" Big Three Dragons": Az= 7.15 Lyman Breakgalaxy Detected in [OIII] 88$\Mu $ M,[CII] 158$\Mu $ M, and Dust Continuum with ALMA

Total Page:16

File Type:pdf, Size:1020Kb

Publ. Astron. Soc. Japan (2018) 00(0), 1–23 1 doi: 10.1093/pasj/xxx000 “Big Three Dragons”: a z =7.15 Lyman Break Galaxy Detected in [Oiii] 88 µm, [Cii] 158 µm, and Dust Continuum with ALMA Takuya Hashimoto1,2,3 Akio K. Inoue1,2, Ken Mawatari2,4, Yoichi Tamura5, Hiroshi Matsuo3,6, Hisanori Furusawa3, Yuichi Harikane4,7, Takatoshi Shibuya8, Kirsten K. Knudsen9, Kotaro Kohno10,11, Yoshiaki Ono4, Erik Zackrisson12, Takashi Okamoto13, Nobunari Kashikawa3,6,7, Pascal A. Oesch14, Masami Ouchi4,15, Kazuaki Ota16, Ikkoh Shimizu17, Yoshiaki Taniguchi18, Hideki Umehata18,19, and Darach Watson20. 1Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan 2Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka 574-8530, Japan 3National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 4Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan 5Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya 6Department of Astronomical Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 7Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan 8Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan 9Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala, Sweden 10Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 11Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 12Observational Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden 13 arXiv:1806.00486v2 [astro-ph.GA] 8 Apr 2019 Department of Cosmosciences, Graduates School of Science, Hokakido University, N10 W8, Kitaku, Sapporo 060-0810, Japan 14Geneva Observatory, University of Geneva, Ch. des Maillettes, 51, 1290 Versoix, Switzerland 15Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan 16Kyoto University Research Administration Office, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan 17Theoretical Astrophysics, Department of Earth & Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan 18The Open University of Japan, 2-11 Wakaba, Mihama-ku, Chiba 261-8586, Japan 19RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan c 2018. Astronomical Society of Japan. 2 Publications of the Astronomical Society of Japan, (2018), Vol. 00, No. 0 20Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark ∗E-mail: [email protected] Received h02-Jun-2018i; Accepted h08-Apr-2019i Abstract We present new ALMA observations and physical properties of a Lyman Break Galaxy at z = 7.15. Our target, B14-65666, has a bright ultra-violet (UV) absolute magnitude, MUV ≈−22.4, and has been spectroscopically identified in Lyα with a small rest-frame equivalent width of ≈ 4 A.˚ Previous HST image has shown that the target is comprised of two spatially separated clumps in the rest-frame UV. With ALMA, we have newly detected spatially resolved [Oiii] 88 µm, [Cii] 158 µm, and their underlying dust continuum emission. In the whole system of B14- 65666, the [Oiii] and [Cii] lines have consistent redshifts of 7.1520 ± 0.0003, and the [Oiii] 8 luminosity, (34.4 ± 4.1) × 10 L⊙, is about three times higher than the [Cii] luminosity, (11.0 ± 8 1.4) × 10 L⊙. With our two continuum flux densities, the dust temperature is constrained to be Td ≈ 50 − 60 K under the assumption of the dust emissivity index of βd =2.0 − 1.5, leading 12 to a large total infrared luminosity of LTIR ≈ 1 × 10 L⊙. Owing to our high spatial resolution data, we show that the [Oiii] and [Cii] emission can be spatially decomposed into two clumps associated with the two rest-frame UV clumps whose spectra are kinematically separated by ≈ 200 km s−1. We also find these two clumps have comparable UV, infrared, [Oiii], and [Cii] luminosities. Based on these results, we argue that B14-65666 is a starburst galaxy induced by a major-merger. The merger interpretation is also supported by the large specific star-formation +119 −1 rate (defined as the star-formation rate per unit stellar mass), sSFR = 260−57 Gyr , inferred from our SED