<<

First Operation of the Swiss Light Source

'SLS at the (PSI), Villigen, Switzerland $

EPAC’02 Michael Boge¨ 1 & % First Operation of the Swiss Light Source

' SLS Team at PSI $

EPAC’02 Michael Boge¨ 2 & % First Operation of the Swiss Light Source

' Contents $

Layout of the SLS • Injectors • – Booster – Pre-Injector Linac • – Lattice Calibration – Beam Current, Vacuum, Lifetime, Stability – Innovative Subsystems Operation Experience •

EPAC’02 Michael Boge¨ 3 & % First Operation of the Swiss Light Source

' SLS Layout $

Pre-Injector Linac • – 100 MeV Booster Synchrotron • – 100 MeV to 2.7 GeV @ 3 Hz

– x = 9 nm rad Storage Ring • – 2.4 (2.7) GeV, 400 mA

– x = 5 nm rad Initial Four Beamlines: • MS – 4S, PX – 6S, SIS – 9L, SIM – 11M

EPAC’02 Michael Boge¨ 4 & % First Operation of the Swiss Light Source

' SLS Time Schedule $

Sep 1993 Conceptual Design Report Jun 1997 Final Approval by Swiss Government Jun 1999 Building Erected Apr 2000 Linac Commissiong Finished Sep 2000 Booster Commissiong Finished Dec 2000 First Stored Beam in Storage Ring Jun 2001 Design Current of 400 mA reached First Top-up Operation Jul 2001 First PX Experiment Aug 2001 70 % User Operation May 2002 500 Ah Integrated Beam Current

EPAC’02 Michael Boge¨ 5 & % First Operation of the Swiss Light Source

' SLS Budget $

in MCHF (1 CHF = 0.69 EUR)

Total Project Budget 159 159 without salaries Building 63 63 “turn key” with infrastructure Accelerators planned spent General 12 11 Linac 6 6 Booster 12 11 Storage Ring 42 40 Total 96 92 4 for Beamlines Beamlines 24 28

EPAC’02 Michael Boge¨ 6 & % First Operation of the Swiss Light Source

' Booster Synchrotron - Design $

– 3 FODO arcs with 48 BD (+SD) 6.4410 ◦and 45 BF (+SF) 1.1296 ◦ – 3 6 Quadrupoles for Tuning, 54 BPMs, 2 54 Correctors × · – 15 mm 10 mm Vacuum Chamber  ×  – Energy: 100 MeV 2.7 GeV, Repetition Rate: 3 Hz, Circumference: 270 m → – Magnet Power: 205 kW, x @ 2.4 GeV: 9 nm rad

Maximum Energy GeV 2.7 Circumference m 270 Lattice FODO with 3 straight s of 8.68 m Harmonic number (15x30=) 450 Storage RF frequency MHz 500 Ring OTR Peak R F voltage MV 0.5 Injection Maximum current mA 12 Maximum rep. Rate Hz 3 Booster Tunes 12.39 / 8.35 Injection Ch romaticities −1 / −1 Momentum compaction 0.005 Equilibrium v alues at 2.4 GeV Emittance nm rad 9 0 5 10 15 20 25m Radiation l oss keV/ turn 233 Linac Energy spread, rms 0.075 % Partition numbers (x,y, ε) (1.7, 1, 1.3) Damping times (x,y,ε) ms (11, 19, 14) EPAC’02 Michael Boge¨ 7 & % First Operation of the Swiss Light Source

' Booster Synchrotron - Commissioning I $

Jul 3 Start Booster Commissioning Jul 11 First Turn WITHOUT Correctors 2000 Jul 13 RF on, 100000 turns @ 100 MeV Aug 8 Acceleration to 2.4 GeV Sep 20 Charge 1 nC (=1.1 mA) @ 2.4 GeV

“Null Orbit” of 2.5 mm rms 0.2 mm rms Magnet Misalignment • → Charge 1 nC Storage Ring Filling Time to 400 mA of 3 min • → ≈ Linac – Booster Efficiency after Energy Filtering ( 0.5 %) 100 % •  Losses @ 100 MeV: Start Magnet Ramp @ 60 MeV, Inject @ 100 MeV •  = 9 nm rad Booster – Ring Efficiency 100 % • x → EPAC’02 Michael Boge¨ 8 & % First Operation of the Swiss Light Source

