A 48 Year Old Male with Jaundice and Exertional Chest Pain Mohammad Mizanur Rahman, Md

Total Page:16

File Type:pdf, Size:1020Kb

A 48 Year Old Male with Jaundice and Exertional Chest Pain Mohammad Mizanur Rahman, Md | Case Presentation | No. 03-2017 | A 48 year old male with jaundice and exertional chest pain Mohammad Mizanur Rahman, Md. Monirul Islam, Susane Giti, Mimi Parvin, Arif Ahmed Khan and Debashish Saha Article Info Presentation of Case cardiac centre of a tertiary care military hospital, Dhaka on 4th May, 2017. The attending Departet of Heatolog, Ared Dr. Md. Monirul Islam: A 48 year old male atten- physician took detailed history of the patient, re Fores Istitute of Patholog, Dhaka Catoet, Dhaka, Bagladesh MMR, ded the cardiac outpatient department with the -examined and evaluated the results of all MMI; Departet of Patholog, Co- complaints of chest pain on exertion. Two years investigations so far done. Here, the history ied Militar Hospital, Chittagog, back, he developed chest pain on exertion. The also unveiled that he is a smoker, taking indige- Bagladesh SG; Departet of Chei- pain was retrosternal, dull in nature, non- nous cigarettes (Biri), about 10 sticks per day, al Patholog, Ared Fores Istitute of Patholog, Dhaka Catoet, Dhaka, radiating, aggravated on exertion and relieved non-diabetic and also suffering from the peptic Bagladesh MP, DS; Departet of by rest. There was no relation with food intake ulcer disease for which he is regularly taking H2 Miroiolog, Ared Fores Istitute of and not relieved by taking H2 blocker. The blocker and also had family history of coronary Patholog, Dhaka Catoet, Dhaka, patient was a known case of hypertension for artery disease. On general examination, all Bagladesh AAK the last 10 years. He was on antihypertensive parameters were within normal limits inclu- medication and his blood pressure was ding blood pressure (130/60 mm Hg) except controlled with therapy. There was no history mild anemia and jaundice. Systemic examina- of respiratory distress and cough. With these tion revealed no abnormality. He also advised For Correspondene: Mohaad Mizaur Raha complaints, he at first attended to a nearby to repeat all previous investigations including [email protected] Government medical college hospital in Barisal coronary angiogram and requested to do some (South central division of Bangladesh). In that more additional investigations such as peri- Reeied: Septeer hospital, the patient was diagnosed as coronary pheral blood film examination, reticulocyte Aepted: Otoer Aailale Olie: Noeer artery disease after performing first line investi- count, hemoglobin electrophoresis and renal gations and referred to the capital city for function tests including eGFR as well as thyroid further evaluation and management. function tests to resolve the problem of hyper- ISSN: - Olie bilirubinemia as well as to see the anesthetic - Prit In a private clinic in Dhaka, he underwent nece- and operation fitness. On the basis of history, ssary routine and special investigations inclu- DOI: ./suj.i. physical findings and results of previous inves- ding full blood count, random blood sugar, tigations carried out in a private clinic. The liver function tests, hepatitis viral profile (anti- attending cardiac surgeon made the provisional HAV, anti-HEV, HBsAg, anti-HCV, anti- HIV, diagnosis. coagulation testing such as bleeding time, Cite this artile: Raha MM, Isla MM, Giti S, Pari clotting time, prothrombin time and activated M, Kha AA, Saha D. A ears old ale partial thromboplastin time, VDRL, TPHA, X- ith jaudie ad eertioal hest pai. ray chest and KUB region, ultrasonogram of Provisional Diagnosis Bagaadhu Sheikh Muji Med Ui J. whole abdomen and coronary angiogram. ; : -. Double vessel coronary artery disease with Results of all investigations revealed mildly hyperbilirubinemia reduced hemoglobin (11.0 g/dL) and mildly Copyright: raised serum bilirubin (3.4 mg/dL). Coronary The opright of this artile is retaited angiogram detected double vessel coronary - the authors [Atriutio CC B .] artery disease. After analyzing the history, Differential Diagnosis clinical findings and the results of all investi- Dr. Mohammad Mizanur Rahman: This patient Availale at: gation, the patient was diagnosed as a case of reported to the hospital for a problem related to .aglajol.ifo double vessel coronary artery disease with mild cardiovascular system and after investigations, jaundice. As the prime problem of the patient A Joural of Bagaadhu Sheikh Muji his diagnosis was almost confirmed as double was related to the cardiovascular system, so the Medial Uiersit, Dhaka, Bagladesh vessel coronary artery disease. But mild hyper- treating physician focused on double vessel bilirubinemia with mild anemia in this patient coronary artery disease and decided to perform indicated the presence of a second pathology coronary artery