AMERICAN MUSEUM Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

AMERICAN MUSEUM Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3130, 29 pp., 25 figures, 2 tables May 24, 1995 The Morphology and Relationships of Australochelys, an Early Jurassic Turtle from South Africa EUGENE S. GAFFNEY,1 AND JAMES W. KITCHING2 ABSTRACT Australochelys from the Early Jurassic Elliot (Cryptodira plus Pleurodira) than to Proganoche- Formation of South Africa is the oldest African lys. These characters include a sutured basipter- turtle. Known only from the skull and a shell frag- ygoid articulation and middle ear region partially ment, Australochelys has many primitive chelo- enclosed laterally. Australochelys is hypothesized nian characters in common with the Late Triassic as the sister taxon to the Casichelydia; together Proganochelys, such as a large interpterygoid va- they form the Rhaptochelydia. The relationships cuity and a lacrimal foramen. Australochelys has of Australochelys show that the beginning stages large orbits and a ventral basioccipital tubercle, of the unusual turtle hearing mechanism evolved characters that only occur in Proganochelys. How- before the origin ofthe modem turtle groups. Ak- ever, because Australochelys has a series of ad- inesis preceded or accompanied the enclosure of vanced characters in common with the Casiche- the hypertrophied middle ear region in the early lydia, it is more closely related to the Casichelydia evolution of the hearing mechanism. INTRODUCTION Australochelys, the oldest turtle from Af- described in a short paper (Gaffney and rica, reveals an important stage in the early Kitching, 1994) that did not include a de- history ofturtles. Australochelys was recently tailed morphological description or extended 1 Curator, Department of Vertebrate Paleontology, American Museum of Natural History. 2 Bernard Price Institute for Palaeontological Research, University ofthe Witwatersrand, Johannesburg 2001, South Africa. Copyright © American Museum of Natural History 1995 ISSN 0003-0082 / Price $3.30 2 AMERICAN MUSEUM NOVITATES NO. 3130 Fig. 1. Australochelys africanus Gaffney and Kitching, 1994, BP/1/4933. Dorsal view of skull. Ster- eophotograph. See fig. 3A for key. character discussion. The purpose ofthis pa- terpreted here, is that it is advanced over per is to provide more descriptive informa- Proganochelys but lacks derived characters tion and character discussions. of either Cryptodira or Pleurodira. In addi- The significance of Australochelys, as in- tion to Gaffney and Kitching (1994), relevant Fig. 2. Australochelys africanus Gaffney and Kitching, 1994, BP/1/4933. Ventral view of the skull. Stereophotograph. See fig. 3B for key. 1995 GAFFNEY AND KITCHING: MORPHOLOGY OF AUSTRALOCHELYS 3 B labial ridge apertura narium interna lingual ridge interpterygoid vacuity basipterygoid process Fig. 3. Australochelys africanus Gaffney and Kitching, 1994, BP/1/4933. A. Dorsal view of skull. B. Ventral view of skull. background papers are: Gaffney (1990) for AcKNowLEDGMENTs Proganochelys, Gaffney et al. (1987) for the We are most grateful to Mr. I. van Rooyen earliest cryptodire, Kayentachelys, and Gaff- of the farm Bormansdrift for his kindness, ney and Meylan (1988) for turtle phylogeny hospitality, and for permitting one ofus (J.K.) in general. The following skull description of access to his land to collect fossils. Dr. M. A. Australochelys assumes some familiarity with Raath helped with information on the Gokwe the skull of Proganochelys (Gaffney, 1990) Formation. Dr. B. S. Rubidge, director ofthe and general turtle skull morphology as pre- Bernard Price Institute, very graciously sented in Gaffney (1979). The descriptive opened the facilities and collections of that section here follows