fitting. Probably, a strong UV radiation field caused by intense star formation contributes to its high dust temperature and the [Oiii]-to-[Cii] luminosity ratio. Key words: galaxies: formation — galaxies: high-redshift — galaxies: ISM 1 Introduction However, based on a compiled sample with [Cii] obser- > vations at z ∼ 5, Harikane et al. (2018) and Carniani et al. Understanding properties of galaxies during reionization, (2018b) have revealed that [Cii] may be weak for galaxies > at redshift z ∼ 6 − 7, is important. While a large num- with strong Lyα emission, so-called Lyα emitters (LAEs; ber of galaxy candidates are selected with a dropout tech- > ˚ rest-frame Lyα equivalent widths EW0(Lyα) ∼ 20−30 A). > nique at z ∼ 7 (e.g., Ellis et al. 2013; Bouwens et al. Harikane et al. (2018) have interpreted the trend with pho- 2014; Oesch et al. 2018), the spectroscopic identifications toionization models of CLOUDY (Ferland et al. 2013) im- > at z ∼ 7 remain difficult (e.g., Stark et al. 2017 and refer- plemented in spectral energy distribution (SED) models ences therein). This is mainly due to the fact that the most of BEAGLE (Chevallard & Charlot 2016). The authors prominent hydrogen Lyα line is significantly attenuated by show that low metallicity or high ionization states in LAEs the intergalactic medium (IGM). lead to weak [Cii]. Theoretical studies also show that such ii With the advent of the Atacama Large ISM conditions lead to the decrease in the [C ] luminos- Millimeter/Submillimeter Array (ALMA) telescope, ity (Vallini et al. 2015, 2017; Olsen et al. 2017; Lagache > it has become possible to detect rest-frame far-infrared et al. 2018). If we assume that z ∼ 7 galaxies in general ii (FIR) fine structure lines in star-forming galaxies at z> 5 have low metallicity or high ionization states, [C ] may not > (e.g., Capak et al. 2015; Maiolino et al. 2015). A most be the best line to spectroscopically confirm z ∼ 7 galaxies. ii commonly used line is [Cii] 158 µm, which is one of the Indeed, a number of null-detections of [C ] are reported at > brightest lines in local galaxies (e.g., Malhotra et al. z ∼ 7 (e.g., Ota et al. 2014; Schaerer et al. 2015; Maiolino 1997; Brauher et al. 2008). To date, more than 21 [Cii] et al. 2015; Inoue et al. 2016). < < detections are reported at 5 ∼ z ∼ 7 (Carniani et al. 2018b In fact, based on Herschel spectroscopy for local dwarf and references therein; Pentericci et al. 2016; Matthee galaxies, Cormier et al. (2015) have demonstrated that et al. 2017; Smit et al. 2018). [Oiii] 88 µm becomes brighter than [Cii] at low metallic- Publications of the Astronomical Society of Japan, (2018), Vol. 00, No. 0 3 ity (see also Malhotra et al. 2001). Based on calculations from the UV luminosity could be naturally explained if of CLOUDY, Inoue et al. (2014b) also theoretically predict the system is a merger-induced starburst. More recently, that the [Oiii] line at high-z should be bright enough to be with ALMA Band 6 observations, Bowler et al. (2018) have detected with ALMA. detected dust continuum emission at the peak significance Motivated by these backgrounds, we are conducting level of 5.2σ, which is the third detection of dust emission follow-up observations of the [Oiii] 88 µm line for z > 6 in normal star-forming galaxies at z> 7 (cf., Watson et al. galaxies with ALMA. After the first detection of [Oiii] 2015; Laporte et al. 2017 see also Knudsen et al. 2017). in the reionization epoch in Inoue et al. (2016) at z = In ALMA Cycle 4, we have performed high spatial reso- 7.21, the number of [Oiii] detections is rapidly increasing. lution follow-up observations of B14-65666 with beam size There are currently ten objects with [Oiii] detections at of ≈0′′.3×0′′.2 (0′′.3×0′′.3) in Band 6 (Band 8). In ALMA z ≈ 6−9 (Carniani et al. 2017; Laporte et al. 2017; Marrone Cycle 5, we have also obtained deeper Band 8 data with a et al. 2018; Hashimoto et al. 2018a; Tamura et al. 2018, slightly larger beam size of ≈ 0′′.4 × 0′′.4. We successfully Hashimoto et al. 