Human Population 2017 Lecture 14 Modeling a Foundational Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Zero Carbon': the Wrong Problem Diagnosis, the Wrong 2050 Metric of Success, for New Zealand and the World
‘Zero Carbon’: The Wrong Problem Diagnosis, The Wrong 2050 Metric of Success, for New Zealand and The World. The government surely must agree?: Climate Change is 'merely' one symptom' of ‘The Real Problem’? ‘The Real Problem’ is that Humanity is living well beyond the bioregenerative capacity of the Planet's Ecosystem. (>70% Beyond!) 1970 was the last time the world was in balance, and ever since then the deficit has been steadily increasing without any sign of abating! (This with all the ‘amazing’ ‘Sustainability’ work going on around the world!) The ‘Issue’ is about ‘real’ 'Sustainable Living' and what ‘that’ really means for ‘The World’, a ‘Nation’, and right down to each, and every individual? I'm sure every New Zealander would agree: 'Sustainable Living', and being a 'Sustainable Nation', means: 'We' as a collective, should all be living within our 'fair share' of less than One Planet's, Ecological Regenerative Biocapacity limits? This surely must be, '‘The Ultimate Goal’' of humanity? It's well accepted that anthropogenic Carbon Emissions are a huge contributor to ‘The Real Problem’, but due to the inter-relationship between the Earth's bioregenerative resources, the solution, and particularly when looking to 2050, requires more than a simple, Carbon Emissions, or a ‘Zero Carbon’ focus. (This particularly for nation’s like NZ with strong and diverse Biocapacity Balance Sheets.) At an ‘enclosed system’, global level, a ‘Zero Carbon’ goal may have real relevance in solving ‘The Real Problem’, however, given the huge demographic, and biodiversity diversity between the nations of the world, setting ‘Zero Carbon’ goals at a nation level has the potential to delay, deceive, and confuse efforts to solve ‘The Real Problem’. -
Population Growth & Resource Capacity
Population Growth & Resource Capacity Part 1 Population Projections Between 1950 and 2005, population growth in the U.S. has been nearly linear, as shown in figure 1. Figure 1 U.S. Population in Billions 0.4 0.3 0.2 Actual Growth 0.1 Linear Approximation - - - H L Year 1950 1960 1970 1980 1990 2000 2010 Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. World Population Prospects: The 2010 Revision. If you looked at population growth over a longer period of time, you would see that it is not actually linear. However, over the relatively short period of time above, the growth looks nearly linear. A statistical technique called linear regression can create a linear function that approximates the actual population growth over this period very well. It turns out that this function is P = 0.0024444t + 0.15914 where t represents the time variable measured in years since 1950 and P represents the (approximate) population of the U.S. measured in billions of people. (If you take statistics, you’ll probably learn how to obtain this function.) The graph of this linear function is shown in the figure above. (1) Just to make sure that you understand how to work with this function, use it to complete the following table. The actual population values are given. If you are working with the function correctly, the values you obtain should be close to the actual population values! Actual Population t P Year (billions of people) (years) (billions of people) 1960 .186158 1990 .256098 2005 .299846 (2) Use the linear function to determine the approximate year when the population of the U.S. -
Evaluating the Interconnectedness of the Sustainable Development Goals Based on the Causality Analysis of Sustainability Indicators
sustainability Article Evaluating the Interconnectedness of the Sustainable Development Goals Based on the Causality Analysis of Sustainability Indicators Gyula Dörg˝o 1,† , Viktor Sebestyén 2,† and János Abonyi 1,* 1 MTA-PE “Lendület” Complex Systems Monitoring Research Group, Department of Process Engineering, University of Pannonia, Egyetem u. 10, P.O. Box 158, H-8201 Veszprém, Hungary; [email protected] 2 Institute of Environmental Engineering, University of Pannonia, Egyetem u. 10, P.O. Box 158, H-8201 Veszprém, Hungary; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 20 June 2018; Accepted: 15 October 2018; Published: 18 October 2018 Abstract: Policymaking requires an in-depth understanding of the cause-and-effect relationships between the sustainable development goals. However, due to the complex nature of socio-economic and environmental systems, this is still a challenging task. In the present article, the interconnectedness of the United Nations (UN) sustainability goals is measured using the Granger causality analysis of their indicators. The applicability of the causality analysis is validated through the predictions of the World3 model. The causal relationships are represented as a network of sustainability indicators providing the opportunity for the application of network analysis techniques. Based on the analysis of 801 UN indicator types in 283 geographical regions, approximately 4000 causal relationships were identified and the most important global connections were represented in a causal loop network. The results highlight the drastic deficiency of the analysed datasets, the strong interconnectedness of the sustainability targets and the applicability of the extracted causal loop network. -
