The Hooked Element in the Pes of Turtles (Testudines): a Global Approach to Exploring Primary and Secondary Homology Walter G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. -
XIV Annual Meeting of the European Association of Vertebrate Palaeontologists
XIV Annual Meeting of the European Association of Vertebrate Palaeontologists 6-10 July 2016, Haarlem, The Netherlands Programme and Abstract Book Edited by: EAVP 2016 Programme & Abstract Committee Femke Holwerda, Anneke Madern, Dennis Voeten, Anneke van Heteren, Hanneke Meijer, Natasja den Ouden EAVP 2016 Programme & Abstract Crew Stephan Spiekman, Tom Trapman, Feiko Miedema, Sifra Bijl, Mart Smeets, Pim Kaskes, Tim Rietbergen, Juliën Lubeek XIV EAVP Meeting, 6-10 July, 2016, Haarlem, The Netherlands THE HERPETOFAUNA FROM THE LATE TRIASSIC OF THE JAMESON LAND BASIN (EAST GREENLAND): REVIEW AND UPDATES M. Marzola1,2,3,4*, O. Mateus1,3, O. Wings5, N. Klein6, J. Mìlan7,8, and L.B. Clemmensen2 1Universidade Nova de Lisboa, GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516 Caparica, Portugal 2University of Copenhagen, IGN, Department of Geosciences and Natural Resource Management, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark 3Museu da Lourinhã, Rua João Luís de Moura, 95, 2530-158 Lourinhã, Portugal 4Geocenter Møns Klint, Stengårdsvej 8, DK-4751 Borre, Denmark 5Landesmuseum Hannover, Willy-Brandt-Allee 5, 30169 Hannover, Germany 6State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany 7Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-4640 Faxe, Denmark 8University of Copenhagen,Natural History Museum of Denmark, Øster Voldgade 5-7, DK- 1350 Copenhagen K, Denmark *[email protected] The Norian-Rhaetian Fleming Fjord Formation (lacustrine and fluvial deposits) in the Jameson Land Basin (East Greenland) is rich in vertebrate fossils, recording all main groups of vertebrates known from the Late Triassic. Fishes, amphibians, a plethora of reptilians (including Testudines, Aetosauria, Phytosauria, Pterosauria, and Dinosauria), and early mammals compose the richness and completeness of the vertebrate record from this region of Greenland, explored with expeditions since the 1970’s. -
Clades™ Prehistoric Card Game a Clade Is a Section of the Evolutionary Family Tree—Basically Any Branch, Including All Its Sub-Branches
CLADES™ PREHISTORIC Card Game A clade is a section of the evolutionary family tree —basically any branch, including all its sub-branches. A clade is a family of organisms, or living things, that are all more closely related to each other than they are to any other organisms. In this game you match cards according to their clades. Contents: Deck of 83 Clades Prehistoric cards. Includes 27 cards of each color and 2 bonus cards. There are also 5 animal description cards not used in play. Object: Spot matching card triples to collect the biggest animal pile! Setup Deal 1 face-down card to each player as their personal card. For now, players keep these cards face-down and don’t look at them. Deal 12 face-down shared cards to the middle of the play area. If you’re learning or teaching the game: • Before dealing, set aside the bonus cards and the cards showing only one or two animals. Play with just the cards showing three animals. • Deal 7 shared cards instead of 12. CLADESPrehistoricRules2.indd 1 10/17/17 10:15 AM All players help flip the 12 shared cards face-up. Sort the cards into three Making Triples rows according to their clades: top for Mammalia (mammals), middle for Sauropsida (sauropsids, or reptiles and birds), and bottom for Arthropoda In Clades Prehistoric, any two cards can make a triple with exactly one other (arthropods, or “bugs”). When the table is ready, each player picks up their card in the deck. personal card and looks at it. -
Antimicrobial Peptides in Reptiles
Pharmaceuticals 2014, 7, 723-753; doi:10.3390/ph7060723 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Antimicrobial Peptides in Reptiles Monique L. van Hoek National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, MS1H8, 10910 University Blvd, Manassas, VA 20110, USA; E-Mail: [email protected]; Tel.: +1-703-993-4273; Fax: +1-703-993-7019. Received: 6 March 2014; in revised form: 9 May 2014 / Accepted: 12 May 2014 / Published: 10 June 2014 Abstract: Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. -
Reptile” Diversity and Evolution George A
“Reptile” Diversity and Evolution George A. Lozano Department of Biology University of Ottawa Summary Sauropsids Turtles Diapsids/Saurians Plesiosaurs † and ichthyosaurs † Lepidosaurs Tuatara Squamates (snakes, geckos, iguanas, monitors ) Archosaurs (crocodiles, dinosaurs, pterosaurs ) Dinosaurs 2 George A. Lozano Amniota Synapsida Sauropsida Diapsida Turtles Ancestral amniotes & Turtles Turtles - Testudina 250 species Carapace (vertebrae and ribs) Appendicular girdles INSIDE the shell Beak, no teeth (along with aves) Ear ossicle columella (ind?) 4 George A. Lozano Sauropsida Diapsida/Sauria Turtles 250 Archosaurs Ichthyosaurs† Lepidosaurs Plesiosaurs† 9.1K 7K Ear ossicle collumella, 3 rd ind. evol.) Lepidosaurs “scaly” reptiles 6700 species : 4000 lizards, 2700 snakes Tuatara: ancestral diapsid skull Squamata: derived diapsid skull, hemipenes Iguanas Geckos Snakes Skinks Gila monsters, monitor lizards, Komodo dragon 6 George A. Lozano Tuatara Turtles Squamates Modified Euryapsid: Aves diapsid Plesiosaur Ichthyosaur Snakes 8 George A. Lozano Sauropsida Diapsida Turtles Archosaurs Crocodiles Dinosaurs Pterosaurs† Dinosaurs Ornithischians† Saurischians •Ceratopsids •Duck-billed dino Sauropods† Theropods •Stegosaurus •Ankylosaurus Dinosaurs Ornithischians† Saurischians •-ceratops (uni, tri…) •Duck-billed dino Sauropods† Theropods •Stegosaurus •Diplodocus •Ankylosaurus •Brachiosaurus T. rex † Velociraptor † Birds 12 George A. Lozano Sauropod and ornithischian (ankylosaurus) 13 George A. Lozano 14 George A. Lozano Dinosaurs -
What Are Dinosaurs?
