathyroid Bone Disease in Patients with Nephrotic Syndrome Hartmut H. Malluche, … , David A. Goldstein, Shaul G. Massry J Clin Invest. 1979;63(3):494-500. https://doi.org/10.1172/JCI109327. Research Article Patients with nephrotic syndrome have low blood levels of 25 hydroxyvitamin D (25-OH-D) most probably because of losses in urine, and a vitamin D-deficient state may ensue. The biological consequences of this phenomenon on target organs of vitamin D are not known. This study evaluates one of these target organs, the bone. Because renal failure is associated with bone disease, we studied six patients with nephrotic syndrome and normal renal function. The glomerular filtration rate was 113±2.1 (SE) ml/min; serum albumin, 2.3±27 g/dl; and proteinuria ranged between 3.5 and 14.7 g/24 h. Blood levels of 25-OH-D, total and ionized calcium and carboxy-terminal fragment of immunoreactive parathyroid hormone were measured, and morphometric analysis of bone histology was made in iliac crest biopsies obtained after double tetracycline labeling. Blood 25-OH-D was low in all patients (3.2-5.1 ng/ml; normal, 21.8±2.3 ng/ml). Blood levels of both total (8.1±0.12 mg/dl) and ionized (3.8±0.21 mg/dl) calcium were lower than normal and three patients had true hypocalcemia. Blood immuno-reactive parathyroid hormone levels were elevated in all. Volumetric density of osteoid was significantly increased in three out of six patients and the fraction of mineralizing osteoid seams was decreased in all.
    [Show full text]
  • The Role of BMP Signaling in Osteoclast Regulation
    Journal of Developmental Biology Review The Role of BMP Signaling in Osteoclast Regulation Brian Heubel * and Anja Nohe * Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA * Correspondence: [email protected] (B.H.); [email protected] (A.N.) Abstract: The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP 2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP 2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP 2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP 2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established. Keywords: osteoclast; BMP; osteoporosis Citation: Heubel, B.; Nohe, A. The Role of BMP Signaling in Osteoclast Regulation.
    [Show full text]
  • The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns
    Concept Paper The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns Gordon L. Klein Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555-0165, USA; [email protected] Abstract: Surprisingly little is known about the factors released from bone during resorption and the metabolic roles they play. This paper describes what we have learned about factors released from bone, mainly through the study of burn injuries, and what roles they play in post-burn metabolism. From these studies, we know that calcium, phosphorus, and magnesium, along with transforming growth factor (TGF)-β, are released from bone following resorption. Additionally, studies in mice from Karsenty’s laboratory have indicated that undercarboxylated osteocalcin is also released from bone during resorption. Questions arising from these observations are discussed as well as a variety of potential conditions in which release of these factors could play a significant role in the pathophysiology of the conditions. Therapeutic implications of understanding the metabolic roles of these and as yet other unidentified factors are also raised. While much remains unknown, that which has been observed provides a glimpse of the potential importance of this area of study. Keywords: bone resorption; calcium; phosphorus; TGF-β; undercarboxylated osteocalcin Citation: Klein, G.L. The Products of Bone Resorption and Their Roles in 1. Introduction Metabolism: Lessons from the Study of Burns. Osteology 2021, 1, 73–79. In recent years we have learned much about the mechanisms of bone formation and https://doi.org/10.3390/ resorption, the cells involved, and many of the factors that affect and link the two processes.
    [Show full text]
  • Hormone Resulting in Stimulation of Bone Resorption Edward M
    Adenyl Cyclase and Interleukin 6 Are Downstream Effectors of Parathyroid Hormone Resulting in Stimulation of Bone Resorption Edward M. Greenfield, Steven M. Shaw, Sandra A. Gomik, and Michael A. Banks Department of Orthopaedics and Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-5000 Abstract * osteoclast * cytokine * cell-cell interactions * bone resorp- tion Parathyroid hormone and other bone resorptive agents function, at least in part, by inducing osteoblasts to secrete Introduction cytokines that stimulate both differentiation and resorptive activity of osteoclasts. We previously identified two poten- Net bone loss, in conditions such as osteoporosis, results from tially important cytokines by demonstrating that parathy- a disturbance in the normal balance between bone resorption roid hormone induces expression by osteoblasts of 1L-6 and by osteoclasts and bone formation by osteoblasts. Thus, knowl- leukemia inhibitory factor without affecting levels of 14 edge of the mechanisms that regulate both resorption and forma- other cytokines. Although parathyroid hormone activates tion of bone is fundamental to the understanding of the patho- multiple signal transduction pathways, induction of IL-6 genesis of these diseases. and leukemia inhibitory factor is dependent on activation In addition to forming bone, osteoblasts regulate osteoclast of adenyl cyclase. This study demonstrates that adenyl cy- resorptive activity in response to parathyroid hormone (PTH) clase is also required for stimulation of osteoclast activity and other resorptive agents (1, 2). This concept is best sup- in cultures containing osteoclasts from rat long bones and ported by evidence that many agents, including PTH, only stim- UMR106-01 rat osteoblast-like osteosarcoma cells. Since ulate osteoclast resorptive activity in the presence of osteoblasts the stimulation by parathyroid hormone of both cytokine or conditioned media from osteoblasts that had been exposed production and bone resorption depends on the same signal to PTH (3, 4).
