A Thermodynamic Study of the Zeolite Stilbite

Total Page:16

File Type:pdf, Size:1020Kb

A Thermodynamic Study of the Zeolite Stilbite Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1987 A Thermodynamic Study of the Zeolite Stilbite David Adams Howell Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons Recommended Citation Howell, David Adams, "A Thermodynamic Study of the Zeolite Stilbite" (1987). Master's Theses. 1263. https://scholarworks.wmich.edu/masters_theses/1263 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. A THERMODYNAMIC STUDY OF THE ZEOLITE STILBITE by David Adams Howell A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Science Department of Geology Western Michigan University Kalamazoo, Michigan August 1987 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A THERMODYNAMIC STUDY OF THE ZEOLITE STILBITE David Adams Howell, M.S. Western Michigan University, 1987 Stilbite is a calcium-rich zeolite found in low-grade metamorphic and hy- drothermally altered environments. In this study, measurements of the en­ thalpy of formation at 298.15 K, heat capacity from 5 to 350 K, and enthalpy increments horn 350 to 500 K were performed on a specimen of stilbite char­ acterized by electron microprobe analysis. The actual formula of the stilbite is: Cai.oi9Nao.i36Ko.oo6Al2.i8oSi6.82oOis * 7.33HjO. Evaluation of the thermo­ dynamic properties for stilbite at T = 298.15 K produced the following val­ ues: AfH °(T) = —11034.6±6.6 kJ-mol"1, C ^ T ) = 808.73dbl.62 J.K - 1-mol-1, S ° (T )-S ° ( 0) = 805.54dbl.61 J-K -^m ol"1, AfS°(T) = -2990.44±1.86 J-K "1- mol-1, and AfG^(T) = —10143.0±6.6 kJ-mol-1. Comparison of the calorimet- rically derived value for the Gibbs fr ee energy of formation, AfG^,, of stilbite with that calculated from an estimation method (La Iglesia and Anzar, 1986) shows a difference of 49 kJ-mol-1. An attempt was made to retrieve a consistent Gibbs free energy value for laumontite using available phase equilbria and calorimetric data for heulandite and stilbite. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I owe many thanks to those who helped make this research successful. I am indebted to my advisor, John D. Grace, for introducing me to the op­ portunities that existed through the Department of Educational Programs at Argonne National Laboratory. Special thanks are directed to Argonne researchers Patrick A. G. O’Hare, Gerald K. Johnson, and Ian R. Tasker for their patient in­ struction, guidance and suggestions during the course of my thesis work. Recog­ nition of Professor William S. Wise from the University of California, Santa Barbara, for his preparation and analysis of the stilbite is also due. I am very grateful for the typing expertise of Kay Shields at Argonne. Most dearly, I wish to express my appreciation of the love and support given to me by my parents, Stephen and Ann Howell. David A. Howell ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Micixxiims International 300 N. Zeeb Road Ann Arbor, Ml 48106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1331678 A THERMODYNAMIC STUDY OF THE ZEOLITE STILBITE Howell, David Adams, M.S. Western Michigan University, 1987 U MI 300 N. Zeeb Rd. Ann Arbor, MI 48106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages 2. Colored illustrations, paper or print 3. Photographs with dark background _____ 4. Illustrations are poor copy_______ 5. Pages with black marks, not original copy______ 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages S' 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine_______ 10. Computer printout pages with indistinct print______ 11. Page(s) ___________lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages ______ 15. Dissertation contains pages with print at a slant, filmed as received 16. Other________________________________________________ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGEMENTS. ......................................................... ii TABLE OF CONTENTS.................... iii LIST OF TABLES............................................ v LIST OF FIGURES................................................. vi CHAPTER I. INTRODUCTION........................................................... 1 Stilbite Mineralogy...................................................... .... 3 Stilbite Occurrence and Experimental Phase Equilibria .... 4 II. ENTHALPY OF FORMATION OF STILBITE AT 298.15 K .................................... 8 A pparatus..................................... 8 Material Preparation ..........................................................................12 Sample Preparation ........................................................................... 15 Experimental Procedure .............................................. 16 Data Analysis and R esults ....................................................... 17 III. HEAT CAPACITIES OF STILBITE FROM 5 TO 350 K . 24 A pparatus................................. 24 Sample Preparation ........................ ................................................29 Experimental Procedure ........................ ........................................31 Data Analysis and R esults ................................................................32 IV. ENTHALPY INCREMENTS RELATIVE TO 298.15 K OF STILBITE FROM 350 TO 500 K .............................................. 42 Apparatus ......................................................................... 42 Sample Preparation .......................................... 45 m• •• Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents— Continued CHAPTER Experimental Procedure ............................................. 47 Data Analysis and R esults ............................................................ 49 V. DISCUSSION OF RESULTS AND CONCLUSION................................ 53 Comparison With Estimation M ethod ................................................ 53 Retrieval of Gibbs Free Energy of Formation ofLaumontite ............................................ 54 Conclusion ........................................................ 57 APPENDICES A. Definition of Symbols .........................................................