Ecological Footprint
ECOLOGICAL FOOTPRINT HK 2019 CONTENTS MESSAGE FROM THE 02 ECOLOGICAL FOOTPRINT DIRECTOR OF CONSERVATION 04 GLOBAL TREND If everyone led the lifestyle of Hong Kongers, 4.2 Earths would be required to fulfil our resource needs, a significant increase from the 2016 figure of 3.9 Earths. Hong Kong’s 06 HONG KONG TREND Ecological Footprint is the second worst per-capita in the Asia-Pacific region and tenth worst globally. 08 PRODUCTIVE LAND & SEA Half of the Hong Kong’s Ecological Footprint comes from food (21%), clothing (15%), personal transportation (8%), and electricity (7%). 10 FOOD 21% Since the 1970s, Hong Kong’s economy has seen an average of 8.9% growth of GDP in real 12 CLOTHING 15% terms annually. Its Ecological Footprint recorded an annual 5% growth till the mid-90s. During the Asian Financial Crisis in 1997 and 1998, both GDP and Ecological Footprint 14 CASE STUDIES dropped. As GDP dropped so did our strain on natural resources. Consistent trends of GDP and Ecological Footprint were seen during the SARS outbreak in 16 CHANGE THE WAY WE LIVE 2003 and the global financial crisis in 2007 and 2008. Since 2009, the economy started to recover, and the Ecological Footprint has worsened ever since. With the continual growth of our GDP, our Ecological Footprint may continue to increase if we adopt a business-as- usual approach. A shift in our daily habits, coupled with support from business and government, can help to stem the runaway consumption that is impacting the habitats and natural resources we depend on. -
Human Population 2018 Lecture 8 Ecological Footprint
Human Population 2018 Lecture 8 Ecological footprint. The Daly criterea. Questions from the reading. pp. 87-107 Herman Daly “All my economists say, ‘on the one hand...on the other'. Give me a one- handed economist,” demanded a frustrated Harry S Truman. BOOKS Daly, Herman E. (1991) [1977]. Steady-State Economics (2nd. ed.). Washington, DC: Island Press. Daly, Herman E.; Cobb, John B., Jr (1994) [1989]. For the Common Good: Redirecting the Economy toward Community, the Environment, and a Sustainable Future (2nd. updated and expanded ed.). Boston: Beacon Press.. Received the Grawemeyer Award for ideas for improving World Order. Daly, Herman E. (1996). Beyond Growth: The Economics of Sustainable Development. Boston: Beacon Press. ISBN 9780807047095. Prugh, Thomas; Costanza, Robert; Daly, Herman E. (2000). The Local Politics of Global Sustainability. Washington, DC: Island Press. IS The Daly Criterea for sustainability • For a renewable resource, the sustainable rate to use can be no more than the rate of regeneration of its source. • For a non-renewable resource, the sustainable rate of use can be no greater than the rate at which a renewable resource, used sustainably, can be substituted for it. • For a pollutant, the sustainable rate of emmission can be no greater that the rate it can be recycled, absorbed or rendered harmless in its sink. http://www.footprintnetwork.org/ Ecosystem services Herbivore numbers control Carbon capture and Plant oxygen recycling and production soil replenishment Soil maintenance and processing Carbon and water storage system Do we need wild species? (negative) • We depend mostly on domesticated species for food (chickens...). • Food for domesticated species is itself from domesticated species (grains..) • Domesticated plants only need water, nutrients and light. -
Ecological Footprint
ukuran performansi sustainability Rethingking Wealth in a Resource-Constrained World (1) . Access to ecosystem services will become an ever more critical factor for economic success and resilience in 21st century. Why? New era of peak energy and climate A Global change supply- demand crunch of Food essential shortage, biodiversity resources loss, depleted fisheries, soil erosion and freshwater stress . Humanity is already in “overshoot”, using more resources than Earth can renew. Rethingking Wealth in a Resource-Constrained World (2) . Futher degradation of the Earth’s capacity to generate resources, continuing accumulation of greenhouse gases and other waste, make likely shortage, or even collapse, of critical ecosystems. Climate debate: Who act first may be at a competitive disadvantage vs the opposite . In an age of growing resource scarcity, the wealth of nations increasingly will be defined in terms of who has ecological assets, and who does not. Rethingking Wealth in a Resource-Constrained World (3) . Without significant change, countries that depend extensively upon