2018b; Walter et al. 2018). Remarkably, detect spatially resolved [Cii], [Oiii], and dust continuum Hashimoto et al. (2018a) have detected [Oiii] in a z = 9.11 emission in two bands, making B14-65666 the first object > 1 galaxy with a high significance level of 7.4σ. Importantly, at z ∼ 6 with a complete set of these three features . The [Oiii] is detected from all the targeted galaxies (six detec- spatially resolved data enable us to investigate the velocity tions out of six objects) from our team, i.e., the success gradients of the [Cii] and [Oiii] lines. These emission lines rate is currently 100% . These results clearly demonstrate also allow us to investigate the Lyα velocity offset with that [Oiii] is a powerful tool to confirm z> 6 galaxies. respect to the systemic, ∆vLyα, which is an important pa- Inoue et al.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • The Large Scale Universe As a Quasi Quantum White Hole
    International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience.
    [Show full text]
  • Blow-Away in the Extreme Low-Mass Starburst Galaxy Pox 186
    Blow-Away in the Extreme Low-Mass Starburst Galaxy Pox 186 A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Nathan R. Eggen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Dr. Claudia Scarlata September, 2020 c Nathan R. Eggen 2020 ALL RIGHTS RESERVED Acknowledgements Foremost I thank my advisor, Dr. Claudia Scarlata, for her guidance, support, and patience over the past 3 years. I am grateful for the advice and counsel of Dr. Evan Skillman, and Anne Jaskot for her contribution to the writing process. I thank Michele Guala for his insight into turbulent flows, and Kristen McQuinn and John Cannon for providing their data used in this work. This research made use of NASA/IPAC Extragalactic Database (NED) and NASA's Astrophysical Data System. I also express gratitude to the Gemini Help Desk, which assisted the reduction process. i Dedication To Tolkien, who taught me that at times moving on is the best thing one can do. ii Abstract Pox 186 is an exceptionally small dwarf starburst galaxy hosting a stellar mass of ∼ 105 6 M . Undetected in H i (M < 10 M ) from deep 21 cm observations and with an [O iii]/[O ii] (5007/3727) ratio of 18.3 ± 0.11, Pox 186 is a promising candidate Lyman continuum emitter. It may be a possible analog of low-mass reionization-era galaxies. We present a spatially resolved kinematic study of Pox 186. We identify two distinct ionized gas components: a broad one with σ > 400 km s−1 , and a narrow one with σ < 30 km s−1 .
    [Show full text]
  • Three Strongly Lensed Images of a Candidate Z 11 Galaxy
    Accepted for publication in the Astrophysical Journal, Monday 29th October, 2012 Preprint typeset using LATEX style emulateapj v. 5/2/11 CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY Dan Coe1, Adi Zitrin2, Mauricio Carrasco2,3, Xinwen Shu4, Wei Zheng5, Marc Postman1, Larry Bradley1, Anton Koekemoer1, Rychard Bouwens6, Tom Broadhurst7,8, Anna Monna9, Ole Host10,11, Leonidas A. Moustakas12, Holland Ford5, John Moustakas13, Arjen van der Wel14, Megan Donahue15, Steven A. Rodney5, Narciso Ben´ıtez16, Stephanie Jouvel10,17, Stella Seitz9,18, Daniel D. Kelson19, and Piero Rosati20 Accepted for publication in the Astrophysical Journal, Monday 29th October, 2012 ABSTRACT We present a candidate for the most distant galaxy known to date with a photometric redshift +0:6 z = 10:7−0:4 (95% confidence limits; with z < 9:5 galaxies of known types ruled out at 7.2-σ). This J-dropout Lyman Break Galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0:591. The images are magnified by factors of ∼8, 7, and 2, with the brighter two observed at ∼26th magnitude AB (∼0.15µJy) in the WFC3/IR F160W filter (∼1.4{1.7µm) where they are detected at &12-σ. All three images are also confidently detected at &6-σ in F140W (∼1.2{1.6µm), dropping out of detection from 15 lower wavelength HST filters (∼0.2{1.4µm), and lacking bright detections in Spitzer/IRAC 3.6µm and 4.5µm imaging (∼3.2{5.0µm).