' Booster Synchrotron - Commissioning II $

Losses on Ramp: None after Sextupole Correction (Eddy Currents) and • Tune Correction on Ramp avoiding 3rd Integer: ( TUPRI098) →

Why Success ? Digital Power Supply Control: • – Allows Precise Control of Optics Parameters on the 160 ms ramp Why Success ? “All in One” Digital BPM System • EPAC’02 Michael Boge¨ 9 & % First Operation of the Swiss Light Source

' Pre-Injector Linac - Design - Commissioning $

100 MeV, 3 GHz S-Band “turn key” System: 90 kV grid gun: 1 ns pulse or 500 MHz train • Sub-Harmonic Pre-Buncher (500 MHz) • 4-cell Travelling Wave (TW) Buncher (β = 0.6) • 16-cell TW Buncher (β = 0.95 4 MeV) • → 2 50 MeV TW Accelerating Structures (5.2 m, β = 1) • × Commissioning (Jan – Apr 2000):

Exceeds Specifications in 1 ns pulse and 500 MHz train Mode Charge 1.5 2 2.3 nC Energy Jitter < 0.25 < 0.1 < 0.1 % • Energy Spread < 0.5 0.2 0.3 % Emittance < 0.25 0.25 0.2 mm mrad

EPAC’02 Michael Boge¨ 10 & % First Operation of the Swiss Light Source

' Injectors - Operation $

Pre-Injector Linac: • – Commissiong Jan – Apr 2000 – By Apr 2002 6000 h of Operation with Excellent Reliability (< 1 Trip/Day) and Reproducibility Booster Synchrotron: • – Commissiong Jul – Sep 2000 – By Apr 2002 5500 h of Operation with Excellent Reliability and Reproducibility Injectors Reliable and Reproducible !-) Vital for Top-Up Operation 8-)

EPAC’02 Michael Boge¨ 11 & % First Operation of the Swiss Light Source

' Storage Ring (SR) - Design $

Beta functions [m] Dispersion [m] 12 TBA: 8 / 14 /8 40 0.4 ◦ ◦ ◦ β η • y x 12 Straight Sections: 30 β 0.2 • x – 3 11 m (nL) × 20 0 Injection, U212 ∗ 10 −0.2 – 3 7 m (nM) × UE56 0 −0.4 ∗ 0 arc (TBA 8−14−8) s[m] arc (TBA 8−14−8) 96 – 6 4 m (nS) × Energy [GeV] 2.4 (2.7) 2 RF, W61, U24 Circumference [m] 288 ∗ × RF frequency [MHz] 500 5 Energy: 2.4 GeV (2.7 GeV) Harmonic number (2 x3x5 =) 480 • Peak RF voltage [MV] 2.6 Current [mA] 400 x: 5 nm rad Single bunch current [mA] ≤ 10 • Tunes 20.38 / 8.16 Current: 400 mA Natural chromaticity −66 / −21 • Momentum compaction 0.00065 Critical photon energy [keV] 5.4 Circumference: 288 m Natural emittance [nm rad] 5.0 • Radiation loss per turn [keV] 512 Tune: 20.38 / 8.16 Energy spread [10−3] 0.9 • Damping times (h/v/l) [ms] 9 / 9 / 4.5 Chromaticity: -66 / -21 Bunch length [mm] 3.5 • EPAC’02 Michael Boge¨ 12 & % First Operation of the Swiss Light Source

' Beamlines and Insertion Devices (IDs) $

SIS/9L Surfaces and Interfaces Spectroscopy

ID: 2 Electromagnetic Twin 20 10 × U24 SLS 2.4 GeV Energy: UE212 8-800 eV I = 400 mA UE56 → 19 SIM/11M Surfaces and Interfaces Microscopy 10 UE212 18 /400mA] 10 ID: 2 APPLE II Type Twin Undulator 2 /mr

× 2

Energy: UE56 90 eV-3 KeV 17 → 10 PX/6S Protein Crystallography 16 W61 10 ID: In-Vacuum Undulator

15 Dipole Energy: U24 8-14 KeV (from Spring-8) 10

→ Brightness [photons/s/0.1%bw/mm MS/4S Material Science 14 10 ID: High Field Wiggler

