The Mountain Tapir, Endangered 'Flagship' Species of the High Andes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eleocharis Palustris (L.) Roem
Plant Guide COMMON SPIKERUSH Conservation Uses: This species has utility for erosion control, constructed wetland system applications, wildlife Eleocharis palustris (L.) Roem. & food and cover, wetland creation and restoration, and for Schult. increasing plant diversity in wetland and riparian Plant Symbol = ELPA3 communities. Its dense root mass makes this species an excellent choice for soil stabilization in riparian and wetland sites. The rhizomes also form a matrix for many Contributed by: USDA NRCS Idaho Plant Materials beneficial bacteria making this plant an excellent choice Program for wastewater treatment. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description General: Rush Family (Cyperaceae). Creeping spikerush is a perennial, heavily rhizomatous wetland plant that is found from low to mid elevations. It has a dense root mass that extends deeper that 40 cm (16 in) in the soil profile. The stems are singular or in small clusters and it will continue to grow to keep the heads out of the water if the water rises slowly. The stems are upright, round, and may reach 1.2 m (4 ft) in height (height is dependent on the depth of water in the growing environment). The leaves are reduced to sheaths clustered at the base of the stems. The flowers are borne in a terminal spikelet, 1 flower per scale with 2 stigmas. Plants typically flower from June through September. The seeds are yellow to brown lenticular achenes, 1.5-2.5 mm (0.06-0.1 in) long including tubercle, and subtended by up to 8 bristles (Welsh et al., 2003). -
The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges. -
The Mountain Tapir, Endangered 'Flagship' Species of the High Andes
ORYX VOL 30 NO 1 JANUARY 1996 The mountain tapir, endangered 'flagship' species of the high Andes Craig C. Downer The mountain tapir has already disappeared from parts of its range in the high Andes of South America and remaining populations are severely threatened by hunting and habitat destruction. With an estimated population of fewer than 2500 individuals, urgent measures are necessary to secure a future for the species. This paper presents an overview of the species throughout its range as well as some of the main results of the author's studies on tapir ecology. Finally, a plea is made for conservation action in Sangay National Park, which is one of the species's main strongholds. The mountain tapir: an overview throughout its range. There is limited evi- dence to indicate that it may have occurred in The mountain tapir Tapirus pinchaque, was dis- western Venezuela about 20 years ago. covered by the French naturalist Roulin near However, Venezuelan authorities indicate a Sumapaz in the eastern Andes of Colombia total absence of mountain tapir remains from (Cuvier, 1829). The species is poorly known Venezuelan territory, either from the recent or and most information has come from oc- distant past (J. Paucar, F. Bisbal, O. Linares, casional observations or captures in the wild, pers. comms). Northern Peru contains only a reports from indigenous people in the small population (Grimwood, 1969). species's range, and observations and studies In common with many montane forests in zoological parks (Cuvier, 1829; Cabrera and world-wide, those of the Andes are being Yepes, 1940; Hershkovitz, 1954; Schauenberg, rapidly destroyed, causing the decline of the 1969; Bonney and Crotty, 1979). -
New Distributional Bird Records from the Eastern Andean Slopes of Ecuador Istributio D
ISSN 1809-127X (online edition) © 2010 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution N New distributional bird records from the eastern Andean slopes of Ecuador ISTRIBUTIO D 1,2,3* 4 RAPHIC G Alejandro Solano-Ugalde and Galo J. Real-Jibaja EO 1 G N O Fundación Imaymana, Paltapamba 476 San Pedro del Valle, Nayón. Quito, Ecuador. 2 Neblina Forest Natural History and Birding Tours, South America, Isla Floreana e8-129. Quito, Ecuador. 