Adaptive Management for Ecosystem Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kootenay System Operations
Columbia River Treaty Review – Technical Studies Appendix C Kootenay System Operations Operation of the Kootenay River system is complicated as it is administered by several different jurisdictions and the hydroelectric facilities are owned by different agencies/companies. As shown in Figure 1, the Kootenay River originates in the Rocky Mountains not far from Field, BC. The river flows south, within a few km of the source of the Columbia River at Canal Flats, and then continues south into Koocanusa Reservoir, formed behind Libby Dam in Montana, United States. From Libby, the Kootenay River turns west and north, and re-enters British Columbia near the community of Creston, flowing into the south arm of Kootenay Lake. In the northern part of the Kootenay basin, the Duncan River is joined by the Lardeau River just downstream from Duncan Dam, and then flows into the north arm of Kootenay Lake. Water from the north and south arms of Kootenay Lake then flows through the west arm of the lake and past the Corra Linn Dam near Nelson (as well as other dams) en route to the Columbia–Kootenay confluence at Castlegar. The components of this system and various agreements/orders that regulate flows are described in this Appendix. November 29, 2013 1 Columbia River Treaty Review – Technical Studies Figure 1: Kootenay and Columbia Region November 29, 2013 2 Columbia River Treaty Review – Technical Studies 1.0 Coordination of Libby Operations Background Under the terms of the Columbia River Treaty, Canada permitted the U.S. to build the Libby Dam on the Kootenai River (U.S. -
SOUTH INTERIOR SUBSYSTEM Supersedes SOO 7T-33 Issued 13 October 2020
BC HYDRO T&D SYSTEM OPERATIONS SYSTEM OPERATING ORDER 7T-33 SOUTH INTERIOR SUBSYSTEM Supersedes SOO 7T-33 issued 13 October 2020 Effective Date: 09 March 2021 Expiry Year: 2025 Original signed by: APPROVED BY: Bob Cielen, Operations Planning Manager, T&D System Operations Requires same day posting on bchydro.com and on BCRC Extranet upon release. Requires same day MRS conveyance notification upon posting Denotes Revision SOO 7T-33 Effective Date: 09 March 2021 Page 2 of 32 SOUTH INTERIOR SUBSYSTEM INDEX 1.0 GENERAL .............................................................................................................................................. 5 2.0 RESPONSIBILITIES .............................................................................................................................. 6 3.0 SYSTEM VOLTAGE CONTROL ........................................................................................................... 7 3.1 Nominal Voltage .............................................................................................................................. 7 3.2 SF6 Switchgear Voltage Ratings ..................................................................................................... 7 3.3 Overvoltage Protection .................................................................................................................... 7 3.4 MCA & REV RMR for Voltage Control ............................................................................................ 7 4.0 SERIES CAPACITORS OPERATIONS .............................................................................................. -
The Revelstoke Dam: a Case Study of the Selection, Licensing and Implementation of a Large Scale Hydroelectric Project in British Columbia
THE REVELSTOKE DAM: A CASE STUDY OF THE SELECTION, LICENSING AND IMPLEMENTATION OF A LARGE SCALE HYDROELECTRIC PROJECT IN BRITISH COLUMBIA By HEIDI ERIKA MISSLER B.A., The University of British Columbia, 1984 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ARTS i n THE FACULTY OF GRADUATE STUDIES (Department of Geography) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September 1988 QHeidi Erika Missler, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6G/81) ABSTRACT Procedures for the selection, licensing and implementation of large scale energy projects must evolve with the escalating complexity of such projects and. the changing public value system. Government appeared unresponsive to rapidly changing conditions in the 1960s and 1970s. Consequently, approval of major hydroelectric development projects in British Columbia under the Water Act became increasingly more contentious. This led, in 1980, to the introduction of new procedures—the Energy Project Review Process (EPRP)— under the B.C. Utilities Commission Act. -
Columbia River Treaty History and 2014/2024 Review
