The Gobi Bear's Place in Mongolia

Total Page:16

File Type:pdf, Size:1020Kb

The Gobi Bear's Place in Mongolia MY PLACE, YOUR PLACE, OUR PLACE! The Gobi Bear’s place in Mongolia Teacher Edition 1 The goal of this book is to provide information about the natural history and cultural significance of the Gobi Bear. This booklet provides teachers with lesson ideas to incorporate “My Place, Your Place, Our Place” into the existing curriculum. Some lessons rely heavily on teachers guiding students in their learning and others allow for more open-ended exploration. 2I Table of Contents Introduction..............................................................................................I SECTION A: My Place • About You...............................................................................................2 - My Place (Observations)...................................................................5 SECTION B: Learning about Ecosystems • Living (Biotic) and Non-Living (Abiotic) Parts of an Ecosystem.....................9 Earth Systems Science, Global Climate Change, Conservation Considerations ................12 • Individuals, Populations, Communities and Ecosystems...............................14 Prairie Dog Worksheet ..........................................................................17 • An Ecosystem.........................................................................................21 Assemble an Ecosystem ........................................................................21 • Food Chain within an Ecosystem..............................................................22 • Your Food Chain ...................................................................................25 • Poem: Links in a Food Chain ...................................................................26 • Foo d Web..........................................................................................................28 Yellowstone National Park Wolf Ecosystem Comparison.......................................29 SECTION C: The Gobi Bear • Ecosystem of the Gobi Bear ..................................................................30 Biotic and Abiotic Threats .......................................................................31 • The Gobi Desert ...................................................................................33 • Animals of the Gobi Desert ...................................................................34 Explanation of Adapations ................................................................34 & 36 - Dressed for Success ......................................................................35 • Gobi Bear Distribution...........................................................................38 • Concept Map of Threats to the Gobi Bear.......................................................40 • Gobi Bear Ecology............................................................................................43 • Reflections......................................................................................................44 Creating a Velcro Ecosystem ...................................................................46 Community Mural Activity .......................................................................47 Glossary of Terms.......................................................................................49 References..............................................................................................54 1 Activity: Have the students fill out the following to create their own version of “My Place, Your Place, About You Our Place.” It is meant to be a place to develop their questions Name and understandings of biological concepts. Extension: Encourage students to research what types of animals live in other Age parts of Mongolia. Why it Matters: • Animals have become successful due to their ability to adapt to changes or to move. • The Gobi is home to many Class rare and globally threatened species; Bactrian camel, Asiatic wild ass, black-tailed gazelle, Argali sheep and snow leopard. • Species at risk by poachers include: Village -musk deer: poached for its valuable scent glands -brown bears: killed for their gall bladders -Saiga antelope: hunted Number of people in your illegally for their antlers and family antler velvet -snow leopards: killed for their pelts and bones. What are your hobbies? 2 Great Gobi Strictly Protected Area- A This is your country! Mark where you live. Mark where all of the members of your family live. Who lives farthest from where you live? Where are the places you have visited? What part of Mongolia do you want to visit most? What interests you in that part of Mongolia? 3 This portion of the student book is This is our World. It is made up of continents to explain where one is located in and oceans. the world and to understand how we all share our resources: air, Match the names to their place on the map. water and energy. Have the students write the proper Continents Oceans name of the continents and oceans North America Atlantic in the boxes on the map. South America Pacific Asia Indian Extension: Africa Southern • Encourage students to research Antarctica Arctic animals in different parts of the Europe world. Australia • As a group, make a large map and place the students’ animals where each lives. Arctic Europe North America Asia Atlantic Pacific Indian Africa South America Australia Southern Antarctica 4 Activity: My PLACE In this part of the lesson, each student is directed to find a piece Find a piece of land that is one-meter square. of land that they think is special; Make it special. they then call it their ‘place’, or Mark it with flags. they can personally name it. This is your ‘place!’ As a first step, perhaps the teacher can find their own ‘place’ near to school, so that you may walk there and show the students your ground. Mark out 1 meter square with sticks or flags. The 1 meter plot is to focus the students’ observation. Do a descriptive drawing of your ‘place’ in relation to the surrounding countryside so that when you show the students your land, you can also show them how you’ve drawn your land in the journal. MAP: Make a large wall map to show students ‘places,’ the school, village, roads, and etc. 1 m. 5 Activity: Sit quietly, listen and watch all of the To begin their inquiry, students might find it helpful to fill in: things that happen in your ‘place.’ Observe I see.... the insects, birds, plants, water, and I hear.... animals. I smell.... I have observed.... I feel.... Take notes to share with your classmates. When I touched it, it felt... Why it matters: • Observation is key to understanding the world around us. • All things are interconnected. • It takes practice to become a good observer. • It helps to organize your observation into categories. Example: Observe and compare mammals versus insects. Also notice how insects interact with the living and non-living (to be introduced following). Activity: Generate curiosity by having students come up with ‘30 questions.’ 6 Discuss your ‘place’ with your classmates. Extension: Cut a variety of different shapes Think about how your ‘place’ is different out of colored paper or recycled from your classmates’ places. materials. How is it similar? Have the students assemble the shapes to create a representation of plants, animals or insects that Now, go back to your ‘place’ and draw they have observed in their ‘place.’ what you see in your ‘place.’ *Use sticks, leaves, fabric, string and grass to represent ecosystem parts. 7 8 Connections: Provide a description of the Gobi desert as an example of another environment where there are a unique variety of living and non-living organisms. Highlight the harsh environment of the Gobi desert and how this determines many of the plants and animals that live there. Refer to Living and Non-Living the glossary for images of a few of the plants and animals found in the Parts of an Ecosystem Gobi desert. Note: Our world is made up of living and non-living Organic and inorganic are parts. Living organisms eat, grow, produce interchangable with biotic and waste and reproduce. Anything that was or abiotic. is living is considered biotic. Non-living, or Examples include: abiotic examples include sunlight (energy), • Soil or rock erosion is inorganic. rocks (soil), air and water. Biotic and abiotic • The process of plant and animal growth is organic. elements interact with each other creating a functional ecosystem. Objects that humans create from combining living or non-living things are considered man- made. For example: clothes, houses, or blankets. Notice all of the living and non-living parts of the ecosystem in the picture to the left. What other things, living or non-living, might be in your ‘place’? How do you think they interact? 9 Non-Living (Abiotic) Living (Biotic) 10 Additional Abiotic Examples: • Fire (Energy) • Rocks • Minerals (Gold & Salt) • Oil • Wind List the non-living and living things you see in your ‘place.’ Additional Biotic Examples: • Scorpions Non-Living (Abiotic): • Wolves 1.) Sand • Bears 2.) Sunlight • Snakes 3.) Air 4.) Water Note: Ecology is the sum of the biotic Living (Biotic): and abiotic interactions including animals, plants and 1.) Flowers bacteria with water, minerals, 2.) Trees sun and sand. 3.) Grass 4.) Insects 5.) 6.) 11 Extensions for Earth System Science: Ecosystems are also affected by climate change, geological and geothermal transformations (volcanoes, earthquakes), glacial movements, water availability and human activities. On Global Climate Change: (From NASA scientist Jim Hansen) 1. Mountain glaciers are receding worldwide
Recommended publications
  • Wild Or Bactrian Camel French: German: Wildkamel Spanish: Russian: Dikiy Verblud Chinese
    1 of 4 Proposal I / 7 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of the Wild camel Camelus bactrianus in Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Tylopoda 1.3. Familia: Camelidae 1.4. Genus: Camelus 1.5. Species: Camelus bactrianus Linnaeus, 1758 1.6. Common names: English: Wild or Bactrian camel French: German: Wildkamel Spanish: Russian: Dikiy verblud Chinese: 2. Biological data 2.1. Distribution Wild populations are restricted to 3 small, remnant populations in China and Mongolia:in the Taklamakan Desert, the deserts around Lop Nur, and the area in and around region A of Mongolia’s Great Gobi Strict Protected Area (Reading et al 2000). In addition, there is a small semi-captive herd of wild camels being maintained and bred outside of the Park. 2.2. Population Surveys over the past several decades have suggested a marked decline in wild bactrian camel numbers and reproductive success rates (Zhirnov and Ilyinsky 1986, Anonymous 1988, Tolgat and Schaller 1992, Tolgat 1995). Researchers suggest that fewer than 500 camels remain in Mongolia and that their population appears to be declining (Xiaoming and Schaller 1996). Globally, scientists have recently suggested that less than 900 individuals survive in small portions of Mongolia and China (Tolgat and Schaller 1992, Hare 1997, Tolgat 1995, Xiaoming and Schaller 1996). However, most of the population estimates from both China and Mongolia were made using methods which preclude rigorous population estimation.