bypass graft operation. other than the liver disease and was taken into The brother in law of the patient has been consideration for differential diagnosis in this serving in Bangladesh Military, so the patient is present case presentation. Therefore, I would entitled to get treatment in military hospital. like to focus on the following differential Therefore, the patient got admitted into the diagnoses related to mild hyperbilirubinemia 228 BSMMU J 2017; 10: 227-233 with mild anemia. Palestinians and people of Palestinian descent and Asians. In the world, the incidence of beta globin Chronic Malaria chain defect with a carrier rate of 18% of the The history of man and malaria is thought to be population in Maldives is found and the evaluated educed together. A number of genetic conditions frequency is 15% in people from Cyprus, 1% in such as hemoglobin C and red cell Duffy negativity Thailand and 3–7% in populations from Bangla- provide some form of defense or resistance to desh, China, India, Malaysia and Pakistan.9 Plasmodium falciparum and P. vivax respectively and Symptoms of beta thalassemia can vary and may be these conditions are more prevalent in West Africa completely asymptomatic to the signs and symp- and West and Central Africa indicating the original toms of mild anemia (e.g., feeling tired and pale root of malaria in these regions.1 skin) as well as mild jaundice and dark urine. Individuals with beta thalassemia minor may have It is difficult to define chronic malaria as there is some shield against malaria and such phenomenon differences of opinion about its definition. How- explains its high incidence in areas of the world ever, in semi-immune individuals without fever or where plasmodium infections exist.10 Beta thalasse- any other symptoms pertaining to malaria persis- mia heterozygosity is associated with a reduced risk ting for a considerable period may be the features of against advanced coronary artery disease. Indivi- chronic malaria but some authors argues that duals with beta thalassemia have such lipoproteins asymptomatic or chronic malaria does not exist.2, 3 and blood rheology profile that may be the under- Chronic presence of malarial parasites is the cause lying causes of this safeguard effect.11 There is a of mild hemolysis leading to asymptomatic anemia possibility of this patient is being thalassemic as and inclines the affected individuals to other mild anemia and jaundice are present but early infections.4 Patient with malaria may present with development of coronary artery disease is against mild jaundice which is frequently missed clinically. heterozygous beta thalassemia because it has mild Such jaundice is quite common and may be protective effect against coronary artery disease. detected in 20–40% of the cases. Severe P. falciparum malaria is usually associated with deeper jaundice This patient, presented with mild anemia and and serum bilirubin level may be more than 3 mg/ jaundice, favors the diagnosis of inherited hemo- dL and is consociated with anemia, hyperparasite- lytic anemia that may be hemoglobin, red cell mia and malarial hepatitis with elevated serum membrane or enzyme disorders. But age of the enzymes. In all cases of mild jaundice, malaria must patient and absent family history of inherited be considered as a differential diagnosis, preferably hemolytic disorders are the possible points against in a malarious zone.5 In this patient, mild anemia the diagnosis of inherited hemolytic anemia. and jaundice favor the diagnosis of chronic malaria but absence of splenomegaly, previous history of Hemoglobin E: A single point mutation in beta () malaria and residing in non-malarious zone are globin chain at position 26 causing substitution of against the diagnosis of malaria. glutamic acid to lysine results in the formation of an abnormal hemoglobin called HbE. HbE is most Inherited Hemolytic Anemias prevalent among peoples of South Asian countries 12 Mild hyperbilirubinemia is caused by an increased including Bangladesh. Among hemoglobin- rate of hemolysis. The prime cause of unconjugated pathies and thalassemias, HbE is in the second hyperbilirubinemia is the escalated red blood cell position in terms of its frequency among hemo- destruction and accumulation of such bilirubin into globin disorders in the world and also common in 13 various tissues can lead to yellowish or jaundiced Bangladesh. HbE is the most common in mainland appearance. Certain genetic red cell disorders, such Southeast Asia (Thailand, Myanmar, Cambodia, as thalassemia and hemoglobinopathies, spherocy- Laos and Vietnam). In Northeast India, the carrier tosis as well as red cell enzyme defects like pyru- rate of HbE reach approximately 60% of the vate kinase and glucose 6-phosphate dehydroge- population. Its incidence is also very high in 14 nase deficiency can lead to mild hyperbilirubine- Bangladesh.