the order in Gaffney institution to one ofus (E.G.). The high qual- (1979). ity of the figures is due to the skills of F. Before the discovery ofAustralochelys, the Ippolito, E. Heck (fig. 25), and C. Tarka (fig. oldest known African turtle was the frag- 19). The senior author is particularly grateful mentary specimen identified by Nesbitt and to A. Schermerhorn for improving the manu- Bond (1972) as a turtle from the Gokwe For- script and assisting in its preparation. mation of Zimbabwe. At that time it was on the goodwill and questionably dated as Late Jurassic. More re- Everyone is dependent cently these and other turtle specimens from generosity of colleagues who willingly give the Gokwe Formation of Zimbabwe have their time in reviewing papers. We are par- been reinterpreted as being more likely Late ticularly fortunate to have benefited from the Cretaceous in age (M. Raath, personal com- efforts offour ofour associates: D. Brinkman, mun. to J. Kitching, August 1993). At pres- P. Meylan, R. Reisz, and 0. Rieppel, who ent, the next oldest known African turtles are have generously helped improve this paper. the Early Cretaceous pleurodires summa- rized in de Broin (1989). This represents a gap of some 60 million years, between Aus- ABBREVILATIONS tralochelys and the Early Cretaceous pleu- BP Bernard Price Institute, Johannes- rodires. burg, South Africa 4 AMERICAN MUSEUM NOVITATES NO. 3130 MB Museum fur Naturkunde, Berlin, is defined to consist of Australochelys plus Germany Casichelydia. SMNS Staatliches Museum fur Naturkunde, Stuttgart, Germany FAMILY AUSTRALOCHELYIDAE Gaffhey and Kitching, 1994 bo basioccipital bs basisphenoid Australochelys Gaffney and Kitching, 1994 ex exoccipital fr frontal TYPE SPECIES: Australochelys africanus ju jugal Gaffhey and Kitching, 1994. mx maxilla KNowN DISRmurIoBN: Early Jurassic, one na nasal locality in Orange Free State, South Africa. op opisthotic ETYMOLOGY: australos, Greek for "south"; pa parietal chelys, Greek for "turtle." pal palatine DIAGNOsIs: As for species. pf prefrontal pm premaxilla Australochelys africanus po postorbital Gaffhey and Kitching, 1994 pr prootic TYPE SPECiMEN: Bernard Price Institute, pt pterygoid University of the Witwatersrand, Johannes- qj quadratojugal burg, South Africa, BP/l/4933; consists of a qu quadrate skull without lowerjaws and a fragment from so supraoccipital the bridge area of the shell. sq squamosal LocALITr: Bormansdrift (133), Clocolan vo vomer District, Orange Free State, South Africa. Map sheet: 1:50,000 2827 CD Mekoatlengsnek 28057'33"S, 27026'05"E (Kitching and Raath, SYSTEMATICS 1984). ORDER TESTUDINES HORIZON: Tritylodon Acme-Zone, (mid- dle) Elliott Formation, Early Jurassic (Olsen DLAGNosIs: As in Gaffney and Meylan and Galton, 1984). (1988). COLLECTOR: James W. Kitching, March 1980. Rhaptochelydia Gaffney and Kitching, 1994 ETYMOLOGY: africanus, from Africa. ETYMOLOGY: rhaptos (not "rhaptors" Gaff- ney and Kitching, 1994, in error), Greek for "sewn" in allusion to the sutured basiptery- DIAGNOSIS goid articulation; chelys, Greek for "turtle." Kitching, 1994) EMENDED DiAGNosIs: Posterior margin of (modified from Gaffney and temporal roof extends over opisthotic; pal- Characters unique to Australochelys among atal teeth few or absent; basipterygoid artic- turtles: Orbit larger in relative size than in ulation closed (sutured); cranioquadrate space any other turtle; lacrimal foramen at least a well-defined foramen or canal, the canalis three times larger than in Proganochelys; ex- cavernosus, not an open space; stapes prob- ternal nares elongate in contrast to all turtles; ably articulating with a tympanic membrane, vomers arched dorsally, narrow posteriorly, not with the quadrate; ventral ridge on op- and very broad anteriorly