    [Show full text]
  • Camelids: New Players in the International Animal Production Context
    Tropical Animal Health and Production (2020) 52:903–913 https://doi.org/10.1007/s11250-019-02197-2 REVIEWS Camelids: new players in the international animal production context Mousa Zarrin1 & José L. Riveros2 & Amir Ahmadpour1,3 & André M. de Almeida4 & Gaukhar Konuspayeva5 & Einar Vargas- Bello-Pérez6 & Bernard Faye7 & Lorenzo E. Hernández-Castellano8 Received: 30 October 2019 /Accepted: 22 December 2019 /Published online: 2 January 2020 # Springer Nature B.V. 2020 Abstract The Camelidae family comprises the Bactrian camel (Camelus bactrianus), the dromedary camel (Camelus dromedarius), and four species of South American camelids: llama (Lama glama),alpaca(Lama pacos)guanaco(Lama guanicoe), and vicuña (Vicugna vicugna). The main characteristic of these species is their ability to cope with either hard climatic conditions like those found in arid regions (Bactrian and dromedary camels) or high-altitude landscapes like those found in South America (South American camelids). Because of such interesting physiological and adaptive traits, the interest for these animals as livestock species has increased considerably over the last years. In general, the main animal products obtained from these animals are meat, milk, and hair fiber, although they are also used for races and work among other activities. In the near future, climate change will likely decrease agricultural areas for animal production worldwide, particularly in the tropics and subtropics where competition with crops for human consumption is a major problem already. In such conditions, extensive animal production could be limited in some extent to semi-arid rangelands, subjected to periodical draughts and erratic patterns of rainfall, severely affecting conventional livestock production, namely cattle and sheep.
    [Show full text]
  • Bactrian Camel, Two-Humped Camel
    Camelus ferus/bactrianus Common name: Bactrian camel, two-humped camel Local name: Havtagai (Mongolian), Wildkamel (German), Jya nishpa yapung (Ladakhi) Classification: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Camelidae Genus: Camelus Species: ferus/bactrianus Profile: The scientific name of the wild Bactrian camel is Camelus ferus, while the domesticated form is called Camelus bactrianus. The distinctive feature of the animal is that it is two-humped whereas the Dromedary camel has a single hump. DNA tests have revealed that there are two or three distinct genetic differences and about 3% base difference between the wild and domestic populations of Bactrian camels. They also differ physically. The wild Bactrian camel is smaller and slender than the domestic breed. The wild camels have a sandy gray- brown coat while the domestic ones have a dark brown coat. The predominant difference between them however is the shape of the humps. While that of the wild camel are small and pyramid-like, those of the domestic ones are large and irregular. The face of a Bactrian camel is long and triangular with a split upper lip. The Bactrian camel is highly adapted to surviving the cold desert climate. Each foot has an undivided sole with two large toes that can spread wide apart for walking on sand. The ears and nose are lined with hair to protect against sand and the muscular nostrils can be closed during sandstorms. The eyes are protected from sand and debris by a double layer of long eyelashes while bushy eyebrows give protection from the sun. It grows a thick shaggy coat during winter, which is shed very rapidly in spring to give the animal a shorn look.