Recommended publications
  • Phenotypic and Molecular Genetic Analysis of Pyruvate Kinase Deficiency in a Tunisian Family
    The Egyptian Journal of Medical Human Genetics (2016) 17, 265–270 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com ORIGINAL ARTICLE Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family Jaouani Mouna a,1,*, Hamdi Nadia a,1, Chaouch Leila a, Kalai Miniar a, Mellouli Fethi b, Darragi Imen a, Boudriga Imen a, Chaouachi Dorra a, Bejaoui Mohamed b, Abbes Salem a a Laboratory of Molecular and Cellular Hematology, Pasteur Institute, Tunis, Tunisia b Service d’Immuno-He´matologie Pe´diatrique, Centre National de Greffe de Moelle Osseuse, Tunis, Tunisia Received 9 July 2015; accepted 6 September 2015 Available online 26 September 2015 KEYWORDS Abstract Pyruvate Kinase (PK) deficiency is the most frequent red cell enzymatic defect responsi- Pyruvate Kinase deficiency; ble for hereditary non-spherocytic hemolytic anemia. The disease has been studied in several ethnic Phenotypic and molecular groups. However, it is yet an unknown pathology in Tunisia. We report here, the phenotypic and investigation; molecular investigation of PK deficiency in a Tunisian family. Hemolytic anemia; This study was carried out on two Tunisian brothers and members of their family. Hematolog- Hydrops fetalis; ical, biochemical analysis and erythrocyte PK activity were performed. The molecular characteriza- PKLR mutation tion was carried out by gene sequencing technique. The first patient died few hours after birth by hydrops fetalis, the second one presented with neonatal jaundice and severe anemia necessitating urgent blood transfusion. This severe clinical pic- ture is the result of a homozygous mutation of PKLR gene at exon 8 (c.1079G>A; p.Cys360Tyr).
    [Show full text]
  • Non-Commercial Use Only
    only use Non-commercial 14th International Conference on Thalassaemia and Other Haemoglobinopathies 16th TIF Conference for Patients and Parents 17-19 November 2017 • Grand Hotel Palace, Thessaloniki, Greece only use For thalassemia patients with chronic transfusional iron overload... Make a lasting impression with EXJADENon-commercial film-coated tablets The efficacy of deferasirox in a convenient once-daily film-coated tablet Please see your local Novartis representative for Full Product Information Reference: EXJADE® film-coated tablets [EU Summary of Product Characteristics]. Novartis; August 2017. Important note: Before prescribing, consult full prescribing information. iron after having achieved a satisfactory body iron level and therefore retreatment cannot be recommended. ♦ Maximum daily dose is 14 mg/kg body weight. ♦ In pediatric patients the Presentation: Dispersible tablets containing 125 mg, 250 mg or 500 mg of deferasirox. dosing should not exceed 7 mg/kg; closer monitoring of LIC and serum ferritin is essential Film-coated tablets containing 90 mg, 180 mg or 360 mg of deferasirox. to avoid overchelation; in addition to monthly serum ferritin assessments, LIC should be Indications: For the treatment of chronic iron overload due to frequent blood transfusions monitored every 3 months when serum ferritin is ≤800 micrograms/l. (≥7 ml/kg/month of packed red blood cells) in patients with beta-thalassemia major aged Dosage: Special population ♦ In moderate hepatic impairment (Child-Pugh B) dose should 6 years and older. ♦ Also indicated for the treatment of chronic iron overload due to blood not exceed 50% of the normal dose. Should not be used in severe hepatic impairment transfusions when deferoxamine therapy is contraindicated or inadequate in the following (Child-Pugh C).