3 Natural History of Ecuador’s [email protected] Avifauna Group, 721 Foch y Amazonas. Quito, Ecuador. OTES 4 Real Nature, Travel Company, Casa Upano. Macas, Morona Santiago, Ecuador. N * Corresponding author. E-mail: Abstract: Distribution of birds is dynamic. Understanding, documentation and appropriate use of new records are essential, especially when managing threatened species. Here we present novel data regarding new distributional records for 17 bird species along the Amazonian slopes of the eastern Ecuadorian Andes. The new records fill gaps on our knowledge in the distribution, both in latitude and altitude. Although knowledge on the distribution of birds on mainland Ecuador has been well studied (Fjeldså Rostrhamus sociabilis ACCIPITRIDAE during recent years an inspiring number of articles have Snail Kite Cassin, 1854 - Two beenand Krabbe published 1990; documenting Ridgely and newGreenfield discoveries 2001; on2006), the individuals in juvenile plumage were seen flying over the distribution of birds in mainland Ecuador (e.g. Freile old-Zamora Airstrip on 6 March 2008, Zamora-Chinchipe et al. province (950 m a.s.l., 03°59’ S, 78°53’ W). -
Salvadori's Duck of New Guinea
Salvadori’s Duck of New Guinea J . K E A R When Phillips published the fourth volume of to the diving ducks and mergansers. Then his Natural History of the Ducks in 1926, he Mayr (1931a) was able to examine a dead noted that Salvadori’s Duck Salvadorina specimen and found that the sternum and (Anas) waigiuensis was ‘the last to be brought trachea of the male were, although smaller, to light and perhaps the most interesting of the similar to those of the Mallard Anas platy peculiar anatine birds of the world’. It was still rhynchos. As a result, Salvadori’s Duck was practically unknown in 1926; the first moved to the genus A nas. However, as recorded wild nest was not seen until 1959 (H. Niethammer (1952) and Kear (1972) later M. van Deusen, in litt.), and even today the pointed out, the trachea of the Torrent and species has been little studied. Blue Duck are also Anas-like, so that, on this The first specimen was called Salvadorina character, the genera M e rg a n e tta and waigiuensis in 1894 by the Hon. Walter Hymenolaimus could also be eliminated, and Rothschild and by Dr Ernst Hartert, his all three species put with the typical dabbling curator at the Zoological Museum at Tring. ducks. The name was to honour Count Tomasso The present author had already studied the Salvadori, the Italian taxonomist who Blue Duck in New Zealand (Kear, 1972), and specialized both in waterfowl and in the birds was lucky enough to be able to watch of Papua New Guinea. -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology
JOURNAL OF MORPHOLOGY 277:1469–1485 (2016) A Three-Dimensional Morphometric Analysis of Upper Forelimb Morphology in the Enigmatic Tapir (Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology Jamie A. MacLaren1* and Sandra Nauwelaerts1,2 1Department of Biology, Universiteit Antwerpen, Building D, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp 2610, Belgium 2Centre for Research and Conservation, Koninklijke Maatschappij Voor Dierkunde (KMDA), Koningin Astridplein 26, Antwerp 2018, Belgium ABSTRACT Forelimb morphology is an indicator for order Perissodactyla (odd-toed ungulates). Modern terrestrial locomotor ecology. The limb morphology of the tapirs are widely accepted to belong to a single enigmatic tapir (Perissodactyla: Tapirus) has often been genus (Tapirus), containing four extant species compared to that of basal perissodactyls, despite the lack (Hulbert, 1973; Ruiz-Garcıa et al., 1985) and sev- of quantitative studies comparing forelimb variation in eral regional subspecies (Padilla and Dowler, 1965; modern tapirs. Here, we present a quantitative assess- ment of tapir upper forelimb osteology using three- Wilson and Reeder, 2005): the Baird’s tapir (T. dimensional geometric morphometrics to test whether bairdii), lowland tapir (T. terrestris), mountain the four modern tapir species are monomorphic in their tapir (T. pinchaque), and the Malayan tapir (T. forelimb skeleton. The shape of the upper forelimb bones indicus). Extant tapirs primarily inhabit tropical across four species (T. indicus; T. bairdii; T. terrestris; T. rainforest, with some populations also occupying pinchaque) was investigated. Bones were laser scanned wet grassland and chaparral biomes (Padilla and to capture surface morphology and 3D landmark analysis Dowler, 1965; Padilla et al., 1996). was used to quantify shape. -
Juvenile Resilience and Adult Longevity Explain Residual Populations of the Andean Wax Palm Ceroxylon Quindiuense After Deforestation
