BIG GAME PARKS REPTILE LIST Dec-16 Genus / Species Siswati HL ML

Total Page:16

File Type:pdf, Size:1020Kb

BIG GAME PARKS REPTILE LIST Dec-16 Genus / Species Siswati HL ML BIG GAME PARKS REPTILE LIST Dec-16 Genus / species siSwati HL ML MK Crocodile Nile Crocodylus niloticus iNgwenya 1 1 1 Lizard Agama Southern Tree Agama, Acanthocercus Intfulo 1 1 1 Bushveld Heliobolus Chameleon Bradypodion, Chamaeleo 1 1 1 Crag Pseudocordylus, Cordylus Flat Platysaurus Gecko House Hemidactylus 1 1 Gecko Velvet Homopholis Girdled Cordylus 1 1 Grass Chamaesaura Monitor Rock Varanus Ncamu 1 1 Monitor Water Ncamu 1 1 1 Plated Gerrhosaurus Rough-scaled Ichnotropis Sand Pedioplanis Sandveld Nucras Seps Tetradactylus Skink Panaspis, Trachylepis 1 1 1 Skink Legless Burrowing Typhlacontias, Scelotes 1 1 Skink Montane Umgololo 1 Skink Rainbow Skink Short-legged Dwarf Burrowing Scelotes, Proscelotes, Sepsina Skink Snake-eyed Panaspis Skink Writhing Lygosoma Spotted Sand Chirindia, Zygaspis, Monopeltis, Worm Dalophia Snakes Adder Puffadder Bitis, Causus Libululu 1 1 1 Adder Night Libululu 1 1 1 Python African Rock 1 1 1 Asp Atractaspis Bark (Mopane) Snake Hemirhagerrhis Beaked Snake Dipsina Blind Snake Rhinotyphlops, Typhlops, Letheobia Boomslang Dispholidus typus Umhlazi 1 1 1 Burrowing (Stiletto / Quill-snouted) Snake Atractaspis Bush snake Spotted 1 1 1 Centipede Eater Aparallactus 1 Cobra Mozambican Spitting Aspidelaps, Naja Mfezi / imfeti 1 1 1 Cobra Rinkals Aspidelaps, Naja Mfezi / imfeti 1 Cobra Snouted Aspidelaps, Naja Egg-Eater Dasypeltis 1 1 File Snake Mehelya 1 1 1 Garter Snake Elapsoidea Grass Snake Psammophis 1 1 1 Green Snake Philothamnus Harlequin Snake Homoroselaps Herald Snake Crotaphopeltis 1 1 1 House Snake Aurora Lamprophis aurora House Snake Brown/Olive Lamprophis 1 1 1 House Snake Lesser Lamprophis fiskii, fuscus Mamba Black Dendroaspis Mamba 1 1 1 Mamba Green Dendroaspis Indlodlo Many Spotted Snake Amplorhinus Marsh Snake Natriciteres, Limnophis Mole Snake Pseudaspis Mountain Snake Montaspis Natal Black Snake Macrelaps microlepidotus Purple-Glossed Snake Amblyodipsas 1 Quill-snouted Snake Xenocalamus Rinkhals Hemachatus Rock Snake, Swazi Lamprophis swazicus Rock Snakes, Spotted Lamprophis guttatus Sand Snake Psammophis Semi-ornate Snake Meizodon Shield-nosed Snake Aspidelaps Shovel-Snouted Snake Prosymna Skaapsteker Psammophylax Slug-Eater Duberria Spotted Bush Snake Philothamnus 1 1 1 Tiger Snake Telescopus 1 1 Tree Snake Dipsadoboa 1 1 Vine (Bird / Twig) Snake Thelotornis 1 1 1 Water Snake Lycodonomorphus, Crotaphopeltis Whip Snake Psammophis Wolf Snake Lycophidion 1 1 Worm (Thread) Snake Leptotyphlops 1 1 1 Tortoise Hingeback Kinixys 1 1 Leopard Geochelone / Stigmochelys pardalis 1 1 1 Terrapin Terrapin, Hinged Pelusios 1 1 1 Terrapin, Marsh / Helmeted Pelomedusa 1 1 1.