    [Show full text]
  • Hb S/Beta-Thalassemia
    rev bras hematol hemoter. 2 0 1 5;3 7(3):150–152 Revista Brasileira de Hematologia e Hemoterapia Brazilian Journal of Hematology and Hemotherapy www.rbhh.org Scientific Comment ଝ The compound state: Hb S/beta-thalassemia ∗ Maria Stella Figueiredo Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil Sickle cell disease (SCD) results from a single amino acid small increase in Hb concentration and in packed cell volume. substitution in the gene encoding the ␤-globin subunit However, these effects are not accompanied by any reduction ␤ ( 6Glu > Val) that produces the abnormal hemoglobin (Hb) in vaso-occlusive events, probably due to the great number of named Hb S. SCD has different genotypes with substantial Hb S-containing red blood cells resulting in increased blood 1,2 4,5 variations in presentation and clinical course (Table 1). The viscosity. combination of the sickle cell mutation and beta-thalassemia A confusing diagnostic problem is the differentiation 0 ␤ (␤-Thal) mutation gives rise to a compound heterozygous con- of Hb S/ -Thal from sickle cell anemia associated with ␣ dition known as Hb S/␤ thalassemia (Hb S/␤-Thal), which was -thalassemia. Table 2 shows that hematologic and elec- 3 first described in 1944 by Silvestroni and Bianco. trophoretic studies are unable to distinguish between the two The polymerization of deoxygenated Hb S (sickling) is the conditions and so family studies and DNA analysis are needed 5 primary event in the molecular pathogenesis of SCD. How- to confirm the diagnosis. + ␤ ever, this event is highly dependent on the intracellular Hb In Hb S/ -Thal, variable amounts of Hb A dilute Hb S and composition; in other words, it is dependent on the concen- consequently inhibit polymerization-induced cellular dam- tration of Hb S, and type and concentration of the other types age.
    [Show full text]
  • Non-Transfusion-Dependent Thalassemias
    REVIEW ARTICLES Non-transfusion-dependent thalassemias Khaled M. Musallam, 1 Stefano Rivella, 2 Elliott Vichinsky, 3 and Eliezer A. Rachmilewitz, 4 1Department of Medicine and Medical Specialties, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy; 2Department of Pediatrics, Division of Hematology/Oncology, Weill Medical College of Cornell University, New York, NY, USA; 3Department of Hematology and Oncology, Children’s Hospital and Research Center Oakland, Oakland, CA, USA; and 4Department of Hematology, Wolfson Medical Center, Holon, Israel ABSTRACT Non-transfusion-dependent thalassemias include a variety of phenotypes that, unlike patients with beta ( β)-tha - lassemia major, do not require regular transfusion therapy for survival. The most commonly investigated forms are β-thalassemia intermedia, hemoglobin E/ β-thalassemia, and α-thalassemia intermedia (hemoglobin H disease). However, transfusion-independence in such patients is not without side effects. Ineffective erythropoiesis and peripheral hemolysis, the hallmarks of disease process, lead to a variety of subsequent pathophysiologies including iron overload and hypercoagulability that ultimately lead to a number of serious clinical morbidities. Thus, prompt and accurate diagnosis of non-transfusion-dependent thalassemia is essential to ensure early intervention. Although several management options are currently available, the need to develop more novel therapeutics is jus - tified by recent advances in our understanding of the mechanisms of disease. Such efforts require wide interna - tional collaboration, especially since non-transfusion-dependent thalassemias are no longer bound to low- and middle-income countries but have spread to large multiethnic cities in Europe and the Americas due to continued migration. Introduction survival, although they may require occasional or even fre - quent transfusions in certain clinical settings and usually for Inherited hemoglobin disorders can be divided into two defined periods of time (Figure 1).