    [Show full text]
  • ANIMAL WELFARE POLICY TOOLKIT CREATED by INTREPID TRAVEL & WORLD ANIMAL PROTECTION Tourism Will Return
    ANIMAL WELFARE POLICY TOOLKIT CREATED BY INTREPID TRAVEL & WORLD ANIMAL PROTECTION Tourism Will Return. Cruelty Should Not. Nearly 550,000 wild animals are currently enduring lifetimes of suffering at tourist entertainment venues globally. Activities such as riding elephants, taking photos with tigers, lion walks and dolphin performances are examples of popular tourist attractions that can cause lifelong trauma for wild animals. The COVID-19 crisis has provided us with an opportunity to redefine what tourism looks like once travel resumes and to use this time to forge a new path for a more responsible, sustainable and ethical future. As travel providers who facilitate experiences all around the world, it is our responsibility to protect the environment and all of its living species. The very least we can do is ensure our practices are not causing harm to the wildlife who call the destinations we visit home. This toolkit has been created by Intrepid Travel, a certified B Corporation and the first global tour operator to ban elephant rides, and World Animal Protection, a global animal welfare organisation - leading on responsible wildlife tourism. It is our hope that the Animal Welfare Policy Toolkit will help the tourism industry rebuild more ethically during the COVID-caused travel shutdowns. This resource includes tips on how to draft and implement more animal-friendly practices within a tourism organisation, as well as an editable policy template for businesses to get started on their journey. While this toolkit has been endorsed by both parties to encourage tourism businesses to adopt more ethical practices concerning animals, in particular wildlife, this template is meant to be used as a guideline.
    [Show full text]
  • Energy from the Desert
    SUMMARY Energy from the Desert Feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) Systems EDITOR Kosuke Kurokawa Energy from the Desert SUMMARY Energy from the Desert Feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) Systems EDITOR Kosuke Kurokawa PART THREE: SCENARIO STUDIES AND RECOMMENDATIONS Published by James & James (Science Publishers) Ltd 8–12 Camden High Street, London, NW1 0JH, UK © Photovoltaic Power Systems Executive Committee of the International Energy Agency The moral right of the author has been asserted. All rights reserved. No part of this book may be reproduced in any form or by any means electronic or mechanical, including photocopying, recording or by any information storage and retrieval system without permission in writing from the copyright holder and the publisher. A catalogue record for this book is available from the British Library. Printed in Hong Kong by H&Y Printing Ltd Cover image: Horizon Stock Images / Michael Simmons Neither the authors nor the publisher make any warranty or representation, expressed or implied, with respect to the information contained in this publication, or assume any liability with respect to the use of, or damages resulting from, this information. Please note: in this publication a comma has been used as a decimal point, according to the ISO standard adopted by the International Energy Agency. CHAPTER ELEVEN: CONCLUSIONS OF PART 1 AND PART 2 Contents Foreword vi Preface vii Task VIII Participants viii COMPREHENSIVE SUMMARY Objective 1 Background and concept of VLS-PV 1 VLS-PV case studies 1 Scenario studies 2 Understandings 2 R ecommendations 2 EXECUTIVE SUMMARY A.
    [Show full text]
  • Informes Individuales IUCN 2018.Indd
    IUCN SSC South American Camelid Specialist Group 2018 Report Benito A. González Chair Mission statement Vicuña subspecies assessment for the Red List; Benito A. González (1) To promote the conservation and sustainable (4) carry out classification of the Vicuña in a use of (wild) South American Camelids in their conservation category in Chile. Red List Authority Coordinator area of geographic distribution. Research activities: write scientific articles affili- Pablo Acebes (2) ated as a Specialist Group. Projected impact for the 2017-2020 Plan Location/Affiliation quadrennium Agreements: analyse the idea to include the (1) Facultad de Ciencias Forestales By the end of 2020, we envision a substantial wild Bactrian Camel (Camelus ferus) within the y de la Conservación de la Naturaleza, advance in reducing the extinction risk of some remit of our Specialist Group. Universidad de Chile, Chile reduced and isolated populations of camelids, Planning: (1) complete a conservation plan for (2) Department of Ecology, Universidad and reducing/managing the conflict between Vicuña in Peru; (2) complete a conservation Autónoma de Madrid, Spain the species and human activities in recovered plan for Vicuña in Bolivia; (3) complete a conser- and abundant populations. Through scientific vation plan for Vicuña in Argentina; (4) complete Number of members information, accurate assessment of the popu- a conservation plan for Vicuña in Chile; (5) 35 lations at regional scale for local classification complete a conservation plan for Guanaco in conservation categories, and the imple- in Peru; (6) complete a conservation plan for Social networks mentation of national conservation plans for Guanaco in Bolivia; (7) complete a conserva- Website: Guanaco (Lama guanicoe) and Vicuña (Vicugna tion plan for Guanaco in Paraguay; (8) complete www.camelid.org vicugna), we will build a governmental scenario a conservation plan for Guanaco in Argentina; Twitter: for working with the species with local commu- (9) complete a conservation plan for Guanaco @GrupoGecs nities.