Juvenile Resilience and Adult Longevity Explain Residual Populations of the Andean Wax Palm Ceroxylon quindiuense after Deforestation María José Sanín1*, Fabien Anthelme2,3, Jean-Christophe Pintaud3, Gloria Galeano1, Rodrigo Bernal1 1 Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Distrito Capital, Colombia, 2 Botanique et Bioinformatique de l’Architecture des Plantes, Recherche Agronomique pour Le Développement, Institut de recherche pour le développement, Montpellier, Hérault, France, 3 Botanique et Bioinformatique de l’Architecture des Plantes and Diversité Adaptation et Développement des plantes, Institut de recherche pour le développement, Montpellier, Hérault, France Abstract Wax palms are an important element of the cloud forests in the tropical Andes. Despite heavy deforestation, the density of adults seems to be similar in deforested pastures as in forests. We aimed to infer the mechanisms responsible for this apparent resilience in pastures and we tested two hypotheses to explain it: 1) adult palms survived in pastures because they were spared from logging, and 2) adults occurred in pastures through the resilience of large juvenile rosettes, which survived through subterranean meristems and later developed into adults. For this purpose, we characterized the demographic structure of C. quindiuense in a total of 122 plots of 400 m2 in forests and pastures at two sites with contrasted land use histories in Colombia and Peru. Additionally, we implemented growth models that allowed us to estimate the age of individuals at four sites. These data were combined with information collected from local land managers in order to complete our knowledge on the land use history at each site. At two sites, the presence of old individuals up to 169 years and a wide age range evidenced that, at least, a portion of current adults in pastures were spared from logging at the time of deforestation. -
The World Heritage Convention and the National Park Service: the First Two Decades, 1972–1992 Peter H
The World Heritage Convention and the National Park Service: The First Two Decades, 1972–1992 Peter H. Stott Introduction As recounted in the first essay of this three-part series,1 the Convention Concerning the Protection of the World Cultural and Natural Heritage (the “World Heritage Conven - tion”), was adopted by the United Nations Educational, Scientific, and Cultural Organiza - tion (UNESCO) in 1972. The United States, and the National Park Service (NPS) in partic- ular, had important roles in its development and in negotiations leading to its adoption. The NPS Office of International Affairs (OIA), which celebrated its 50th anniversary last year, participated in all phases of that development. This essay, published in the 40th anniversary year of the convention, recounts the US role in the first two decades of the convention’s exis- tence, culminating in its 20th anniversary session in 1992 in Santa Fe, New Mexico. The United States was the first nation to ratify the new convention, and when it came into force in 1975, the US was on its governing body, the World Heritage Committee, for all but four of the sixteen committee sessions in the period through 1992. The US played a key role in the convention’s development: in addition to hosting the session of the committee at which the first sites were inscribed on the World Heritage List, at subsequent sessions it was a vocal advocate for the more problematic issues that began to appear almost immediately: the integrity of the list and the conservation of sites already inscribed. David Hales, the US Committee chair at that 1978 session in Washington, voiced the dominant sentiment of the period: We viewed the Convention as—in many ways—a US initiative and an initiative that we want- ed to help parent early on and bring it up the right way; that we felt it should be incredibly objective and unimpeachable in its judgements; that it needed to rely on professional expert- ise, not consensual votes as often dominated in some other international institutions... -
GIANT RHUBARB Gunnera Tinctoria