Recommended publications
  • Cavansite, a Calcium and Vanadium Silicate of Formula Ca(VO)(Si4o1o
    .. ,., Cavansite, a calcium and vanadium silicate of formula Ca(VO)(Si4O1o).4H.P, occurs as sky-blue to greenish-blue radiating prismatic rosettes up to~mm in size associated with its dimorph, pentagonite, in a roadcut near Lake Owyhee State Park in Malheur County, Oregon. Discovery of these two minerals is attributed to Mr. and Mrs. Leslie Perrigo of Fruitland, Idaho, (at this locality in 1961), and to Dr. John Cowles at the Goble locality in 1963 (see below). Associated with the cavansite and pentagonite are abundant colorless analcime, stilbite, chabazite, thomsonite and heulandite, as well as colorless to pale yellow calcite, and rare green or colorless apophyllite. This occurence and a similar emplacement (of cavansite only) near Goble, Columbia County, Oregon (co-type localities), represent the only known deposits of these two minerals in the United States. As determined by X-ray fluorescense and crystal stfiucture analysis, cavansite is orthorhombic, conforms to space group Pcmn (D2h 6), has a unit cell with a=lO.298(4), b=l3.999(7), c=9.6O1(2) Angstroms, contains four formula units, is optically biaxial positive and strongly pleochroic. Pentagonite, the dimorph, occurs as prismatic crystals twinned to form fivelings with a star­ shaped cross section. Also orthorhombic, it belongs to space group 12 Ccm21(C2v ), and has a unit cell with a=lO.298(4), b=13.999(7), and c=B.891(2) Angstroms, and also contains ··four formula units. The pentagonite crystals are optically very similar to cavansite, but are biaxially negative. The cell dimensions given tend to vary· to a small degree, presumably because of varying zeolitic water content.
    [Show full text]
  • Apophyllite-(Kf)
    December 2013 Mineral of the Month APOPHYLLITE-(KF) Apophyllite-(KF) is a complex mineral with the unusual tendency to “leaf apart” when heated. It is a favorite among collectors because of its extraordinary transparency, bright luster, well- developed crystal habits, and occurrence in composite specimens with various zeolite minerals. OVERVIEW PHYSICAL PROPERTIES Chemistry: KCa4Si8O20(F,OH)·8H20 Basic Hydrous Potassium Calcium Fluorosilicate (Basic Potassium Calcium Silicate Fluoride Hydrate), often containing some sodium and trace amounts of iron and nickel. Class: Silicates Subclass: Phyllosilicates (Sheet Silicates) Group: Apophyllite Crystal System: Tetragonal Crystal Habits: Usually well-formed, cube-like or tabular crystals with rectangular, longitudinally striated prisms, square cross sections, and steep, diamond-shaped, pyramidal termination faces; pseudo-cubic prisms usually have flat terminations with beveled, distinctly triangular corners; also granular, lamellar, and compact. Color: Usually colorless or white; sometimes pale shades of green; occasionally pale shades of yellow, red, blue, or violet. Luster: Vitreous to pearly on crystal faces, pearly on cleavage surfaces with occasional iridescence. Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle. Hardness: 4.5-5.0 Specific Gravity: 2.3-2.4 Luminescence: Often fluoresces pale yellow-green. Refractive Index: 1.535-1.537 Distinctive Features and Tests: Pseudo-cubic crystals with pearly luster on cleavage surfaces; longitudinal striations; and occurrence as a secondary mineral in association with various zeolite minerals. Laboratory analysis is necessary to differentiate apophyllite-(KF) from closely-related apophyllite-(KOH). Can be confused with such zeolite minerals as stilbite-Ca [hydrous calcium sodium potassium aluminum silicate, Ca0.5,K,Na)9(Al9Si27O72)·28H2O], which forms tabular, wheat-sheaf-like, monoclinic crystals.