    [Show full text]
  • Monthly Newsletter of the Durban Centre - March 2018
    Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively.
    [Show full text]
  • Observational Searches for Star-Forming Galaxies at Z > 6
    Publications of the Astronomical Society of Australia (PASA), Vol. 33, e037, 35 pages (2016). C Astronomical Society of Australia 2016; published by Cambridge University Press. doi:10.1017/pasa.2016.26 Observational Searches for Star-Forming Galaxies at z > 6 Steven L. Finkelstein1,2 1Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 2Email: [email protected] (Received November 19, 2015; Accepted June 23, 2016) Abstract Although the universe at redshifts greater than six represents only the first one billion years (<10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium.
    [Show full text]
  • Answer Key Section A
    Reach for the Stars UT Invitational 2019 Answer Key Answer Key Section A 1.C 7.B 13.A 19.C 25.E 2.D 8.B 14.A 20.D 26.C 3.E 9.A 15.A 21.D 27.D 4.A 10.B 16.D 22.B 28.C 5.B 11.D 17.D 23.A 29.C 6.B 12.A 18.B 24.A 30.B For official use only: Section: A B C Total Points: 60 144 72 276 Score: Reach for the Stars UT Invitational 2019 Answer Key Section B 31. (a) Andromeda 37. (a) Cygnus (b) True (b) Northern Cross (give half credit for the (c) M31 Summer Triangle; Deneb is a part of it, but the other two starts come from other (d) Elliptical (give half credit for irregular) constellations) (e) Increase. The collision leads to more in- (c) Deneb teractions between clouds of gas and in- creases the probability that the density in (d) Alpha Cygni any given cloud gets high enough to col- 38. (a) Image 9 lapse and form a star. (b) Castor is given the α designation, even 32. (a) Centaurus A though Pollux is brighter (b) Centaurus 39. (a) Image 4 (c) Merger of two smaller galaxies (b) NGC 1333 33. (a) Image 8 (c) Brown dwarf (b) Starburst galaxy 40. (a) Polaris (c) Spitzer (b) Ursa Minor (d) Sextans (c) Precession 34. (a) Betelgeuse 41. (a) Sgr A (b) Image 11 (b) A supermassive black hole (c) Red supergiant 42. (a) Image 16 (d) Supernova (also accept neutron star) (b) Ursa Major (e) Image 6 (c) GN-z11 and M101 35.
    [Show full text]
  • The Star Formation Histories of Z~ 1 Post-Starburst Galaxies
    MNRAS 000,1{21 (2020) Preprint 9 March 2020 Compiled using MNRAS LATEX style file v3.0 The star formation histories of z∼ 1 post-starburst galaxies Vivienne Wild1?, Laith Taj Aldeen1;2, Adam Carnall3, David Maltby4, Omar Almaini4, Ariel Werle5;6, Aaron Wilkinson1;7; Kate Rowlands8, Micol Bolzonella9, Marco Castellano10, Adriana Gargiulo11, Ross McLure3, Laura Pentericci10, Lucia Pozzetti9 1 SUPAy, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK 2Department of Physics, College of Science, University of Babylon, Hillah, Babylon, P.O. Box 4, Iraq. 3 SUPA Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK 4University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD, UK 5Instituto de Astronomia, Geof´ısica e Ci^encias Atmosf´ericas, Universidade de S~ao Paulo, R. do Mat~ao 1226, 05508-090 S~ao Paulo Brazil 6Departamento de F´ısica - CFM - Universidade Federal de Santa Catarina, Florian´opolis, SC, Brazil 7 Universiteit Gent, Sterrenkundig Observatorium, Gent, Belgium 8 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 9 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna via Gobetti 93/3, 40129 Bologna, Italy 10 INAF - Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone, RM, Italy 11 INAF - IASF, Via Alfonso Corti 12, I-20133 Milano, Italy Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the star formation histories of 39 galaxies with high quality rest-frame optical spectra at 0:5 < z < 1:3 selected to have strong Balmer absorption lines and/or Balmer break, and compare to a sample of spectroscopically selected quiescent galaxies at the same redshift.