GIANT RHUBARB Gunnera tinctoria Invasive Plant Information Note What is it? Giant rhubarb (Gunnera tinctoria) is a large perennial plant which is native to Chile and Argentina in South America. It was first introduced to Ireland in the 1800s as an ornamental garden plant because of its size and exotic appearance. Since then, it has escaped into the wild and is now particularly invasive along the western coast. Giant rhubarb has naturalised along the milder and wetter western seaboard because the climatic conditions are similar to that of its former range. Giant rhubarb grows well in constantly damp soil and is frequently found on disused agricultural land, damp fields, roadsides and hillsides. Please see link to its distribution across Ireland: http://maps.biodiversityireland.ie/#/Home. Fig. 1: Giant rhubarb (www.nonnativespecies.org) Fig. 2: Invading agricultural land in Co. Mayo (www.dnfc.net) Why should we be worried about it? Giant rhubarb threatens indigenous biodiversity. Once established, it can quickly develop large and dense colonies which prevent native plants from growing underneath them (See Fig. 1 & Fig. 7). The plant is shade tolerant so it may colonise in a variety of landscapes. The dense stands of Giant rhubarb can render large areas of land unsuitable for agricultural or amenity purposes (See Fig. 2). The species can invade native grassland and subsequently reduce the value of the land for grazing. The huge leaves are unpalatable to livestock because of the small spikes on the back of the leaves and along the stems. When Giant rhubarb dies-back during the winter the soil is left bare and more susceptible to erosion. -
Diversity and Population Genetic Structure of the Wax Palm Ceroxylon
bioRxiv preprint doi: https://doi.org/10.1101/443960; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Diversity and population genetic structure of the wax palm 2 Ceroxylon quindiuense in the Colombian Coffee Region 3 Natalia González-Rivillas1-2, Adriana Bohórquez3, Janeth Patricia Gutierrez3, Víctor Hugo García- 4 Merchán1-2 5 6 1Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Programa de Biología, 7 Universidad del Quindío, Carrera 15 Calle 12 Norte, Armenia, Quindío, Colombia. 8 2 Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío. 9 3 International Center for Tropical Agriculture (CIAT), Km 17, recta Cali-Palmira, Colombia. 10 11 [email protected] (NGR), [email protected] (AB), [email protected] (JPG) & 12 [email protected] (VHGM). 13 14 The authors mentioned contributed equally to this work. 15 16 Abstract 17 The wax palm from Quindío (Ceroxylon quindiuense) is an icon of the cultural identity of the coffee growing 18 eco-region and of all Colombia. Processes of urbanization, expansion of the agricultural and livestock area, among 19 others, have increased its level of threat. Protecting this palm from extinction is important at an ecological level, given 20 its function as a key species in Andean ecosystems. This work evaluated the diversity and population genetic structure 21 of the wax palm from Quindío in five populations of the Colombian coffee region eco-region (Andean zone) by using 22 ten microsatellite molecular markers. -
New Tradition for the Catholic Church Saves Palms and Parrots
New Tradition for the Catholic Church saves Palms and Parrots By PAUL SALAMAN Wax Palms (Ceroxylon quindiuense) - the world's tallest palm and an endangered species - are massacred each Easter to provide palm fronds for the Palm Sunday processions and used to adorn churches throughout the Colombian Andes (See Paul Salaman. PsittaScene Feb 2002, No 50). Unfortunately, the Critically Endangered Yellow-eared Parrot (Ognorhynchus icterotis) is dependent on the wax palm for nesting and roosting, so the parrot’s survival is inextricably linked to the plight of the wax palm. So our euphoria at discovering a population of Yellow-eared Parrots in western Colombia last year was short-lived as our worst nightmares were realised when thousands of people waved wax palm fronds to church on a glorious Palm Sunday morning in 2001. As there are less than a thousand wax palms sites uncovered revealing the total population at wax palm frond could be found in the procession scattered across the parrot’s range in the Western a staggering 277 individuals - two thirds of the of 5,000 people! A triumph for the wax palm, for Andes, their survival and that of the palm global population! Clearly, much was at stake on the Yellow-eared Parrot and for the Catholic appeared depressingly remote. The Fundación Palm Sunday in protecting the Yellow-eared Church, plus 600 new palm recruits in the town ProAves - Colombia team, that operates Project Parrots’ stronghold. from the seedlings and many more planted in the Ognorhynchus - knew we had to act quickly and countryside. Palm Sunday this year was a fine effectively to avoid the impending catastrophe Yet, as we approached Palm Sunday in March day to celebrate! 2002, one final daunting obstacle seemed for both species.