Energy: W61 5-40 KeV 10 eV 100 eV 1keV 10keV → Photon Energy

EPAC’02 Michael Boge¨ 13 & % First Operation of the Swiss Light Source

' IDs - High Field Wiggler W61 (5-40 KeV) $

EPAC’02 Michael Boge¨ 14 & % First Operation of the Swiss Light Source

' IDs - In-Vacuum Undulator U24 (8-14 KeV) $

EPAC’02 Michael Boge¨ 15 & % First Operation of the Swiss Light Source

'IDs - Electromagnetic Twin Undulator UE212 (8-800 eV) $

EPAC’02 Michael Boge¨ 16 & % First Operation of the Swiss Light Source

'IDs - APPLE II Type Twin Undulator UE56 (90 eV-3 KeV) $

EPAC’02 Michael Boge¨ 17 & % First Operation of the Swiss Light Source

' SR - “Milestones 2000” $

Dec 13 First turn Dec 15 First stored beam of 3 mA at 10 min lifetime Dec 19 Lifetime of 8 h at 3 mA ≈

EPAC’02 Michael Boge¨ 18 & % First Operation of the Swiss Light Source

' SR - “Milestones 2001” $

Jan 19 Current of 18 mA in a relaxed optics mode Feb 28 Current of 100 mA, operation in the optics modes: low emittance, distributed dispersion Apr 8 First single bunch operation Apr 26 Measurement / correction of beta functions May 4 Closed orbit correction to µm level Jun 5 Design current of 400 mA Jun 23 First top-up injection Jul 10 PX beamline operational Jul 19 Slow global orbit feedback operational Aug 9 First operation of the multi-bunch feedback Aug 9 MS beamline operational Aug 10 SIS beamline operational Nov 21 SIM beamline operational

EPAC’02 Michael Boge¨ 19 & % First Operation of the Swiss Light Source

' SR - Emittances, Energy Spread I $

Design and Simulation: • Natural Emittance: x0 = 5.0 nm rad Emittance Ratio: y/x = 0.1 % 3 Energy Spread: σe = 0.9 10 · − Measurements: • Betatron Coupling κ (Closed Tune Approach): – κ = 5.0 % κ = 0.7 % (sextupole shortcuts) → – κ = 0.1 % with skew quadrupoles Dispersion (Difference Orbit): – < η2 > 4 mm y ≈ – y 15 pm rad, y/x 0.3 % →p ≈ ≈ Pinhole Array: βx = 0.8 m,βy = 14.8 m,ηx = 4.4 cm,ηy 1 cm ≈ – On Coupling Resonance: 3 – σy x0 = 5.28 nm rad, σx σe = 1.47 10 → → · − – At Normal Working Point: 3 – σx σe = 1.5 10 , σy y/x = 1.5 % → · − → EPAC’02 Michael Boge¨ 20 & % First Operation of the Swiss Light Source

' SR - Energy Spread II, Energy $

1.09e+06 Data Froissart−Stora Fit Polarized Level 1.08e+06 Depolarized Level

1.07e+06

1.06e+06

1.05e+06

1.04e+06

1.03e+06 Current*Touschek_Lifetime [mA*s] 1.02e+06

1.01e+06

1e+06 2.434e+092.4345e+092.435e+092.4355e+092.436e+092.4365e+092.437e+092.4375e+092.438e+09 Energie [eV]

7th Harmonic of U24 at 8 mm gap: • 3 – σe = 0.9 10 · − – Beam Energy E = 2.44 GeV

Resonant Spin Depolarization: ν = 5.45, Peq 91 % with τp = 30 min ( TUPRI011) • spin ≈ → – Beam Energy E = 2.4361 5 10 5 GeV  · − EPAC’02 Michael Boge¨ 21 & % First Operation of the Swiss Light Source

' SR - Working Points $

Design: ν = 20.82 / ν = 8.28 • x y Operating: ν = 20.38 / ν = 8.16 • x y ν = 20.38 / ν = 11.16 • x y ν = 20.42 / ν = 8.19 • x y Tuning Range: ν : 20.05 20.495 ( 20 1 ) • x → × 3 ν : 8.01 >20.5 ( 8 1 ) • y → × 2 – order 1,2,3,4 – - - - non systematic – skew · · · EPAC’02 Michael Boge¨ 22 & % First Operation of the Swiss Light Source