Recommended publications
  • A Review of the Species of Psammophis Boie Found South of Latitude 12° S (Serpentes: Psammophiinae)
    African Journal of Herpetology, 2002 51(2): 83-119. Original article A review of the species of Psammophis Boie found south of Latitude 12° S (Serpentes: Psammophiinae) DONALD G. BROADLEY Research Associate, Natural History Museum of Zimbabwe, Bulawayo Present address: Biodiversity Foundation for Africa,P.O. Box FM 730, Famona, Bulawayo, Zimbabwe [email protected] Abstract.—The status, relationships and zoogeography of the 14 taxa of Psammophis found south of Latitude 12° S are reviewed and the following taxonomic changes are proposed: 1. Psammophis trinasalis and P. namibensis, previously treated as subspecies of P. leightoni, are recognised as good evolutionary species which show ecological differences. 2. Psammophis orientalis, previously regarded as a subspecies of P. subtaeniatus, differs from the lat- ter in a suite of characters and is parapatric with it in Zimbabwe, so it is now recognised as an evolu- tionary species. 3. Psammophis brevirostris and P. leopardinus, previously regarded as subspecies of P. sibilans (Linnaeus), are recognised as relict evolutionary species. The Zambian populations previously assigned to P. leopardinus have been described as a new species (Hughes & Wade, in press). Key words.—Psammophis, morphology, taxonomy, zoogeography, southern Africa ince the last review of the genus mossambicus has subsequently been applied to SPsammophis in southern Africa (Broadley this eastern sister taxon of P. phillipsii 1977), a revision of the whole genus was the (Hallowell) by Branch (1998) and Hughes subject of a thesis by Frank Brandstätter (1999). (1995), which was subsequently published in summary form (Brandstätter 1996). The result- ing confusion with regard to the northern forms MATERIALS AND METHODS of the P.
    [Show full text]
  • On the Role of Plant Nurseries Introducing Indotyphlops Braminus
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2017 Band/Volume: 30_1_2 Autor(en)/Author(s): Zamora-Camacho Francisco Javier Artikel/Article: On the role of plant nurseries introducing Indotyphlops braminus (DAUDIN, 1803), in Spain 69-72 All_Short_Notes_(Seiten 59-112):SHORT_NOTE.qxd 07.08.2017 18:41 Seite 11 SHORT NOTE HERPETOZOA 30 (1/2) Wien, 30. Juli 2017 SHORT NOTE 69 On the role of plant nurseries in June 2015, publicly available pro - introducing Indotyphlops braminus fessional e-mail addresses from 403 nursery managers from most provinces of Spain (DAuDiN , 1803), in Spain were compiled; no e-mail address was found from the nursery managers of the A key step in the management of Autonomous cities of ceuta and melilla, human-induced introduction of organisms is and the Province of Zamora. To facilitate release interception or, at least, control identification by non-experts, a description (PERRiNgS et al. 2005), as introductions are of the species was sent to the managers, easier to manage when the potential sources with emphasis on easily distinguishable of propagules are identified ( HulmE 2006). diagnostic characters, as well as two photo - in the case of the typhlopid Flowerpot graphs and one video, along with a ques - Blind snake Indotyphlops braminus (DAu- tionnaire including four questions: (1) Was DiN , 1803), nurseries are widely considered the Flowerpot Blindsnake seen in your nurs - the main (if not the only) propagule reser - ery? (2) if yes, how many individuals? (3) voir and potential vector for introductions When were they seen and (4) were they seen (e.
    [Show full text]
  • Tapa Multe 11
    ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus, considerado en los cladogramas Conolophus, puede llevar a propuestos por Estes et al. (1988). postular pretéritos acontecimientos Aparte del significado biológico paleogeográficos. También amerita general de estos hallazgos, incluso énfasis la llamativa separación, para discutidas orientaciones según este criterio morfológico, en- taxonómicas, la lepidosis tre Iguania y Scleroglossa, la supraocular llega a refrendar una uniforme lepidosis de centenares de decisión sistemática con su Gekkota, o la excepcional fisonomía evidencia. Así, en Iguania, la familia de Autarchoglossa, en sus ramas tan Leiosauridae, propuesta por Frost individualizadas de Scincomorpha et al. (2001), aparece sostenida (Lacertoidea; Teiioidea; hasta en
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Life–History and Ecological Distribution of Chameleons (Reptilia, Chamaeleonidae) from the Rain Forests of Nigeria: Conservation Implications
    Animal Biodiversity and Conservation 24.2 (2001) 1 Life–history and ecological distribution of chameleons (Reptilia, Chamaeleonidae) from the rain forests of Nigeria: conservation implications G. C. Akani1, O. K. Ogbalu1 & L. Luiselli2,3,* Akani, G. C., Ogbalu, O. K. & Luiselli, L., 2001. Life–history and ecological distribution of chameleons (Reptilia, Chamaeleonidae) from the rain forests of Nigeria: conservation implications. Animal Biodiversity and Conservation, 24.2: 1–15. Abstract Life–history and ecological distribution of chameleons (Reptilia, Chamaeleonidae) from the rain forests of Nigeria: conservation implications.— Five species of chameleons were observed in the continuous forest zone of southern Nigeria: Chamaeleo gracilis gracilis Hallowell, 1842, Chamaeleo owenii Gray, 1831, Chamaeleo cristatus Stutchbury, 1837, Chamaeleo wiedersheimi Nieden, 1910, and Rhampholeon spectrum (Bucholz 1874). Many original locality records are presented for each species. One species is apparently rare and confined to montane habitats (C. wiedersheimi), another species is relatively common and its habitat is generalist (C. gracilis), and the other three species are vulnerable and limited to specific micro–habitats. Female R. spectrum had clutch sizes of two eggs each and exhibited a prolonged reproductive season with oviposition likely occurring during the late phase of the dry season. Females of both C. cristatus (clutch sizes: 11–14 eggs) and C. owenii (clutch sizes: 15–19 eggs) have a shorter reproductive season with oviposition occurring most probably at the interphase between the end of the wet season and the onset of the dry season, and female C. gracilis (clutch sizes: 14–23 eggs) appeared to exhibit two distinct oviposition periods (one at the interphase between the end of the wet season and the onset of the dry season, and one at the peak phase of the dry season).