    [Show full text]
  • Swiss Society of Mineralogy and Petrology
    Swiss Society of Mineralogy and Petrology http://ssmp.scnatweb.ch A MAJOR BREAKTHROUGH IN SWITZERLAND – THE GOTTHARD BASE TUNNEL On 15 October 2010, the last meter of rock separating the northern and southern parts of the eastern tube of the new Gotthard base tunnel disaggregated into dust. With a length of 57 km, it is currently the longest railroad tunnel in the world. It was built with a total deviation of only 1 cm vertically and 8 cm horizontally from the planned axis, and it traverses the Alps at an altitude of only 550 m above sea level. The tunnel was excavated using tunnel-boring machines and classical blasting in more schistose zones. Construction started in 1996, and to reduce the total construction time, excavation was carried out simul- taneously in several sections. The tunnel will be fully operational in 2017. Most rock types present at the surface are also found at tunnel level, almost 2.5 km below the surface, because the rock strata and foliations have a steep dip in this section of the Alps. The Gotthard region is famous for well-formed minerals occurring in Alpine-type fi ssures, and thus it was anticipated that mineralized cavities would be located in Quartz crystals 28 to 35 cm in length. PHOTO: PETER VOLLENWEIDER the new tunnel. For this reason, “mineral guards” were employed, whose duties were to collect, document and preserve mineralized clefts On May 13, 2011, the Natural History Museum in Bern opened a new encountered during tunnel excavation. The best sample material is permanent exhibit featuring one of the largest quartz crystal fi nds in currently exhibited in museums in Seedorf (Mineralienmuseum Schloss the Swiss Alps.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Cavansite Ca(V O)Si4o10 ² 4H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    4+ Cavansite Ca(V O)Si4O10 ² 4H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: As prismatic crystals, to 1 mm, elongated [001]; dominant forms 110 and 101 ; as spherulitic rosettes, to 5 mm. k f g f g Physical Properties: Cleavage: Good on 010 . Tenacity: Brittle. Hardness = 3{4 D(meas.) = 2.21{2.31 D(calc.) = 2.33 f g Optical Properties: Transparent. Color: Brilliant sky-blue to greenish blue. Luster: Vitreous. Optical Class: Biaxial (+). Pleochroism: Pronounced; X = Z = colorless; Y = blue. Orientation: X = b; Y = a; Z = c. Dispersion: r < v; extreme. ® = 1.542(2) ¯ = 1.544(2) ° = 1.551(2) 2V(meas.) = 52(2)± Cell Data: Space Group: P cmn: a = 9.792(2) b = 13.644(3) c = 9.629(2) Z = 4 X-ray Powder Pattern: Owyhee Dam, Oregon, USA. 7.964 (100), 6.854 (50), 6.132 (25), 3.930 (25), 3.420 (25), 2.779 (25), 4.531 (13) Chemistry: (1) (2) SiO2 49.4 53.24 VO2 17.1 18.38 CaO 11.5 12.42 H2O [21.0] 15.96 rem: 0.8 Total [99.8] 100.00 (1) Oregon; by XRF, H2O by estimation; actual H2O content established by structure analysis. (2) Ca(VO)Si4O10 ² 4H2O: Polymorphism & Series: Dimorphous with pentagonite. Occurrence: In a brown tu® partly ¯lling a fault ¯ssure (Lake Owyhee State Park, Oregon, USA); in a vesicular basalt and red tu® breccia, as cavity ¯llings and in calcite veinlets (Chapman quarry, Oregon, USA); in pores of altered basalt breccia and tu®aceous andesite (Poona district, India).