in a unique con- isthotic; distal end of opisthotic covered lat- figuration. erally by squamosal and/or quadrate; par- Primitive chelonian characters found only occipital process ofopisthotic tightly sutured in Proganochelys and Australochelys within to braincase; crista supraoccipitalis a distinct turtles but also found in primitive tetrapods: vertical sheet of bone. Divided external nares formed by premax- DIsCussIoN: This taxon, Rhaptochelydia, illae; large interpterygoid vacuity as in Pro- 1995 GAFFNEY AND KITCHING: MORPHOLOGY OF A USTRALOCHELYS 5 ganochelys; unenclosed middle ear region; a DERMAL ROOFING ELEMENTS recessed, funnel-shaped, cavum tympani ab- (figs. 1, 3-6) sent; lacrimal foramen present; recessus sca- lae tympani and fenestra perilymphatica ab- The nasal area of Australochelys is char- sent; foramen jugulare posterius with at least acterized by a deep snout, large fossa nasalis, a medial edge absent; cultriform process pres- and an elongate apertura narium externa. In ent. contrast, Proganochelys has a relatively small Advanced chelonian characters found only snout, small fossa nasalis, and a less elongate in Australochelys and Casichelydia (Cryp- apertura narium externa. These features in todires plus Pleurodires): Basipterygoid artic- Australochelys are probably autapomorphic, ulation sutured; stapes probably does not ar- although a large fossa nasalis is common in ticulate directly with quadrate but may have other amniotes and does occur in some Cas- attached to a tympanic membrane supported ichelydia. Australochelys has a paired aper- by the acute posterior edge of the quadrate; tura narium externa, with a well-developed distal end ofopisthotic covered by quadrate; internarial bar, as in Proganochelys. The in- canalis cavernosus a well-defined canal; few ternarial bar is broad dorsally, becomes nar- or no palatal teeth; crista supraoccipitalis a rower ventrally, but its ventral limits are not distinct vertical sheet ofbone; temporal roof preserved. The dorsal end
Recommended publications
  • A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
    A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes.
    [Show full text]
  • University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
    Triassic lithostratigraphy of the Jameson Land Basin (central East Greenland), with emphasis on the new Fleming Fjord Group Clemmensen, Lars B.; Kent, Dennis W.; Mau, Malte; Mateus, Octávio; Milàn, Jesper Published in: Bulletin of the Geological Society of Denmark DOI: 10.37570/bgsd-2020-68-05 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Clemmensen, L. B., Kent, D. W., Mau, M., Mateus, O., & Milàn, J. (2020). Triassic lithostratigraphy of the Jameson Land Basin (central East Greenland), with emphasis on the new Fleming Fjord Group. Bulletin of the Geological Society of Denmark, 68, 95-132. https://doi.org/10.37570/bgsd-2020-68-05 Download date: 01. okt.. 2021 BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 68 · 2020 Triassic lithostratigraphy of the Jameson Land Basin (central East Greenland), with emphasis on the new Fleming Fjord Group LARS B. CLEMMENSEN, DENNIS V. KENT, MALTE MAU, OCTÁVIO MATEUS & JESPER MILÀN Clemmensen, L.B., Kent, D.V., Mau, M., Mateus, O. & Milàn, J. 2020. Triassic lithostratigraphy of the Jameson Land basin (central East Greenland), with em- phasis on the new Fleming Fjord Group. Bulletin of the Geological Society of Denmark, vol. 68, pp. 95–132. ISSN 2245-7070. https://doi.org./10.37570/bgsd-2020-68-05 The lithostratigraphy of the Triassic deposits of the Jameson Land Basin in central East Greenland is revised. The new Scoresby Land Supergroup is now Geological Society of Denmark composed of the Wordie Creek, Pingo Dal, Gipsdalen and Fleming Fjord Groups.