ecological resources from abroad will become particularly vulnerable to supply chain disruptions, and to rising costs for greenhouse gas emissions and waste disposal. Countries and states with sufficient ecological reserves to balance their own consumption or even export resources will be at a competitive advantage, ex: BedZed in UK and Masdar in UAE (can operate on small ecological footprint) The Role of Metrics . Clear metrics can help change ideological debates into discussion based on empirical facts. The Ecological Footprint was developed over 15 years ago to help provide just such a metric. Footprint Basics - Overview . Human activities consume resources and produce waste, and as our populations grow and global consumption increases, it is essential that we measure nature’s capacity to meet these demands. -
A Synopsis: Limits to Growth: the 30-Year Update
do nellameado ws.o rg http://www.donellameadows.org/archives/a-synopsis-limits-to-growth-the-30-year-update/ A Synopsis: Limits to Growth: The 30-Year Update By Donella Meadows, Jorgen Randers, and Dennis Meadows Chelsea Green (United States & Canada) Earthscan (United Kingdom and Commonwealth) Diamond, Inc (Japan) Kossoth Publishing Company (Hungary) A Synopsis: Limits to Growth: The 30-Year Update The signs are everywhere around us: Sea level has risen 10–20 cm since 1900. Most non-polar glaciers are retreating, and the extent and thickness of Arctic sea ice is decreasing in summer. In 1998 more than 45 percent of the globe’s people had to live on incomes averaging $2 a day or less. Meanwhile, the richest one- f if th of the world’s population has 85 percent of the global GNP. And the gap between rich and poor is widening. In 2002, the Food and Agriculture Organization of the UN estimated that 75 percent of the world’s oceanic f isheries were f ished at or beyond capacity. The North Atlantic cod f ishery, f ished sustainably f or hundreds of years, has collapsed, and the species may have been pushed to biological extinction. The f irst global assessment of soil loss, based on studies of hundreds of experts, f ound that 38 percent, or nearly 1.4 billion acres, of currently used agricultural land has been degraded. Fif ty-f our nations experienced declines in per capita GDP f or more than a decade during the period 1990–2001. These are symptoms of a world in overshoot, where we are drawing on the world’s resources f aster than they can be restored, and we are releasing wastes and pollutants f aster than the Earth can absorb them or render them harmless. -
Defying the Footprint Oracle: Implications of Country Resource Trends
sustainability Article Defying the Footprint Oracle: Implications of Country Resource Trends Mathis Wackernagel 1,* , David Lin 1 , Mikel Evans 1, Laurel Hanscom 1 and Peter Raven 2 1 Global Footprint Network, 426 17th Street, Suite 700, Oakland, CA 94612, USA; [email protected] (D.L.); [email protected] (M.E.); [email protected] (L.H.) 2 Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-510-839-8879 (ext. 305) Received: 1 February 2019; Accepted: 4 April 2019; Published: 11 April 2019 Abstract: Mainstream competitiveness and international development analyses pay little attention to the significance of a country’s resource security for its economic performance. This paper challenges this neglect, examining the economic implications of countries resource dynamics, particularly for low-income countries. It explores typologies of resource patterns in the context of those countries’ economic prospects. To begin, the paper explains why it uses Ecological Footprint and biocapacity accounting for its analysis. Data used for the analysis stem from Global Footprint Network’s 2018 edition of its National Footprint and Biocapacity Accounts. Ranging from 1961 to 2014, these accounts are computed from UN data sets. The accounts track, year by year, how much biologically productive space is occupied by people’s consumption and compare this with how much productive space is available. Both demand and availability are expressed in productivity-adjusted hectares, called global hectares. Using this biophysical accounting perspective, the paper predicts countries’ future socio-economic performance. This analysis is then contrasted with a financial assessment of those countries. -
Investigations Into the Club of Rome's World3 Model : Lessons for Understanding Complicated Models
Investigations into the Club of Rome's World3 model : lessons for understanding complicated models Citation for published version (APA): Thissen, W. A. H. (1978). Investigations into the Club of Rome's World3 model : lessons for understanding complicated models. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR79372 DOI: 10.6100/IR79372 Document status and date: Published: 01/01/1978 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
The Limits to Growth: the 30-Year Update