    [Show full text]
  • A New Record of the Christmas Island Blind Snake, Ramphotyphlops Exocoeti (Reptilia: Squamata: Typhlopidae)
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 27 156–160 (2012) A new record of the Christmas Island Blind Snake, Ramphotyphlops exocoeti (Reptilia: Squamata: Typhlopidae). Dion J. Maple1, Rachel Barr, Michael J. Smith 1 Christmas Island National Park, Christmas Island, Western Australia, Indian Ocean, 6798, Email: [email protected] ABSTRACT – The endemic Christmas Island Blind Snake Ramphotyphlops exocoeti is a species rarely collected since initial faunal collections were conducted on Christmas Island in 1887. Twenty-three years after the last record in 1986, an individual was collected on 31 July 2009. Here we catalogue historical collection records of this animal. We also describe the habitat and conditions in which the recent collection occurred and provide a brief morphological description of the animal including a diagnostic feature that may assist in future identifi cations. This account provides the fi rst accurate spatial record and detailed description of habitat utilised by this species. KEYWORDS: Indian Ocean, Yellow Crazy Ant, recovery plan INTRODUCTION ‘fairly common’ and could be found under the trunks Christmas Island is located in the Indian Ocean of fallen trees. In 1975 a specimen collected from (10°25'S, 105°40'E), approximately 360 km south of the Stewart Hill, located in the central west of the island western head of Java, Indonesia (Geoscience Australia in a mine lease known as Field 22, was deposited in 2011). This geographically remote, rugged and thickly the Australian Museum (Cogger and Sadlier 1981). A vegetated island is the exposed summit of a large specimen was caught by N. Dunlop in 1984 while pit mountain.
    [Show full text]
  • The Paradox of Nocturnality in Lizards
    The paradox of nocturnality in lizards Kelly Maree Hare A thesis submitted to Victoria University of Wellington in fulfilment of the requirement for the degree of Doctor of Philosophy in Zoology Victoria University of Wellington Te Whare Wnanga o te poko o te Ika a Mui 2005 Harvard Law of Animal Behaviour: “Under the most closely defined experimental conditions, the animal does what it damned well pleases” Anon. i n g a P e e L : o t o h P Hoplodactylus maculatus foraging on flowering Phormium cookianum STATEMENT OF AUTHORSHIP BY PHD CANDIDATE Except where specific reference is made in the main text of the thesis, this thesis contains no material extracted in whole or in part from a thesis, dissertation, or research paper presented by me for another degree or diploma. No other person’s work (published or unpublished) has been used without due acknowledgment in the main text of the thesis. This thesis has not been submitted for the award of any other degree or diploma in any other tertiary institution. All chapters are the product of investigations in collaboration with other researchers, and co-authors are listed at the start of each chapter. In all cases I am the principal author and contributor of the research. I certify that this thesis is 100,000 words or less, including all scholarly apparatus. ……………………… Kelly Maree Hare May 2005 i Abstract Paradoxically, nocturnal lizards prefer substantially higher body temperatures than are achievable at night and are therefore active at thermally suboptimal temperatures. In this study, potential physiological mechanisms were examined that may enable nocturnal lizards to counteract the thermal handicap of activity at low temperatures: 1) daily rhythms of metabolic rate, 2) metabolic rate at low and high temperatures, 3) locomotor energetics, and 4) biochemical adaptation.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]