    [Show full text]
  • The Variable Manifestations of Disease in Pyruvate Kinase Deficiency and Their Management
    REVIEW ARTICLE The variable manifestations of disease in pyruvate kinase deficiency and their Ferrata Storti Foundation management Hanny Al-Samkari,1 Eduard J. van Beers,2 Kevin H.M. Kuo,3 Wilma Barcellini,4 Paola Bianchi,4 Andreas Glenthøj,5 María del Mar Mañú Pereira,6 Richard van Wijk,7 Bertil Glader8 and Rachael F. Grace9 1Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 2Van Creveldkliniek, University Medical Centre Utrecht, University of Utrecht, Utrecht, the Netherlands; 3Division of Hematology, University of Toronto, University Health Haematologica 2020 Network, Toronto, Ontario, Canada; 4UOS Ematologia, Fisiopatologia delle Anemie, Volume 105(9):2229-2239 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 5Department of Hematology, Herlev and Gentofte Hospital, Herlev, Denmark; 6Translational Research in Rare Anaemia Disorders, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; 7Department of Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; 8Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA, USA and 9Dana/Farber Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA. ABSTRACT yruvate kinase deficiency (PKD) is the most common cause of chron- ic hereditary non-spherocytic hemolytic anemia and results in a Pbroad spectrum of disease. The diagnosis of PKD requires a high index of suspicion and judicious use of laboratory tests that may not always be informative, including pyruvate kinase enzyme assay and genetic analysis of the PKLR gene. A significant minority of patients with PKD have occult mutations in non-coding regions of PKLR which are missed on standard genetic tests.
    [Show full text]
  • Iron Deficiency and the Anemia of Chronic Disease
    Thomas G. DeLoughery, MD MACP FAWM Professor of Medicine, Pathology, and Pediatrics Oregon Health Sciences University Portland, Oregon [email protected] IRON DEFICIENCY AND THE ANEMIA OF CHRONIC DISEASE SIGNIFICANCE Lack of iron and the anemia of chronic disease are the most common causes of anemia in the world. The majority of pre-menopausal women will have some element of iron deficiency. The first clue to many GI cancers and other diseases is iron loss. Finally, iron deficiency is one of the most treatable medical disorders of the elderly. IRON METABOLISM It is crucial to understand normal iron metabolism to understand iron deficiency and the anemia of chronic disease. Iron in food is largely in ferric form (Fe+++ ) which is reduced by stomach acid to the ferrous form (Fe++). In the jejunum two receptors on the mucosal cells absorb iron. The one for heme-iron (heme iron receptor) is very avid for heme-bound iron (absorbs 30-40%). The other receptor - divalent metal transporter (DMT1) - takes up inorganic iron but is less efficient (1-10%). Iron is exported from the enterocyte via ferroportin and is then delivered to the transferrin receptor (TfR) and then to plasma transferrin. Transferrin is the main transport molecule for iron. Transferrin can deliver iron to the marrow for the use in RBC production or to the liver for storage in ferritin. Transferrin binds to the TfR on the cell and iron is delivered either for use in hemoglobin synthesis or storage. Iron that is contained in hemoglobin in senescent red cells is recycled by binding to ferritin in the macrophage and is transferred to transferrin for recycling.
    [Show full text]
  • Prevalence and Management of Iron Overload in Pyruvate Kinase Deficiency
    LETTERS TO THE EDITOR Helsinki. In Lancaster, Pennsylvania, USA, in which all Prevalence and management of iron overload in enrolled patients are Amish, additional laboratory and pyruvate kinase deficiency: report from the Pyruvate radiological data were collected under a site-specific IRB- Kinase Deficiency Natural History Study approved protocol. All patients gave informed consent. The NHS enrolled 278 patients with PK deficiency from Pyruvate kinase (PK) deficiency is the most common June 2014 through April 2017 at 31 centers in 6 countries. red cell glycolytic enzyme defect causing hereditary non- A detailed description of the cohort is published else- spherocytic hemolytic anemia. Current treatments are where.2 Twenty-four patients were excluded due to the mainly supportive and include red cell transfusions and inability to confirm two pathogenic PKLR mutations. splenectomy.1 Regular red cell transfusions are known to Patients under one year old at enrollment were also result in iron overload; however, the prevalence and excluded (n=12) from this analysis, because ferritin is less spectrum of transfusion-independent iron overload in the reliably related to iron overload in this youngest age overall PK-deficient population has not been well group, leaving 242 participants reported herein. Patients defined. This analysis describes the prevalence and clini- were defined as regularly transfused if they had received cal characteristics of iron overload in patients enrolled in ≥6 transfusions in the 12 months prior to enrollment. At the PK Deficiency Natural History Study (NHS) with a enrollment, 82% (198/242) of patients were not receiving focus on those patients who are not regularly transfused.2 regular transfusions; 38% (53/138) of these patients had The PK deficiency NHS protocol (clinicaltrials.gov identi- iron overload as defined by ferritin.