    [Show full text]
  • Palaeontological Impact Assessment Phase 1: Desktop Study Proposed
    Palaeontological Impact Assessment Phase 1: Desktop Study Proposed Dinosaur Interpretation Center, Golden Gate Highlands National Park, Free State Dr. Jonah Nathaniel Choiniere Senior Researcher Evolutionary Studies Institute, University of the Witwatersrand Johannesburg [email protected] 011 717 6684 For South African National Parks (SANParks) Wednesday, 11 March 2015 EXECUTIVE SUMMARY This Phase I Palaeontological Impact Assessment concerns the South African National Park authority’s proposal to build a Dinosaur Interpretation Center at Golden Gate Highlands National Park, Free State. The proposed development will overlie sedimentary bedrock that is extremely likely to contain vertebrate fossils of scientific and cultural importance. It is strongly recommended that a trained palaeontologist be on hand during site work to monitor all excavations into the sedimentary bedrock. This palaeontologist should have a collection permit from the South African Heritage Resources Agency so that they can legally excavate any important material that is discovered while the site is developed. With this mitigation recommendation in place, it will be possible to simultaneously complete the proposed project and protect valuable heritage resources. BACKGROUND INFORMATION This Phase I Palaeontological Impact Assessment (PIA) is a part of an Environmental Impact Assessment being performed by EnviroWorks and commissioned by the developer, South African National Parks (SANParks). The contact person for EnviroWorks is: Adel Groenewald 072 460 3333
    [Show full text]
  • XIV Annual Meeting of the European Association of Vertebrate Palaeontologists
    XIV Annual Meeting of the European Association of Vertebrate Palaeontologists 6-10 July 2016, Haarlem, The Netherlands Programme and Abstract Book Edited by: EAVP 2016 Programme & Abstract Committee Femke Holwerda, Anneke Madern, Dennis Voeten, Anneke van Heteren, Hanneke Meijer, Natasja den Ouden EAVP 2016 Programme & Abstract Crew Stephan Spiekman, Tom Trapman, Feiko Miedema, Sifra Bijl, Mart Smeets, Pim Kaskes, Tim Rietbergen, Juliën Lubeek XIV EAVP Meeting, 6-10 July, 2016, Haarlem, The Netherlands THE HERPETOFAUNA FROM THE LATE TRIASSIC OF THE JAMESON LAND BASIN (EAST GREENLAND): REVIEW AND UPDATES M. Marzola1,2,3,4*, O. Mateus1,3, O. Wings5, N. Klein6, J. Mìlan7,8, and L.B. Clemmensen2 1Universidade Nova de Lisboa, GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516 Caparica, Portugal 2University of Copenhagen, IGN, Department of Geosciences and Natural Resource Management, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark 3Museu da Lourinhã, Rua João Luís de Moura, 95, 2530-158 Lourinhã, Portugal 4Geocenter Møns Klint, Stengårdsvej 8, DK-4751 Borre, Denmark 5Landesmuseum Hannover, Willy-Brandt-Allee 5, 30169 Hannover, Germany 6State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany 7Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-4640 Faxe, Denmark 8University of Copenhagen,Natural History Museum of Denmark, Øster Voldgade 5-7, DK- 1350 Copenhagen K, Denmark *[email protected] The Norian-Rhaetian Fleming Fjord Formation (lacustrine and fluvial deposits) in the Jameson Land Basin (East Greenland) is rich in vertebrate fossils, recording all main groups of vertebrates known from the Late Triassic. Fishes, amphibians, a plethora of reptilians (including Testudines, Aetosauria, Phytosauria, Pterosauria, and Dinosauria), and early mammals compose the richness and completeness of the vertebrate record from this region of Greenland, explored with expeditions since the 1970’s.