    [Show full text]
  • Prospects for Rewilding with Camelids
    Journal of Arid Environments 130 (2016) 54e61 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Prospects for rewilding with camelids Meredith Root-Bernstein a, b, *, Jens-Christian Svenning a a Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark b Institute for Ecology and Biodiversity, Santiago, Chile article info abstract Article history: The wild camelids wild Bactrian camel (Camelus ferus), guanaco (Lama guanicoe), and vicuna~ (Vicugna Received 12 August 2015 vicugna) as well as their domestic relatives llama (Lama glama), alpaca (Vicugna pacos), dromedary Received in revised form (Camelus dromedarius) and domestic Bactrian camel (Camelus bactrianus) may be good candidates for 20 November 2015 rewilding, either as proxy species for extinct camelids or other herbivores, or as reintroductions to their Accepted 23 March 2016 former ranges. Camels were among the first species recommended for Pleistocene rewilding. Camelids have been abundant and widely distributed since the mid-Cenozoic and were among the first species recommended for Pleistocene rewilding. They show a range of adaptations to dry and marginal habitats, keywords: Camelids and have been found in deserts, grasslands and savannas throughout paleohistory. Camelids have also Camel developed close relationships with pastoralist and farming cultures wherever they occur. We review the Guanaco evolutionary and paleoecological history of extinct and extant camelids, and then discuss their potential Llama ecological roles within rewilding projects for deserts, grasslands and savannas. The functional ecosystem Rewilding ecology of camelids has not been well researched, and we highlight functions that camelids are likely to Vicuna~ have, but which require further study.
    [Show full text]
  • Hydrological and Climatic Changes in Deserts of China Since the Late Pleistocene
    Quaternary Research 73 (2010) 1–9 Contents lists available at ScienceDirect Quaternary Research journal homepage: www.elsevier.com/locate/yqres Hydrological and climatic changes in deserts of China since the late Pleistocene Xiaoping Yang a,⁎, Louis A. Scuderi b a Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China b Department of Earth and Planetary Sciences, University of New Mexico, MSC032040 Albuquerque, NM 87131, USA article info abstract Article history: Large areas in western China were wetlands or less arid between 40 and 30 ka, corresponding to the Received 6 April 2009 “Greatest Lake Period” on the adjacent Tibetan Plateau. During the last glacial maximum, some of these Available online 17 November 2009 western Chinese deserts again experienced wetter conditions; however, at the same time the sandy lands in the eastern Chinese desert belt experienced an activation of aeolian dunes. While interpretations of the mid- Keywords: Holocene environment in the deserts of China are controversial, it is quite likely that it was more humid not Dune only in the eastern areas influenced by monsoon climate systems but also in the western deserts where Desert Lacustrine record moisture is currently associated with westerlies. Evaluation of lacustrine records in the lakes recharged by Late Quaternary dryland rivers and the complex interactions of these systems, as well as other paleoenvironmental proxies Holocene such as the Artemisia/Chenopodiaceae ratio, should be interpreted with greater caution. Facing the China highlighted uncertainties in our understanding of climate changes in Chinese deserts, it is hoped that this special issue will improve our knowledge considerably.
    [Show full text]
  • World Deserts
    HISTORY AND GEOGRAPHY World Deserts Reader Frog in the Australian Outback Joshua tree in the Mojave Desert South American sheepherder Camel train across the Sahara Desert THIS BOOK IS THE PROPERTY OF: STATE Book No. PROVINCE Enter information COUNTY in spaces to the left as PARISH instructed. SCHOOL DISTRICT OTHER CONDITION Year ISSUED TO Used ISSUED RETURNED PUPILS to whom this textbook is issued must not write on any page or mark any part of it in any way, consumable textbooks excepted. 1. Teachers should see that the pupil’s name is clearly written in ink in the spaces above in every book issued. 2. The following terms should be used in recording the condition of the book: New; Good; Fair; Poor; Bad. World Deserts Reader Creative Commons Licensing This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You are free: to Share—to copy, distribute, and transmit the work to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation (www.coreknowledge.org) made available through licensing under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial—You may not use this work for commercial purposes. Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work.