    [Show full text]
  • The Coexistence of Polycythemia Vera and Iron Deficiency Anemia Somchai Insiripong1, Wattana Insiripong2
    CASE REPORT The Coexistence of Polycythemia Vera and Iron Deficiency Anemia Somchai Insiripong1, Wattana Insiripong2 1Department of Medicine, Saint Mary Hospital, Nakhon Ratchasima 30000, Thailand, 2Department of General Practice, NopparatRajathanee Hospital, Khanna Yao, Bangkok 10230, Thailand ABSTRACT Polycythemia vera (PV) is a clonal myeloproliferative neoplasm mainly characterized by an abnormal increase of erythroid precursor cells leading to increased red blood cells (RBC) production that is opposite to iron deficiency anemia (IDA) of which the RBC production is decreased due to iron deficiency. This report was aimed to present one patient who had coexistence of these two opposite entities of the RBC production. She was a 47-year-old Thai who was admitted because of acute coronary syndrome and she was accidentally found to have microcytosis of RBC despite normal hemoglobin (Hb) concentration, Hb 14.7 g%, mean corpuscular volume (MCV) 70.0 fL, white blood cells 12,400/mm3, and platelet 401,000/mm3. The Hb analysis showed only A2A, with normal Hb A2 percentage. The polymerase chain reaction for alpha thalassemia-1 genotype was tested negative. Due to neither alpha- nor beta-thalassemia trait detected, the iron study was performed: Serum ferritin 6.1 ng/mL, serum iron 64 ug/dl, and total iron binding capacity 198 ug/dl. The iron storage was seemingly insufficient; hence, iron supplement was started and continued for 4 months. Her blood tests showed: Hb 18.3 g%, MCV 87.2 fl, serum ferritin 31.7 ng/ml, erythropoietin <1 IU/l, positive JAK2 V617F mutation, and normal oxygen saturation. The diagnosis of PV was definitely concluded and she was finally treated with hydroxyurea and occasional phlebotomy.
    [Show full text]
  • Sickle Beta Plus Thalassemia Disease
    Sickle Beta Plus Thalassemia Disease WHAT IS SICKLE BETA PLUS THALASSEMIA (Hb Sβ+ thal) Sickle Beta + Thalassemia (Sickle BA-ta Plus Thal-a-SEE-me-a) is a "mild" form of sickle cell disease. Your child's red blood cells contain an abnormal hemoglobin called hemoglobin S or sickle hemoglobin in addition to a small amount of the normal hemoglobin called hemoglobin A. The red blood cells have a defect called beta plus thalassemia, which results in cells which are small in size and more pale than usual. Instead of appearing round or donut shaped, your child's red blood cells are somewhat small, pale, and misshapen. Some may appear sickled or banana shaped. Because sickle beta plus thalassemia is inherited, it is a lifelong disorder. There is no treatment or cure. Your child will always have a mild anemia or slightly low blood count. This may cause occasional tiredness or weakness. HOW DID MY CHILD GET SICKLE BETA PLUS THALASSEMIA When one parent has Sickle Trait (AS) and the other parent has Beta Thalassemia Plus Trait (AT+), them is a l-in-4 chance (25 percent) the baby will have normal hemoglobin (AA), Sickle Trait (AS), Beta Thalassemia Plus Trait (AT+), or Sickle Beta Plus Thalassemia (ST +). These chances remain the same for each pregnancy. PROBLEMS SEEN IN CHILDREN WITH SICKLE BETA PLUS THALASSEMIA Painful episodes can occur with sickle-thalassemia. The sickled red blood cells in sickle-thalassemia, somewhat like those in sickle cell anemia, are rigid and stiff and may sometimes cause "log jams" in the small blood vessels in the bones, organs, and other parts of the body.