    [Show full text]
  • Evolutionary Origin of the Turtle Shell
    Current Biology 23, 1113–1119, June 17, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.05.003 Report Evolutionary Origin of the Turtle Shell Tyler R. Lyson,1,2,3,* Gabe S. Bever,4,5 Torsten M. Scheyer,6 debated throughout the 20th and early 21st centuries (see Allison Y. Hsiang,1 and Jacques A. Gauthier1,3 [16]) with support falling largely along disciplinary lines [3–9, 1Department of Geology and Geophysics, Yale University, 17–25]. Paleontological explanations relied heavily on the 210 Whitney Avenue, New Haven, CT 06511, USA composite model [19–25], but their efficacy was hampered 2Department of Vertebrate Zoology, National Museum of by the large morphological gap separating the earliest, fully Natural History, Smithsonian Institution, Washington, shelled turtles (e.g., Proganochelys quenstedti [26]) from all DC 20560, USA other known groups. In contrast, developmental biologists 3Division of Vertebrate Paleontology, Yale Peabody Museum promoted the de novo model and viewed the lack of clear tran- of Natural History, New Haven, CT 06511, USA sitional fossils as support for a rapid evolution of the shell, 4New York Institute of Technology, College of Osteopathic perhaps coincident with the appearance of a bone morphoge- Medicine, Old Westbury, NY 11568, USA netic protein (BMP) developmental pathway critical to shell 5Division of Paleontology, American Museum of Natural construction in modern turtles [3–9, 27]. The lack of osteo- History, New York, NY 10024, USA derms in the recently discovered stem turtle Odontochelys 6Pala¨ ontologisches Institut und Museum, Universita¨ tZu¨ rich, semitestacea [2] strongly supports the de novo model of shell Karl-Schmid-Strasse 4, 8006 Zu¨rich, Switzerland origination and liberates the paleontological search for the even deeper history of the turtle stem from its previously self-imposed constraint of osteoderm-bearing forms.
    [Show full text]
  • The Integumental Appendages of the Turtle Shell: an Evo-Devo Perspective JACQUELINE E
    COMMENTARY AND PERSPECTIVE The Integumental Appendages of the Turtle Shell: An Evo-Devo Perspective JACQUELINE E. MOUSTAKAS-VERHO1* 2 AND GENNADII O. CHEREPANOV 1Institute of Biotechnology, University of Helsinki, Helsinki, Finland 2Department of Vertebrate Zoology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia ABSTRACT The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have been more intensively studied, as they are autapomorphic for turtles and can be diagnostic taxonomically. Their pattern of tessellation is stable phylogenetically, but labile in the individual. We discuss the history of developmental investigations of these structures and hypotheses of evolutionary and anomalous variation. In our estimation, the scutes of the turtle shell are an evolutionary novelty, whereas the tubercles found on the shells of some turtles are homologous to reptilian scales. J. Exp. Zool. (Mol. Dev. Evol.) 324B:221–229, 2015. © 2015 Wiley Periodicals, Inc. J. Exp. Zool. (Mol. Dev. Evol.) How to cite this article: Moustakas-Verho JE, Cherepanov GO. 2015. The integumental 324B:221–229, appendages of the turtle shell: An evo-devo perspective. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 2015 221–229. EVOLUTIONARY ORIGIN AND DEVELOPMENT OF TURTLE Turtles can often be recognized by the pattern of scutes, or lack SCUTES thereof, on their shell.