    [Show full text]
  • For Creative Minds
    The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Sheet music for the songs, cross-curricular teaching activities, interactive quizzes, and more are availableFor online. Creative Go to www.ArbordalePublishing.com Minds and click on the book’s cover to explore all the links. Some deserts are hot, and some are cold, but the one thing that all deserts have in common is that they are dry. OnThe average, Desert a desert Habitat gets less than 10 to 12 inches (25- 30 cm) of rain a year. Some do not even get that much. The driest place on Earth, the Atacama Desert in South America has areas that haven’t seen any rain in 400 years! Hot (tropical or subtropical) deserts are warm throughout the year, but very hot in the summer. Temperatures drop at night to cool or cold. Rain comes in short bursts any time of the year and may even evaporate before it hits the ground. There Polar deserts have long, cold winters and can have are long, dry periods in between rain showers. The snow- or ice-covered ground. Chihuahan, Sonoran, and Mojave Deserts in Mexico Antarctica and parts of Arctic and the American Southwest are hot deserts. The Europe and North America Sahara and Kalahari Deserts in Africa are also hot. are polar deserts. Coastal deserts are found along Cold winter deserts (also called semi-arid continental coasts and have salty deserts) have cold winters with some soils or sand.
    [Show full text]
  • Hazards and Human-Environment Systems in the Gobi Desert, Asia Troy Sternberg* School of Geography, South Parks Road, Oxford, OX1 3QY, UK
    aphy & N r at og u e ra G l Sternberg, J Geogr Nat Disast 2013, 3:1 f D o i s l a Journal of a s DOI: 10.4172/2167-0587.1000106 n t r e u r s o J ISSN: 2167-0587 Geography & Natural Disasters ResearchResearch Article Article OpenOpen Access Access Hazards and Human-Environment Systems in the Gobi Desert, Asia Troy Sternberg* School of Geography, South Parks Road, Oxford, OX1 3QY, UK Abstract Climate hazards are a significant challenge for human and environmental systems in the Gobi Desert, Asia. Drought and extreme cold events frame ecological productivity and livelihood viability in the region. To investigate hazard impact this study uses the Standard Precipitation Index (SPI) to identify drought in southern Mongolia from 1970-2006. It then examines the relationship of drought with climate factors and its interaction with local human and livestock populations. Stressing the extreme winter disasters of 1999-2001 the study then evaluates the resilience of human-environment systems in the Gobi .Results indicate that drought is recurrent in the region, reaching extreme intensity most recently in 2005-2006. In contrast to the prevailing concept of drought impacting severe winters, the study did not find a connection between the two natural hazards. The principal long-term correlation of drought is with human population rather than natural factors, extreme conditions, or livestock numbers. Findings reflect human and landscape resilience when encountering drought and extreme winter conditions. Keywords: Drought; Dzud; Hazard; Mongolia; Standard in isolation from herder action and impact [15,16]. This is essential precipitation index when considering how subtle fluctuations in natural conditions or human action can impact livelihood and grassland productivity.
    [Show full text]
  • Earth System
    Name: Date: Deserts Quiz Class: 1. What do all deserts have in common? 6. What can you infer about penguins from the a. They're all very hot. information presented in the movie? b. They all lack fertile soil. a. Their diet consists mainly of fish. c. They are all very flat. b. They live in the coldest parts of Antarctica. d. They are all completely empty of human life. c. They live alone, and not in groups. d. They are not true birds. 2. A desert's climate is mostly determined by its: a. Latitude 7. Compared to the Sahara Desert, the Gobi Desert is: b. Size a. Wetter c. Population b. Hotter d. Vegetation c. Cooler d. Drier 3. Which two factors keep the Sahara Desert hot? 8. Antelope squirrels and scorpions are nocturnal desert animals. What can you conclude about them from this fact? a. They live in temperate deserts a. Distance from the ocean and very long summer days b. They live in cold deserts b. Volcanic activity and low-pressure air masses c. They live in the parts of deserts nearest to the ocean c. High-pressure air masses and direct sunlight d. They live in hot deserts d. Heat-absorbing soil and abundant hot springs 9. Most animals in hot deserts can't: 4. Which continent is virtually all desert? a. Drink liquid water a. Africa b. Sweat b. South America c. Sleep c. Asia d. Walk d. Antarctica 10. The roots of cactuses: 5. In which region can the air hold the most moisture? a.
    [Show full text]