Donella Meadows Jorgen Randers Dennis Meadows Chelsea Green (United States & Canada) Earthscan (United Kingdom and Commonwealth) Diamond, Inc (Japan) Kossoth Publishing Company (Hungary) Limits to Growth: The 30-Year Update By Donella Meadows, Jorgen Randers & Dennis Meadows Available in both cloth and paperback editions at bookstores everywhere or from the publisher by visiting www.chelseagreen.com, or by calling Chelsea Green. Hardcover • $35.00 • ISBN 1–931498–19–9 Paperback • $22.50 • ISBN 1–931498–58–X Charts • graphs • bibliography • index • 6 x 9 • 368 pages Chelsea Green Publishing Company, White River Junction, VT Tel. 1/800–639–4099. Website www.chelseagreen.com Funding for this Synopsis provided by Jay Harris from his Changing Horizons Fund at the Rockefeller Family Fund. Additional copies of this Synopsis may be purchased by contacting Diana Wright at the Sustainability Institute, 3 Linden Road, Hartland, Vermont, 05048. Tel. 802/436–1277. Website http://sustainer.org/limits/ The Sustainability Institute has created a learning environment on growth, limits and overshoot. Visit their website, above, to follow the emerging evidence that we, as a global society, have overshot physcially sustainable limits. World3–03 CD-ROM (2004) available by calling 800/639–4099. This disk is intended for serious students of the book, Limits to Growth: The 30-Year Update (2004). It permits users to reproduce and examine the details of the 10 scenarios published in the book. The CD can be run on most Macintosh and PC operating systems. With it you will be able to: • Reproduce the three graphs for each of the scenarios as they appear in the book. -
Ecological Footprint and Biocapacity Accounting: Arab Region Perspective and Implications for SDG12
Ecological Footprint and Biocapacity Accounting: Arab Region perspective and implications for SDG12 “Resource Efficiency in the Arab Region: Monitoring Progress of SDG 12 and Building Back Better from COVID-19” Table of Contents Part I 1. Premises and Accounting Principles 2. The Method: How the Metric Works Part II 3. Results 4. Reflections: how Ecological Footprint informs SDG12 (Anthropocene) Lots of evidence. But how do we operationalize this? Conditions Outcome (…) climate biodiversity nutrients land & oceans Regeneration ozone layer no pollutants water no acidification 5 We call nature’s regeneration “Biocapacity” . the ability of ecosystems to regenerate plant matter (ecologists call “NPP”) . the food source for all non-plant life . powered by the sun . attached to surface ECOLOGICAL FOOTPRINT: An Ecological Balance Sheet For Countries Biocapacity: The Ecological Footprint is an How much bioproductive environmental accounting area is available to us? tool that identifies the extent to which human activities exceed two types of environmental limits: • resource production Ecological Footprint: • waste absorption How much bioproductive area do we demand? NATIONAL FOOTPRINT ACCOUNTS FRAMEWORK • Every year we release an updated version of the NFA, based on most up-to-date Footprint methodology and input data • Input to the EF framework: UN Data (15’000 data points per country and year) • Each edition tracks EF and BC values for almost 200 Outcomes: countries (and the World), over five decades (1961- National Footprint 2016) and with different level of aggregation: Accounts - NFA 1. Aggregate national EF and BC values (most known) 2. EF and BC values by land type 3. EF values by variable 4. -
Carrying Capacity a Discussion Paper for the Year of RIO+20
UNEP Global Environmental Alert Service (GEAS) Taking the pulse of the planet; connecting science with policy Website: www.unep.org/geas E-mail: [email protected] June 2012 Home Subscribe Archive Contact “Earthrise” taken on 24 December 1968 by Apollo astronauts. NASA Thematic Focus: Environmental Governance, Resource Efficiency One Planet, How Many People? A Review of Earth’s Carrying Capacity A discussion paper for the year of RIO+20 We travel together, passengers on a little The size of Earth is enormous from the perspective spaceship, dependent on its vulnerable reserves of a single individual. Standing at the edge of an ocean of air and soil; all committed, for our safety, to its or the top of a mountain, looking across the vast security and peace; preserved from annihilation expanse of Earth’s water, forests, grasslands, lakes or only by the care, the work and the love we give our deserts, it is hard to conceive of limits to the planet’s fragile craft. We cannot maintain it half fortunate, natural resources. But we are not a single person; we half miserable, half confident, half despairing, half are now seven billion people and we are adding one slave — to the ancient enemies of man — half free million more people roughly every 4.8 days (2). Before in a liberation of resources undreamed of until this 1950 no one on Earth had lived through a doubling day. No craft, no crew can travel safely with such of the human population but now some people have vast contradictions. On their resolution depends experienced a tripling in their lifetime (3).