U.S. Army Corps of Engineers • Bonneville Power Administration Columbia River Treaty History and 2014/2024 Review 1 he Columbia River Treaty History of the Treaty T between the United States and The Columbia River, the fourth largest river on the continent as measured by average annual fl ow, Canada has served as a model of generates more power than any other river in North America. While its headwaters originate in British international cooperation since 1964, Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually bringing signifi cant fl ood control and located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, power generation benefi ts to both and up to 50 percent of the peak fl ood waters, that fl ow by The Dalles Dam on the Columbia River countries. Either Canada or the United between Oregon and Washington. In the 1940s, offi cials from the United States and States can terminate most of the Canada began a long process to seek a joint solution to the fl ooding caused by the unregulated Columbia provisions of the Treaty any time on or River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River after Sept.16, 2024, with a minimum Treaty, an international agreement between Canada and the United States for the cooperative development 10 years’ written advance notice. The of water resources regulation in the upper Columbia River U.S. Army Corps of Engineers and the Basin. -
Dams and Hydroelectricity in the Columbia
COLUMBIA RIVER BASIN: DAMS AND HYDROELECTRICITY The power of falling water can be converted to hydroelectricity A Powerful River Major mountain ranges and large volumes of river flows into the Pacific—make the Columbia precipitation are the foundation for the Columbia one of the most powerful rivers in North America. River Basin. The large volumes of annual runoff, The entire Columbia River on both sides of combined with changes in elevation—from the the border is one of the most hydroelectrically river’s headwaters at Canal Flats in BC’s Rocky developed river systems in the world, with more Mountain Trench, to Astoria, Oregon, where the than 470 dams on the main stem and tributaries. Two Countries: One River Changing Water Levels Most dams on the Columbia River system were built between Deciding how to release and store water in the Canadian the 1940s and 1980s. They are part of a coordinated water Columbia River system is a complex process. Decision-makers management system guided by the 1964 Columbia River Treaty must balance obligations under the CRT (flood control and (CRT) between Canada and the United States. The CRT: power generation) with regional and provincial concerns such as ecosystems, recreation and cultural values. 1. coordinates flood control 2. optimizes hydroelectricity generation on both sides of the STORING AND RELEASING WATER border. The ability to store water in reservoirs behind dams means water can be released when it’s needed for fisheries, flood control, hydroelectricity, irrigation, recreation and transportation. Managing the River Releasing water to meet these needs influences water levels throughout the year and explains why water levels The Columbia River system includes creeks, glaciers, lakes, change frequently. -
Brilliant Headpond Stewardship Initiative Draft
DRAFT SCOPING STUDY WORKING COPY FOR VIEWING PURPOSES BRILLIANT ONLY HEADPOND STEWARDSHIP INITIATIVE KATARINA HARTWIG HEATHER LESCHIED MAY 2017 Scoping Study: Brilliant Headpond Stewardship Initiative Katarina Hartwig, Heather Leschied | May 2017 Design and Layout: Mandi McRobbie Cover Photo: Douglas Noblet, WildAir Photography ©2017 Living Lakes Canada All rights reserved. Permission is granted to reproduce all or part of this publication for non-commercial purposes, as long as you cite the source Living Lakes Canada Box 691 Invermere, BC V0A 1K0 EXECUTIVE SUMMARY The Brilliant Headpond Stewardship Initiative Scoping Study is intended to be the first phase of a stewardship strategy for the Brilliant Headpond Reservoir. The Scoping Study is guided by the Brilliant Headpond Stewardship Initiative Steering Committee, which includes leaders from the Brilliant Headpond communities of Tarrys, Thrums, Glade, Shoreacres, and South Slocan, representatives of the Ktunaxa First Nation and Okanagan Nation Alliance, and Regional District of Central Kootenay (RDCK) Area I Director, Andy Davidoff, and RDCK Area H Director, Walter Popoff. The Brilliant Headpond Reservoir (“BHPR”) was created by the damming of the Kootenay River at the Brilliant Canyon for the completion of the West Kootenay Power Corps. Brilliant Dam hydroelectric project completed in 1944. The BHPR area extends from Columbia Power Corporation’s (current owner) Brilliant Dam and Brilliant Expansion Project (2007) upstream to the Slocan Pool area just below BC Hydro’s Kootenay Canal (1975) and FortisBC’s South Slocan (1928) dams. FortisBC owns and operates the four dams on the Lower Kootenay, upstream of Brilliant Dam, and FortisBC operates Brilliant Dam and Brilliant Expansion facilities on behalf of Columbia Power Corporation. -
Columbia Basin Plan