    [Show full text]
  • The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type
    UC Irvine UC Irvine Electronic Theses and Dissertations Title The Structure and Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies Permalink https://escholarship.org/uc/item/3634g66n Author Carson, Daniel James Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Daniel J. Carson Dissertation Committee: Professor Aaron Barth, Chair Associate Professor Michael Cooper Professor James Bullock 2016 Portion of Chapter 1 c 2015 The Astronomical Journal Chapter 2 c 2015 The Astronomical Journal Chapter 3 c 2015 The Astronomical Journal Portion of Chapter 5 c 2015 The Astronomical Journal All other materials c 2016 Daniel J. Carson TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii CURRICULUM VITAE viii ABSTRACT OF THE DISSERTATION x 1 Introduction 1 2 HST /WFC3 data 9 2.1 SampleSelection ................................. 9 2.2 DescriptionofObservations . 10 2.3 DataReduction.................................. 14 3 Analysis of Structural Properties 17 3.1 Surface Brightness Profile Fitting . 17 3.1.1 PSFModels................................ 18 3.1.2 FittingMethod .............................. 19 3.1.3 Comparison with ISHAPE ......................... 21 3.1.4 1DRadialProfiles ............................ 22 3.1.5 Uncertainties in Cluster Parameters . 25 3.2 Results....................................... 29 3.2.1 SingleBandResults ........................... 29 3.2.2 PanchromaticResults........................... 40 3.2.3 Stellar Populations . 46 3.3 CommentsonIndividualObjects . 51 3.3.1 IC342................................... 51 3.3.2 M33 ...................................
    [Show full text]
  • The Polar Ring Starburst Galaxy NGC 660 W. Van Driel 1-2, F. Combes 3
    Astronomy with Millimeter and Submilttmeter Wave Interjerometry ASP Conference Series, Vol. 59,1994 M. Ishiguro and Wm. J. Welch (eds.) The polar ring starburst galaxy NGC 660 W. van Driel 1-2, F. Combes 3, N. Nakai *, and S. Yoshida 1 1 Kiso Observatory, Institute of Astronomy, University of Tokyo, Japan 2 Astronomical Institute, University of Amsterdam, The Netherlands 3 DEMIRM, Observatoire de Meudon, France, and ENS, Paris, France 4 Nobeyama Radio Observatory, Japan NGC 660 is a gas-rich, peculiar polar ring RSBa-type starburst galaxy with two distinct morphological and kinematic components: an inner disc, seen almost edge- on, with a major axis position angle of 45° and a diameter of ~11 kpc [D=13 Mpc, -1 -1 H0=75 kms Mpc ], and an outer polar ring (p.a. 170°) with a diameter of 31 kpc, inclined on average about 55° with respect to the major axis of the inner disc. We obtained deep, 30 min. exposure CCD images of NGC 660 with the 105 cm Schmidt telescope of Kiso Observatory in the B, V, R, and I bands. A preliminary reduction shows that the inner disc is clearly redder than the polar ring and the nucleus. Optical spectra indicate that the galaxy has a LINER-type spectrum, suggesting intense massive star formation in the nucleus. We obtained a long-slit Ha spectrum along the major axis of the inner disc at ESO, which shows a very steep gradient near the nucleus. Assuming an inclination of 80°, it implies a rotational velocity of about 150 km s-1 for the inner disc.