    [Show full text]
  • Effects of Estrogen Receptor and Wnt Signaling Activation On
    International Journal of Molecular Sciences Article Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss 1, , 1, 1 1 Astrid Liedert * y, Claudia Nemitz y, Melanie Haffner-Luntzer , Fabian Schick , Franz Jakob 2 and Anita Ignatius 1 1 Institute of Orhopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081 Ulm, Germany; [email protected] (C.N.); melanie.haff[email protected] (M.H.-L.); [email protected] (F.S.); [email protected] (A.I.) 2 Orthopaedic Center for Musculoskeletal Research, University of Würzburg, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-55333; Fax: +49-731-500-55302 These authors contributed equally to the study. y Received: 14 September 2020; Accepted: 31 October 2020; Published: 5 November 2020 Abstract: In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss.
    [Show full text]
  • Estrogen Receptor-Α in Osteocytes Is Important for Trabecular Bone Formation in Male Mice
    Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice Sara H. Windahla, Anna E. Börjessona, Helen H. Farmana, Cecilia Engdahla,Sofia Movérare-Skrtica, Klara Sjögrena, Marie K. Lagerquista, Jenny M. Kindbloma, Antti Koskelab, Juha Tuukkanenb, Paola Divieti Pajevicc, Jian Q. Fengd, Karin Dahlman-Wrighte, Per Antonsone, Jan-Åke Gustafssone,f,1,2, and Claes Ohlssona,1,2 aDepartment of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; bDepartment of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu 90014, Finland; cDepartment of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114; dDepartment of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246; eDepartment of Biosciences and Nutrition and Center for Biosciences at Novum, Karolinska Institutet, 141 83 Huddinge, Sweden; and fCenter for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, Houston, TX 77204 Contributed by Jan-Åke Gustafsson, December 4, 2012 (sent for review October 25, 2012) The bone-sparing effect of estrogen in both males and females is in osteoclasts is crucial for trabecular bone in females, but it is primarily mediated via estrogen receptor-α (ERα), encoded by the dispensable for trabecular bone in male mice and for cortical Esr1 gene. ERα in osteoclasts is crucial for the trabecular bone- bone in both males and females. However, not only osteoclasts sparing effect of estrogen in females, but it is dispensable for but also osteoblasts/osteocytes express ERs (15–17).
    [Show full text]
  • Vitamin D, Osteoclastogenesis and Bone Resorption: from Mechanistic Insight to the Development of New Analogs
    Endocrine Journal 2007, 54 (1), 1–6 REVIEW Vitamin D, Osteoclastogenesis and Bone Resorption: from Mechanistic Insight to the Development of New Analogs KYOJI IKEDA Department of Bone and Joint Disease, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi 474-8522, Japan (Endocrine Journal 54: 1–6, 2007) Prologue: 1α,25(OH)2D3 as factor (OCIF) or osteoprotegerin (OPG), was dis- a bone-resorbing hormone covered to protect bone by negatively regulating osteoclast formation. This work was reported by THE vitamin D hormone 1α,25-dihydroxyvitamin D3 Yukijirushi [6] and Amgen [7]. In the following year, (1α,25(OH)2D3) is a pleiotropic hormone which exerts its ligand, OPGL, or currently under the prevailing its effects through the nuclear vitamin D receptor name of “receptor activator of nuclear factor-κB (VDR) [1]. Among these effects, the physiological ligand” (RANKL), was identified by the 2 companies importance of VDR in maintaining the integrity of as the long-sought osteoclast differentiation factor mineral and skeletal systems is underscored by the se- (ODF) that is presented on osteoblastic/stromal cells, vere hypocalcemia and rickets/osteomalacia observed thereby promoting the terminal differentiation into in VDR gene knockout mice as well as patients with osteoclasts [8, 9]. Yasuda et al. elegantly showed that –8 –7 vitamin D deficiency [2]. The connection between vi- 1α,25(OH)2D3 at relatively high doses of 10 –10 M, tamin D and bone resorption was first made in 1972, induces the expression of RANKL in the ST2 stromal when it was reported that in a classic experiment using cell line [8], providing the final molecular proof that bone organ cultures, the so-called “Raisz assay”, 1α,25(OH)2D3 is a pro-osteoclastogenic hormone [4].
    [Show full text]
  • Sex Steroids and Bone
    Sex Steroids and Bone S.C. MANOLAGAS,S.KOUSTENI, AND R.L. JILKA Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205 ABSTRACT The adult skeleton is periodically remodeled by temporary anatomic structures that comprise juxtaposed osteoclast and osteoblast teams and replace old bone with new. Estrogens and androgens slow the rate of bone remodeling and protect against bone loss. Conversely, loss of estrogen leads to increased rate of remodeling and tilts the balance between bone resorption and formation in favor of the former. Studies from our group during the last 10 years have elucidated that estrogens and androgens decrease the number of remodeling cycles by attenuating the birth rate of osteoclasts and osteoblasts from their respective progenitors. These effects result, in part, from the transcriptional regulation of genes responsible for osteoclastogenesis and mesenchymal cell replication and/or differentiation and are exerted through interactions of the ligand-activated receptors with other transcription factors. However, increased remodeling alone cannot explain why loss of sex steroids tilts the balance of resorption and formation in favor of the former. Estrogens and androgens also exert effects on the lifespan of mature bone cells: pro-apoptotic effects on osteoclasts but anti-apoptotic effects on osteoblasts and osteocytes. These latter effects stem from a heretofore unexpected function of the classical “nuclear” sex steroid receptors outside the nucleus and result from activation of a Src/Shc/extracellular signal-regulated kinase signal transduction pathway probably within preassembled scaffolds called caveolae.
    [Show full text]