FOR REFERENCE ONLY This version is now archived. Updated 2019 Columbia Region Action Plans available at: fwcp.ca/region/columbia-region Photo credit: Larry Halverson COLUMBIA BASIN PLAN June 2012 Contents 1. Introduction ......................................................................................................................... 1 1.1 Fish and Wildlife Compensation Program ........................................................................ 1 Vision ........................................................................................................................................ 2 Principles .................................................................................................................................. 2 Partners .................................................................................................................................... 2 Policy Context ........................................................................................................................... 2 Program Delivery ...................................................................................................................... 4 Project Investment Criteria ...................................................................................................... 4 2. The Columbia River Basin .................................................................................................... 6 2.1 Setting ............................................................................................................................. -
Revelstoke Generating Station Unit 6 Project Factsheet-December 2018
Revelstoke Generating Station Unit 6 Project Factsheet-December 2018 This project would install a sixth generating unit into an empty four units were installed when the facility was constructed. bay at Revelstoke Generating Station. Revelstoke Unit 6 would The fifth generating unit was recently added and began add approximately 500 megawatts of capacity to our system service in 2010. and provide a significant amount of electricity when our Revelstoke Generating Station produces, on average, about customers need it most – during dark cold winter days 7,817 gigawatt hours or roughly 15 per cent of the electricity when furnaces, appliances and lights are all in use. BC Hydro generates each year. With the five generating units, Revelstoke Generating Station has a combined capacity of REVELSTOKE DAM AND GENERATING STATION 2,480 megawatts. Electricity generated by the plant is Revelstoke Dam and Generating Station are located on the delivered to the grid by two parallel 500 kilovolt transmission Columbia River, 5 kilometers upstream from the City of lines that run from Revelstoke Generating Station to the Revelstoke. The facilities are part of our Columbia system Ashton Creek substation near Kamloops. with Revelstoke Reservoir and Mica Dam located upstream and the Hugh L. Keenleyside Dam and Arrow Lakes Reservoir downstream. The Revelstoke Generating Station, completed in 1984, was designed to hold six generating units but only Project Timing We do not have a timeline for construction. Revelstoke 6 is an important contingency project in case demand grows faster than we expect. 1 Revelstoke Revelstoke Dam Reservoir Hwy 23 BRITISH COLUMBIA Hwy 1 Hwy 1 Hwy 23 Revelstoke Revelstoke Generating Station PROJECT BENEFITS AND OPPORTUNITIES The work to install the sixth generating unit at Revelstoke Generating Station would be very similar to the Revelstoke ○ Jobs . -
Kootenay System Overview
Kootenay System Overview Heather Matthews March 2016 Kootenay System Storage - Koocanusa Reservoir - Duncan Reservoir - Kootenay Lake 2 Dams • Libby Dam (USACE) • Duncan Dam (BC Hydro) • Kootenay Canal Plant (BC Hydro) • River Plants (Fortis) • Corra Linn • Upper Bonnington / [City of Nelson] • Lower Bonnington • South Slocan • Brilliant & Expansion (CPC) 3 River Plants 4 Agreements & Regulatory • Columbia River Treaty • Duncan Reservoir • Koocanusa Reservoir • International Joint Commission • Kootenay Lake • BC Water Licenses • Storage and diversion for power purposes • Canal Plant Agreement • Operate like one owner 5 Libby and the Treaty Columbia River Treaty: o Provide the US with the option to build Libby Dam o Koocanusa reservoir floods 42 miles into Canada o Libby Dam provides flood and power benefits for Canada. o Power generated at Libby belongs to the US o Power benefits downstream in Canada on the Kootenay river stay in Canada o Coordination on Libby operation continues even if Treaty is terminated. o Canada can request a change in operation. If it is not to the US disadvantage the US shall agree 6 Canal Plant Agreement History • 1964: Columbia River Treaty was ratified • River plants and Brilliant already existed on the Kootenay River • Regulation of Kootenay River flows by Duncan Dam (1967) and Libby Dam (1973) made the Kootenay Canal Plant economic • In 1972 BC Hydro, West Kootenay Power and Cominco entered into the Canal Plant Agreement “cooperate in the operation of their available storages and generating facilities in British Columbia for the purpose of obtaining optimum generation” 7 Kootenay River System An Engineer’s View Since KCL is more efficient than the River Plants, water is diverted to Kootenay Canal instead of through river plants. -
Geography of British Columbia People and Landscapes in Transition 4Th Edition