    [Show full text]
  • Phylogenetic Relationships Among Extinct and Extant Turtles: the Position of Pleurodira and the Effects of the Fossils on Rooting Crown-Group Turtles
    Contributions to Zoology, 79 (3) 93-106 (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles Juliana Sterli1, 2 1 CONICET - Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100 Trelew, Chubut, Argentina 2 E-mail: [email protected] Key words: molecules, morphology, phylogeny, Testudinata, Testudines Abstract Taxonomic nomenclature ........................................................ 94 Taxonomic sampling ................................................................ 94 The origin and evolution of the crown-group of turtles (Crypto- Character sampling ................................................................. 95 dira + Pleurodira) is one of the most interesting topics in turtle Phylogenetic analyses ............................................................. 95 evolution, second perhaps only to the phylogenetic position of Results ............................................................................................... 97 turtles among amniotes. The present contribution focuses on Morphological analysis with extinct taxa .......................... 97 the former problem, exploring the phylogenetic relationships Molecular analyses .................................................................. 97 of extant and extinct turtles based on the most comprehensive Morphological and molecular analysis excluding phylogenetic dataset of morphological and molecular data ana- extinct taxa ................................................................................
    [Show full text]
  • The Girdles of the Oldest Fossil Turtle, Proterochersis Robusta, and the Age of the Turtle Crown Walter G Joyce1,2*, Rainer R Schoch3 and Tyler R Lyson4
    Joyce et al. BMC Evolutionary Biology 2013, 13:266 http://www.biomedcentral.com/1471-2148/13/266 RESEARCH ARTICLE Open Access The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown Walter G Joyce1,2*, Rainer R Schoch3 and Tyler R Lyson4 Abstract Background: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. Results: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. Conclusions: The primary homology of the character “sutured pelvis” is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.
    [Show full text]
  • Reinterpretation of the Spanish Late Jurassic “Hispaniachelys Prebetica” As an Indeterminate Plesiochelyid Turtle
    Reinterpretation of the Spanish Late Jurassic “Hispaniachelys prebetica” as an indeterminate plesiochelyid turtle ADÁN PÉREZ-GARCÍA Pérez-García, A. 2014. Reinterpretation of the Spanish Late Jurassic “Hispaniachelys prebetica” as an indeterminate plesiochelyid turtle. Acta Palaeontologica Polonica 59 (4): 879–885. A partial postcranial skeleton (carapace, plastron, and other poorly preserved elements) of a turtle, from the late Ox- fordian of the Betic Range of Spain, has recently been assigned to a new taxon, Hispaniachelys prebetica. This is one of the few European turtle taxa reported from pre-Kimmeridgian levels, and the oldest turtle so far known from southern Europe. The character combination identified in that taxon (including the presence of cleithra, and single cervical scale) did not allow its assignment to Plesiochelyidae, a group of turtles very abundant and diverse in the Late Jurassic of Eu- rope. The revision of the single specimen assigned to this taxon led to the reinterpretation of some of its elements, being reassigned to Plesiochelyidae. This study confirms the presence of Plesiochelyidae in the Oxfordian. However, because the Spanish taxon does not present a unique combination of characters, it is proposed as a nomen dubium. Key words: Testudines, Plesiochelyidae, Hispaniachelys prebetica, Oxfordian, Jurassic, Spain. Adán Pérez-García [[email protected]], Centro de Geologia, Faculdade de Ciências da Universidade de Lisboa (FCUL), Edificio C6, Campo Grande, 1749-016 Lisbon, Portugal; Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, C/ Senda del Rey, 9, 28040 Madrid, Spain. Received 9 October 2012, accepted 29 May 2013, available online 5 June 2013. Copyright © 2014 A. Pérez-García. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
    ORIGINAL RESEARCH published: 02 November 2017 doi: 10.3389/feart.2017.00088 A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela H. Piñeiro 2 1 CR2P (UMR 7207) Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Universités), Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, University of the Republic, Montevideo, Uruguay We reassess the phylogenetic position of mesosaurs by using a data matrix that is updated and slightly expanded from a matrix that the first author published in 1995 with his former thesis advisor. The revised matrix, which incorporates anatomical information published in the last 20 years and observations on several mesosaur specimens (mostly from Uruguay) includes 17 terminal taxa and 129 characters (four more taxa and five more characters than the original matrix from 1995). The new matrix also differs by incorporating more ordered characters (all morphoclines were ordered). Parsimony Edited by: analyses in PAUP 4 using the branch and bound algorithm show that the new matrix Holly Woodward, Oklahoma State University, supports a position of mesosaurs at the very base of Sauropsida, as suggested by the United States first author in 1995. The exclusion of mesosaurs from a less inclusive clade of sauropsids Reviewed by: is supported by a Bremer (Decay) index of 4 and a bootstrap frequency of 66%, both of Michael S. Lee, which suggest that this result is moderately robust. The most parsimonious trees include South Australian Museum, Australia Juliana Sterli, some unexpected results, such as placing the anapsid reptile Paleothyris near the base of Consejo Nacional de Investigaciones diapsids, and all of parareptiles as the sister-group of younginiforms (the most crownward Científicas y Técnicas (CONICET), Argentina diapsids included in the analyses).