Tote Hughes, 140819 [email protected] Dinosaurs 1/20 What Are Dinosaurs? The following are not dinosaurs∗: • Things that aren’t organisms—There is no rock that is a dinosaur. • Things that existed before the Triassic period† • Pterosaurs The following are dinosaurs: • Birds (Aves) The following contain dinosaurs: • Archosaurs (X.Archosauria) • Reptiles (Reptilia) Dinosaur Overview A discussion of the important dinosaur clades. Dinosaurs are divided into two main groups: the eusaurischians‡ and ornithischians. Eusaurischians • Sauropods – Apatasaurus: diplodocoidean – Barosaurus: diplodocoidean – Brachiosaurus: macronarian – Diplodocus: diplodocoidean • Theropods – Allosaurus: carnosaurian – Archaeopteryx: maniraptor – Giganotosaurus: carnosaurian – Megalosaurus: megalosaurid – Spinosaurus: megalosaurid – Tyrannosaurus: tyrannosauroid – Velociraptor: maniraptor ∗See the Dinosaur Encyclopedia section for details on terms. †See Appendix: Time for details on geological time. ‡These are commonly called saurischians, but since almost every interesting saurischian is actually in the subclade X.Eusaurischia, I’ve taken the liberty of breaking the standard. I hope you will grow to understand and accept my decision. 1/20 Tote Hughes, 140819 [email protected] Dinosaurs 2/20 Ornithischians • Eurypodans (thyreophor) – Ankylosaurus: ankylosaurian – Stegosaurus: stegosaurian • Marginocephalians (cerapod) – Pachycephalosaurus: pachycephalosaurian – Triceratops: ceratopsian • Ornithopods (cerapod) – Hadrosaurus: hadrosauriform – Iguanodon: hadrosauriform -
Phylogenetic Relationships Among Extinct and Extant Turtles: the Position of Pleurodira and the Effects of the Fossils on Rooting Crown-Group Turtles
Contributions to Zoology, 79 (3) 93-106 (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles Juliana Sterli1, 2 1 CONICET - Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100 Trelew, Chubut, Argentina 2 E-mail: [email protected] Key words: molecules, morphology, phylogeny, Testudinata, Testudines Abstract Taxonomic nomenclature ........................................................ 94 Taxonomic sampling ................................................................ 94 The origin and evolution of the crown-group of turtles (Crypto- Character sampling ................................................................. 95 dira + Pleurodira) is one of the most interesting topics in turtle Phylogenetic analyses ............................................................. 95 evolution, second perhaps only to the phylogenetic position of Results ............................................................................................... 97 turtles among amniotes. The present contribution focuses on Morphological analysis with extinct taxa .......................... 97 the former problem, exploring the phylogenetic relationships Molecular analyses .................................................................. 97 of extant and extinct turtles based on the most comprehensive Morphological and molecular analysis excluding phylogenetic dataset of morphological and molecular data ana- extinct taxa ................................................................................ -
The Girdles of the Oldest Fossil Turtle, Proterochersis Robusta, and the Age of the Turtle Crown Walter G Joyce1,2*, Rainer R Schoch3 and Tyler R Lyson4
Joyce et al. BMC Evolutionary Biology 2013, 13:266 http://www.biomedcentral.com/1471-2148/13/266 RESEARCH ARTICLE Open Access The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown Walter G Joyce1,2*, Rainer R Schoch3 and Tyler R Lyson4 Abstract Background: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. Results: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. Conclusions: The primary homology of the character “sutured pelvis” is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic. -
Mirnas Support an Archosaur, Not Lepidosaur, Affinity for Turtles
EVOLUTION & DEVELOPMENT 16:4, 189–196 (2014) DOI: 10.1111/ede.12081 Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles Daniel J. Field,a,b,* Jacques A. Gauthier,a Benjamin L. King,c Davide Pisani,d,e Tyler R. Lyson,a,b and Kevin J. Petersonf,* a Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA b Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA c Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA d School of Earth Sciences, University of Bristol, Queen's Road, Bristol BS8 1RJ, United Kingdom e School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom f Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA *Authors for correspondence (e‐mail: [email protected], daniel.fi[email protected]) SUMMARY Understanding the phylogenetic position of for a turtle lepidosaur sister‐relationship; instead, we recover þ crown turtles (Testudines) among amniotes has been a source strong support for turtles sharing a more recent common of particular contention. Recent morphological analyses ancestor with archosaurs. We further test this result by suggest that turtles are sister to all other reptiles, whereas analyzing a super‐alignment of precursor miRNA sequences the vast majority of gene sequence analyses support turtles as for every miRNA inferred to have been present in the most being inside Diapsida, and usually as sister to crown recent common ancestor of tetrapods. This analysis yields a Archosauria (birds and crocodilians). -