    [Show full text]
  • Resolved Nuclear Kinematics Link the Formation and Growth of Nuclear Star Clusters with the Evolution of Their Early and Late-Type Hosts
    Draft version July 20, 2021 Typeset using LATEX twocolumn style in AASTeX63 Resolved nuclear kinematics link the formation and growth of nuclear star clusters with the evolution of their early and late-type hosts Francesca Pinna ,1 Nadine Neumayer ,1 Anil Seth ,2 Eric Emsellem ,3 Dieu D. Nguyen ,4 Torsten Boker¨ ,5 Michele Cappellari ,6 Richard M. McDermid,7 Karina Voggel,8 and C. Jakob Walcher9 1Max Planck Institute for Astronomy, D-69117 Heidelberg, Germany 2Department of Physics and Astronomy, University of Utah, UT 84112, USA 3European Southern Observatory, D-85748 Garching bei Muenchen, Germany 4National Astronomical Observatory of Japan (NAOJ), National Institute of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5European Space Agency/STScI, MD21218 Baltimore, USA 6Department of Physics, University of Oxford, OX1 3RH, UK 7Research Centre for Astronomy, Astrophysics, and Astrophotonics, Macquarie University, Sidney, NSW 2109, Australia 8Universite de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, 67000 Strasbourg, France 9Leibniz-Institut f¨urAstrophysik Potsdam (AIP) D-14482 Potsdam Submitted to ApJ Abstract We present parsec-scale kinematics of eleven nearby galactic nuclei, derived from adaptive-optics assisted integral-field spectroscopy at (near-infrared) CO band-head wavelengths. We focus our analysis on the balance between ordered rotation and random motions, which can provide insights into the dominant formation mechanism of nuclear star clusters (NSCs). We divide our target sample into late- and early-type galaxies, and discuss the nuclear kinematics of the two sub-samples, aiming at probing any link between NSC formation and host galaxy evolution. The results suggest that the dominant formation mechanism of NSCs is indeed affected by the different evolutionary paths of their hosts across the Hubble sequence.
    [Show full text]
  • A NEW HUBBLE SPACE TELESCOPE DISTANCE to NGC 1569: STARBURST PROPERTIES and IC 342 GROUP MEMBERSHIP Aaron J
    Astrophysical Journal Letters, submitted, July 2008 A Preprint typeset using LTEX style emulateapj v. 03/07/07 A NEW HUBBLE SPACE TELESCOPE DISTANCE TO NGC 1569: STARBURST PROPERTIES AND IC 342 GROUP MEMBERSHIP Aaron J. Grocholski2, Alessandra Aloisi2,3, Roeland P. van der Marel2, Jennifer Mack2, Francesca Annibali2, Luca Angeretti4, Laura Greggio5, Enrico V. Held5, Donatella Romano4, Marco Sirianni2,3,Monica Tosi4 Astrophysical Journal Letters, submitted, July 2008 ABSTRACT We present deep HST ACS/WFC photometry of the dwarf irregular galaxy NGC 1569, one of the closest and strongest nearby starburst galaxies. These data allow us, for the first time, to unequivocally detect the tip of the red giant branch and thereby determine the distance to NGC 1569. We find that this galaxy is 3.36±0.20 Mpc away, considerably farther away than the typically assumed distance of 2.2±0.6 Mpc. Previously thought to be an isolated galaxy due to its shorter distance, our new distance firmly establishes NGC 1569 as a member of the IC 342 group of galaxies. The higher density environment may help explain the starburst nature of NGC 1569, since starbursts are often triggered by galaxy interactions. On the other hand, the longer distance implies that NGC 1569 is an even more extreme starburst galaxy than previously believed. Previous estimates of the rate of star formation for stars younger than . 1 Gyr become stronger by more than a factor of 2. Stars older than this were not constrained by previous studies. The dynamical masses of NGC 1569’s three super star clusters, which are already known as some of the most massive ever discovered, increase by ∼53% 5 to 6-7×10 M⊙.
    [Show full text]