    [Show full text]
  • Inborn Defects in the Antioxidant Systems of Human Red Blood Cells
    Free Radical Biology and Medicine 67 (2014) 377–386 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Review Article Inborn defects in the antioxidant systems of human red blood cells Rob van Zwieten a,n, Arthur J. Verhoeven b, Dirk Roos a a Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands b Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands article info abstract Article history: Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, Received 16 January 2013 these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include Received in revised form prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair 20 November 2013 of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and Accepted 22 November 2013 promote senescence, but is without chronic hemolytic complaints. In this review we summarize the Available online 6 December 2013 often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH Keywords: is the main source of reduction equivalents in RBCs, used by most of the protective systems. When Red blood cells NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme Erythrocytes deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Hemolytic anemia Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give G6PD deficiency Favism rise to increased oxidative stress caused by free heme and iron generated from hemoglobin.
    [Show full text]
  • Beta Thalassemia
    Beta thalassemia Description Beta thalassemia is a blood disorder that reduces the production of hemoglobin. Hemoglobin is the iron-containing protein in red blood cells that carries oxygen to cells throughout the body. In people with beta thalassemia, low levels of hemoglobin lead to a lack of oxygen in many parts of the body. Affected individuals also have a shortage of red blood cells ( anemia), which can cause pale skin, weakness, fatigue, and more serious complications. People with beta thalassemia are at an increased risk of developing abnormal blood clots. Beta thalassemia is classified into two types depending on the severity of symptoms: thalassemia major (also known as Cooley's anemia) and thalassemia intermedia. Of the two types, thalassemia major is more severe. The signs and symptoms of thalassemia major appear within the first 2 years of life. Children develop life-threatening anemia. They do not gain weight and grow at the expected rate (failure to thrive) and may develop yellowing of the skin and whites of the eyes (jaundice). Affected individuals may have an enlarged spleen, liver, and heart, and their bones may be misshapen. Some adolescents with thalassemia major experience delayed puberty. Many people with thalassemia major have such severe symptoms that they need frequent blood transfusions to replenish their red blood cell supply. Over time, an influx of iron-containing hemoglobin from chronic blood transfusions can lead to a buildup of iron in the body, resulting in liver, heart, and hormone problems. Thalassemia intermedia is milder than thalassemia major. The signs and symptoms of thalassemia intermedia appear in early childhood or later in life.
    [Show full text]
  • Beta- Thalassemia Major
    Finally, there will be iron overload after a couple of years of transfusion. This is a An Introduction major complication of transfusions and requires removal of the iron with medication. (See our Iron Overload pamphlet for more information.) What things should I look out for? The most important things to look for include: • Your child’s color (Is he or she pale?) • If your child is gaining weight • If your child’s appetite is decreasing • If his or her belly looks bigger Published by the Cooley’s Anemia • If your child is crying a lot Foundation, 330 to • Irritability Seventh Ave., #900, • Poor growth New York, NY 10001 • Increased sleepiness/fatigue www.cooleysanemia.org Beta- (800) 522-7222. This • Increased infections publication is made • Anything else that is out of the ordinary. possible by an unrestricted Thalassemia Always call your treatment center with any questions or educational grant from concerns. NO question is a dumb one! Novartis Pharmaceuticals. Major Where can I turn for help? The Cooley’s Anemia Foundation is always ready to provide you with the information you need to deal with thalassemia, including information on many of the complications associated with thalassemia. Please contact us at (800) 522- 7222 or [email protected]. The information in this The Thalassemia Centers of Excellence have the most highly publication is for trained thalassemia experts in the country. They are located educational purposes only at: and is not intended to substitute for medical advice. You should not Children’s Hospital Boston use this information to Children’s Hospital Los Angeles diagnose or treat a health problem or disease Children’s Hospital Oakland without consulting a Children’s Hospital of Philadelphia qualified health care provider.
    [Show full text]