    [Show full text]
  • Thermal Stability of the Stilbite-Type Framework: Crystal Structure of the Dehydrated Sodium/Ammonium Exchange Form
    American Mineralogist, Volume 6E, pages 414419, 1983 Thermal stability of the stilbite-type framework: crystal structure of the dehydratedsodium/ammonium exchange form Wrlrnreo J. Monrren Katholieke Universiteit Le uven Centrum voor Oppervlaktescheikundeen Colloildale Scheikunde de Croylaan 42 8-3030Leuven (Heverlee),Belgium Abstract O-T bridges between them occurs. The cations are located at the six-ring site and the flat eight-ring site, and residual water moleculesat the boat-shapedeight-ring. The framework Oistortionsare cation-induced and readily affect the cuboid polyhedron of the framework which is formed by joining adjacent structural units' Introduction protons, but also cations such as K+ and Rb* with a sufficiently low ionic potential (Passaglia, 1980) may Stilbite-type minerals are zeolites with a two-dimen- "stabilize" the stilbite-type framework. The K and Rb sional interconnected channel system. Ten-membered forms do not undergo appreciable contraction and their ringsof (Si, Al) Oatetrahedra (free diametet4.1 x 6.24, destruction occurs only at fusion, i.e., at about 10fi)"C. Meier and Olson, 1978)Iimit the pore size of the largest As the dehydrated Ca-form exhibits a smaller fraction channels. These intersect with smaller ch-annelswith of broken T-O-T bonds (Alberti et al', 1978)than the eight-ring apertures(free diameter 2.7 x 5.7A, Meier and dehydratedNa-form (Alberti et al.,1978), the number of Olson, 1978). The inner surface should therefore be cations might be an important parameter. A further readily accessibleto small molecules and these minerals reduction of the number of cations is attempted here in could have a potential use as molecular sieves or cata- the study of a dehydrated Na-H-stilbite form.
    [Show full text]
  • Mineralogical Notes on Mesolite and Scolecite from Japan
    MINERALOGICAL JOURNAL, VOL . 5, No. 5, PP. 309-320, SEPT., 1968 MINERALOGICAL NOTES ON MESOLITE AND SCOLECITE FROM JAPAN KAZuo HARADA Section of Geology, Chichibu Museum of Natural History , Nagatoro 1417, Chichibu-gun, Saitama MAMORU HARA Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo and KAZUSO NAKAO Chemical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo ABSTRACT Occurrence of mesolites and scolecite was confirmed in veinlets or amyg dales in andesitic or basaltic rocks in Japan. The results of chemical, physical and X-ray studies of these minerals are described, with their mineral associ ations and modes of occurrences. Introduction Mesolite and scolecite are usually classified as common fibrous zeolites, but there has been no report on the occurrence of these zeolites in Japan though the thermal and chemical data of mesolite from Tezuka, Nagano, Japan, was given by Koizumi (1953). However, our routine examinations of fibrous zeolites in the National Science Museum, Tokyo, recently confirmed that mesolite and scolecite are not so rare in Japan as hitherto believed. This paper deals with the 310 Mineralogical Notes on Mesolite and Scolecite from Japan descriptions of scolecite and mesolites from Japan. a) Mesolite from Tezuka, Nishisioda-mura, Chiisagata-gun, Naga no, Japan (coll. by Takaharu Imayoshi). This mineral occurs as fibrous aggregates, sometimes associated with heulandite, in the vein lets (2-3cm wide) in andesitic tuff breccia. The DTA, TGA and chemical analysis of this specimen were provided by Koizumi (1953). b) Mesolite from Oshima, Otsuki City, Yamanashi, Japan (coll. by the writers). This mineral occurs as fibrous aggregates closely associated with stilbite in amygdales (1-2cm) of thoroughly altered olivine basalt.