The Golgi Body in the Erythrocytes of the Sauropsida. by D
The Golgi body in the Erythrocytes of the Sauropsida. By D. R. Bhattacharya, M.Sc, Ph.D. (Dublin), F.R.M.S., Professor, Muir Central College, Allahabad, and F. W. Rogers Brambell, Ph.D. (Dublin), F.H.M.S., Science Research Scholar of the Royal Commission for the Exhibition of 1851. (From the Department of Zoology, Trinity College, Dublin.) With Plate 22. IN recent years the Golgi bodies have been described in so many categories of cells of vertebrates and invertebrates that it has been suggested (3) that it is ahvays present in the animal cell. Cowdry (1), sceptical about this generalization, cites as an exception the non-nucleated red blood-cells. On account of this controversy we examined the erythrocytes of tortoises and birds by the latest methods. This study led one of the authors (D. E. B.) to the discovery of what we believe to be true Golgi bodies in the red blood-cells of the tortoise. More recently the other author (P. W. R. B.) found similar bodies in avian erythrocytes. We have also observed a similar Golgi apparatus in the red blood-cells of the lizard, Uromastix hardwicki. We have not at present extended our study to other classes of vertebrates, but in view of the phylogenetic relationships existing between the Sauropsida and the other classes it seems probable that Golgi bodies will be found to occur not only in the nucleated red blood-corpuscles of the fishes and amphibians, but also in the non-nucleated red blood- corpuscles of the mammals, at least in some stages of their development. -
A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
ORIGINAL RESEARCH published: 02 November 2017 doi: 10.3389/feart.2017.00088 A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela H. Piñeiro 2 1 CR2P (UMR 7207) Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Universités), Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, University of the Republic, Montevideo, Uruguay We reassess the phylogenetic position of mesosaurs by using a data matrix that is updated and slightly expanded from a matrix that the first author published in 1995 with his former thesis advisor. The revised matrix, which incorporates anatomical information published in the last 20 years and observations on several mesosaur specimens (mostly from Uruguay) includes 17 terminal taxa and 129 characters (four more taxa and five more characters than the original matrix from 1995). The new matrix also differs by incorporating more ordered characters (all morphoclines were ordered). Parsimony Edited by: analyses in PAUP 4 using the branch and bound algorithm show that the new matrix Holly Woodward, Oklahoma State University, supports a position of mesosaurs at the very base of Sauropsida, as suggested by the United States first author in 1995. The exclusion of mesosaurs from a less inclusive clade of sauropsids Reviewed by: is supported by a Bremer (Decay) index of 4 and a bootstrap frequency of 66%, both of Michael S. Lee, which suggest that this result is moderately robust. The most parsimonious trees include South Australian Museum, Australia Juliana Sterli, some unexpected results, such as placing the anapsid reptile Paleothyris near the base of Consejo Nacional de Investigaciones diapsids, and all of parareptiles as the sister-group of younginiforms (the most crownward Científicas y Técnicas (CONICET), Argentina diapsids included in the analyses). -
Exact Distribution of Divergence Times from Fossil Ages and Tree Topologies Gilles Didier, Michel Laurin
Exact distribution of divergence times from fossil ages and tree topologies Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Exact distribution of divergence times from fossil ages and tree topologies. Systematic Biology, Oxford University Press (OUP), 2020, 69 (6), pp.1068-1087. 10.1101/490003. hal-01952736 HAL Id: hal-01952736 https://hal.archives-ouvertes.fr/hal-01952736 Submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exact distribution of divergence times from fossil ages and tree topologies Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France April 17, 2020 Abstract Being given a phylogenetic tree of both extant and extinct taxa in which the fossil ages are the only temporal information (namely, in which divergence times are considered unknown), we provide a method to compute the exact probability distribution of any divergence time of the tree with regard to any speciation (cladogenesis), extinction and fossilization rates under the Fossilized-Birth-Death model.