Geography of British Columbia People and Landscapes in Transition 4th Edition Brett McGillivray Contents Preface / ix Introduction / 3 PART 1: GEOGRAPHICAL FOUNDATIONS 1 British Columbia, a Region of Regions / 11 2 Physical Processes and Human Implications / 29 3 Geophysical Hazards and Their Risks / 51 4 Resource Development and Management / 71 PART 2: THE ECONOMIC GEOGRAPHY OF BRITISH COLUMBIA 5 “Discovering” Indigenous Lands and Shaping a Colonial Landscape / 85 6 Boom and Bust from Confederation to the Early 1900s / 103 7 Resource Dependency and Racism in an Era of Global Chaos / 117 8 Changing Values during the Postwar Boom / 137 9 Resource Uncertainty in the Late Twentieth Century / 153 10 The Twenty-First-Century Liberal Landscape / 177 Conclusion / 201 Acknowledgments / 214 Glossary / 215 Further Readings / 224 Photo Credits / 228 Index / 229 Introduction he geography of British Columbia is in constant place on it the features you consider important. This flux. Between 2014 and 2017 alone, the following cognitive mapping exercise reveals individual land- T events occurred, transforming the landscape and scape experiences (which can be shared with others) and the way people engage with it: demonstrates the importance of location. Using maps to answer “where” questions is the easiest aspect of geo- • Heat waves shattered temperature records, and wild- graphical study. fires devasted parts of the province, causing thousands Answering the question “Why are things where they to flee their homes. are?” is more complicated. “Why” questions are far more • Fracking triggered large quakes in the oil and gas difficult than “where” questions and may ultimately verge patch. on the metaphysical. -
Downie Slide Very Large Rockslide Stabilization Project
Canadian Geotechnical Society Canadian Geotechnical Achievements 2017 Downie Slide Very Large Rockslide Stabilization Project Geographical location Key References Imrie, AS, Moore, DP and Enegren, EG. Along west side of Revelstoke Reservoir; 65 km north of 1991. Performance and maintenance of Revelstoke, British Columbia. the drainage system at Downie Slide. In Landslides, D Bell (editor), Balkema, Rotterdam. When it began or was completed Kalenchuk, KS, Hutchison, DJ and Downie Slide was identified in 1956; investigations and initial Diederichs, MS. 2009. Downie Slide - drainage works began in 1974; the main drainage system was Interpretations of complex slope installed between 1977 and 1981; monitoring, assessment and mechanics in a massive, slow moving, maintenance continues. translational landslide. Proceedings, Canadian Geotechnical Conference Halifax, NS, pp 367-374. Why a Canadian geotechnical achievement? Photographs Downie Slide is located on the Columbia River within BC Hydro’s Revelstoke Reservoir. The slide is in mica schist/gneiss bedrock with multiple water levels. At nearly 10 km2 in area, 250 m deep and approximately 1.5 billion m3 in volume, this is the world’s largest known landslide stabilization project. Construction of the Revelstoke Dam was contingent on the stabilization of Downie Slide. Key safety issues were the potential for reservoir blockage, a landslide-generated wave, and upstream flooding of Mica Dam, approximately 70 km to the north. After a thorough site investigation by BC Hydro and many consultants, and an extensive public consultation, drainage was selected as the appropriate method for stabilization Aerial view of Downie Slide (outlined in red) looking up the Revelstoke Reservoir and Columbia The drainage included 2,450 m of adits, primarily located in the River valley. -
The 5Th Annual West Kootenay Glacier Challenge Scotiabank MS Bike Tour!
The 5th Annual West Kootenay Glacier Challenge Scotiabank MS Bike Tour Courtesy of: Nelson & District Chamber of Commerce 91 Baker Street Nelson B.C. Ph. 250 352 3433 [email protected] discovernelson.com Scotiabank MS Bike Tour August 20-21, 2016 The tour starts in New Denver… Slocan Valley… New Denver- Founded upon the discovery of silver in the mountains adjacent to Slocan Lake in 1891, prospectors from the United States came flooding up to the New Denver region in 1892 to stake their claims, and gather their riches. New Denver quickly grew to a population of 500 people with 50 buildings. In 1895 this growing community built government offices and supply houses for the Silvery Slocan Mines. “A Simple Curve” was filmed in and around the Slocan Valley and was debuted in 2005. The story is of a young man born to war resister parents. War Resisters- In 1976 as many as 14,000 Americans came to the Slocan Valley in an attempt to avoid the Vietnam War. About half of those who made the move were self-proclaimed war resisters, many of whom settled in the Kootenay Region. Nikkei Internment Memorial Centre This exclusive interpretive centre features the Japanese-Canadian internment history of New Denver during the Second World War. The camp is said to have held close to 1500 internees during the war. The memorial centre opened in 1994, which showcases several buildings including the community hall and three restored tar paper shacks with Japanese gardens. A well known Canadian to come out of one of these local institutions is Dr.