    [Show full text]
  • Patterns of Morphological Evolution in the Skull of Turtles: Contributions from Digital Paleontology, Neuroanatomy and Biomechanics
    Patterns of morphological evolution in the skull of turtles: contributions from digital paleontology, neuroanatomy and biomechanics Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von M.Sc. Gabriel S. Ferreira aus Santa Bárbara d’Oeste/ Brasilien Tübingen 2019 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 27.05.2019 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Madelaine Böhme 2. Berichterstatter: Prof. Dr. Max C. Langer In nature we never see anything isolated, but everything in connection with something else which is before it, beside it, under it and over it Johann Wolfgang von Goethe Doubt is not a pleasant condition, but certainty is absurd François Voltaire i Ferreira – Patterns of morphological evolution in the skull of turtles Acknowledgements I am very grateful to my supervisor Max Langer, who offered me a space in his lab for the past ten years and immensily contributed to shape my career path until now. Max not only helped me think through paleo-problems, but also about career options and personal matters, always being present and giving support when I needed. I also thank my PhD co- supervisor in Tübingen, Prof. Dr. Madelaine Böhme, who accepted and welcomed me at the Senckenberg Institute and Universität Tübingen for a whole year, offering me not only a space to work, but also interesting discussions on various subjects. I am very grateful to my “unofficial” co-supervisor, PD Dr. Ingmar Werneburg, who has supported me from the beginning of my PhD, helping already when I was writing my doctoral research project and now, during this agitated last year.
    [Show full text]
  • THE ORIGIN of the TURTLE BODY PLAN: EVIDENCE from FOSSILS and EMBRYOS by RAINER R
    [Palaeontology, 2019, pp. 1–19] REVIEW ARTICLE THE ORIGIN OF THE TURTLE BODY PLAN: EVIDENCE FROM FOSSILS AND EMBRYOS by RAINER R. SCHOCH1 and HANS-DIETER SUES2 1Staatliches Museum fur€ Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany; [email protected] 2Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; [email protected] Typescript received 4 June 2019; accepted in revised form 23 September 2019 Abstract: The origin of the unique body plan of turtles plan within a phylogenetic framework and evaluate it in light has long been one of the most intriguing mysteries in evolu- of the ontogenetic development of the shell in extant turtles. tionary morphology. Discoveries of several new stem-turtles, The fossil record demonstrates that the evolution of the tur- together with insights from recent studies on the develop- tle shell took place over millions of years and involved a ment of the shell in extant turtles, have provided crucial new number of steps. information concerning this subject. It is now possible to develop a comprehensive scenario for the sequence of evolu- Key words: turtle, carapace, plastron, development, phy- tionary changes leading to the formation of the turtle body logeny. T URTLES are unique among known extant and extinct tet- name Testudines to the clade comprising the most recent rapods, including other forms with armour formed by common ancestor of Chelonia mydas and Chelus fimbria- bony plates (e.g. armadillos), in their possession of a tus (matamata) and all descendants of that ancestor. bony shell that incorporates much of the vertebral col- The origin of the turtle body plan has long been one of umn and encases the trunk (Zangerl 1969; Fig.
    [Show full text]