    [Show full text]
  • Stilbite, Stellerite, and Laumontite at Honningsvåg, Magerø, Northern Norway
    Stilbite, stellerite, and laumontite at Honningsvåg, Magerø, northern Norway. By Per Chr. Sæbø1, Paul H. Reitan2, and J. J. C. Geul3 Samples from two localities near Honningsvåg on the island of Magerø, northern Norway, were found to contain zeolites. Stilbite (desmine) and stellerite occur on joint surfaces in the steeply dipping Eocambrian schists at Juldagsneset, SE of Honningsvåg, and laumon tite was found on joint surfaces N of Honningsvåg, in the contact metamorphosed rock (hornfels) adjacent to the gabbroic rocks near Honningsvåg. A sample from Juldagsneset, which includes part of a nearly vertical joint, shows that the joint is filled by calcite and in some parts rather much of a pink zeolite, the calcite being innermost and the zeo lite occurring on both sides. In small cavities there occur small, radial aggregates of a colorless zeolite. The x-ray powder diagrams of the two zeolites are identical, but on the basis of optical data wc have identified them as stilbite and stellerite, respectively. Along with the stilbite there can occasionally be seen a little bright green epidote. Stilbite occurs as a coating on the surfaces of the vein calcite. Individual grains are difficult to delimit but are up to about 2 mm in size. Crystal forms are not well developed. a = 1 .487 ± 0.004 and aAc~3°. The color is light, yellowish pink. Stellerite occurs in small, semi-spherical, radial aggregates mostly about 0.5 mm in diameter but some are up to about 1 mm. The crystals are apparently complexly twinned. a = 1 .485 ± 0.003 and y ~ or < 1.500.
    [Show full text]
  • What We Know About Subduction Zones from the Metamorphic Rock Record
    What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g.
    [Show full text]
  • Oxygen Isotope Studies of Zeolites: Stilbite, Analcime, Heulandite, and Clinoptilolite-I. Analytical Technique*
    Stable Isotope Geochemistry; A Tribute to Samuel Epstein © The Geochemical Society, Special Publication No.3, 1991 Editors: H. P. Taylor, Jr., J. R. O'Neil and I. R. Kaplan Oxygen isotope studies of zeolites: Stilbite, analcime, heulandite, and clinoptilolite-I. Analytical technique* XIAHONGFENGt and SAMUELM. SAVIN Department of Geological Sciences, Case Western Reserve University, Cleveland, OH 44106, U.S.A. Abstract-An analytical technique for measuring 8180 values of the zeolites stilbite, analcime, heu- landite, and clinoptilolite has been developed and tested. The framework oxygen of these minerals can be isotopically analyzed with a good precision using a standard dehydration procedure developed in this study. The analytical accuracy, however, is impaired by isotopic exchangebetween the framework oxygen and channel water, which is unavoidable during the process of dehydration. The errors thus introduced into the isotopic analyses can be corrected empirically using a calibration curve generated by controlled experiments. INTRODUCTION of performing isotopic analyses of zeolites. The 0180 THEOXVGENISOTOPICcomposition of a mineral is value of the framework (i.e., aluminosilicate) oxy- a function of both the 180/60 ratio of the ambient gen of a zeolite can be measured only after the re- fluid and the temperature of the environment in moval of channel water. Second, the occurrence of which it formed. If the mineral is not in equilibrium labile channel water within the open framework with its environment, its isotopic composition is structure of zeolites raised suspicions that the also affected by the extent to which it exchanged framework oxygen of these minerals might be sus- with the environment prior to the time it was col- ceptible to post-formational isotopic exchange.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Characterization of Fibrous Mordenite: a First Step for the Evaluation of Its Potential Toxicity
    crystals Article Characterization of Fibrous Mordenite: A First Step for the Evaluation of Its Potential Toxicity Dario Di Giuseppe 1,2 1 Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy; [email protected] 2 Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, I-42122 Reggio Emilia, Italy Received: 4 August 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: In nature, a huge number of unregulated minerals fibers share the same characteristics as asbestos and therefore have potential adverse health effects. However, in addition to asbestos minerals, only fluoro-edenite and erionite are currently classified as toxic/pathogenic agents by the International Agency for Research on Cancer (IARC). Mordenite is one of the most abundant zeolites in nature and commonly occurs with a fibrous crystalline habit. The goal of this paper is to highlight how fibrous mordenite shares several common features with the well-known carcinogenic fibrous erionite. In particular, this study has shown that the morphology, biodurability, and surface characteristics of mordenite fibers are similar to those of erionite and asbestos. These properties make fibrous mordenite potentially toxic and exposure to its fibers can be associated with deadly diseases such as those associated with regulated mineral fibers. Since the presence of fibrous mordenite concerns widespread geological formations, this mineral fiber should be considered dangerous for health and the precautionary approach should be applied when this material is handled. Future in vitro and in vivo tests are necessary to provide further experimental confirmation of the outcome of this work.
    [Show full text]