' SR - Chromaticities, Energy Acceptance $

Chromaticities: Sextupoles Off: • ξ = 66 / ξ = 21 x − y − Sextupoles On: • ξx = +1 / ξy = +1 Measured: • ξx = +1.6 / ξy = +0.5 Tune ν(dp/p): Simulate/Measure → ∆f = 12 KHz +10 KHz • − → ∆p/p = +3.0 % 4.7 % • → − ∆f/f=α∆p/p+α (∆p/p)2 • 1 – α = 6.52 10 4 · − 3 – α1 = 4.56 10 · − EPAC’02 Michael Boge¨ 23 & % First Operation of the Swiss Light Source

' SR - Beta Functions $

30 measurement 174 Quadrupoles with Individual PS model betax beat ~4% measurement−model 25 →→ Gradient Correction: 20 Procedure: 15 10

• average betax [m] 1. Measure < β > for i=1..174 i 5 δν = 1 β(s)δk(s)ds − 4π 0

Precision: 1.5 / 1.0 % 30 measurement ≈ model H betay beat ~3% measurement−model 2. Fit Errors δki to < βi > (SVD) 25

20 3. Correct < βi > with -δki 15 4. Measure < βi > again 10 Results: average betay [m] • 5 – Horizontal β Beat: 4 % 0

≈ 0 50 100 150 200 250 – Vertical β Beat: 3 % s [m] ≈ EPAC’02 Michael Boge¨ 24 & % First Operation of the Swiss Light Source

' SR - Beam Current $

Design & Achieved: I = 400 mA Transverse Instability:

Vertical/Horizontal Multi-Bunch Instability (MBI) for ξy 1 / ξx < 0 • ≈ No Correlation to Higher Order Modes (HOMs) in Cavities ( TUPRI009) • → Cures: • – Large ξy +4-5, Moderate ξx +2 ≈ ≈ – Gap in Filling Pattern (390 bunches in 480 buckets) – Low Residual Gas Pressure – Transverse Multi-Bunch Feedback (TMBF) – Pinhole Images @ 100 mA, No Gap:

EPAC’02 Michael Boge¨ 25 & % First Operation of the Swiss Light Source

' SR - MBI - Ion Trapping $

EPAC’02 Michael Boge¨ 26 & % First Operation of the Swiss Light Source

' SR - MBI - Resistive Wall $

EPAC’02 Michael Boge¨ 27 & % First Operation of the Swiss Light Source

' SR - Vacuum $

9 Design & Achieved: N Equivalent Pressure @ 400 mA 2 10− mbar 2 → · Evolution of the Dynamic Pressure dP/I:

beam port

BPM

rib e− rib

absorber and pump port BPM Partial Pressures: Hydrogen (70 %) and Carbon Monoxide (30 %) Success for Stainless Steel Antechamber Design With External Bakeout →

EPAC’02 Michael Boge¨ 28 & % First Operation of the Swiss Light Source

' SR - Lifetime $

EPAC’02 Michael Boge¨ 29 & % First Operation of the Swiss Light Source

' SR - Top-Up $

Typical Top-Up Run in April 2002: ( TUPRI012) → 1.4 x y 1.2

1

0.8

I=200 mA − 200.5 mA m] m 0.6

0.4

Beam position [ 0.2

0

-0.2

-0.4 0 500 1000 1500 2000 2500 3000 3500 25.4.2002 29.4.2002 Beam revolutions [~.96 µs]

Beam Current Constant: ∆I/I < 3 10 3 • · − Kicker Bump Closed: xrms 100 µm, yrms < 50 µm • ≈ Injection (every 2 min) with Closed Gaps: Losses @ IDs OK • ≈ Injection with Shutters Open: Radiation in Experimental Areas OK • Injection Efficiency: 80 % (large ξy +4) • ≈ ≈ Linac and Booster Alwarys Running Gun and Kicker Triggers On/Off • → Users Like Top-Up (-: Mostly Top-Up Runs Scheduled :-) • EPAC’02 Michael Boge¨ 30 & % First Operation of the Swiss Light Source

' SR - Stability $

EPAC’02 Michael Boge¨ 31 & % First Operation of the Swiss Light Source

' SR - Slow Global Orbit Feedback $

830 ARIDI-BPM-05SB -> U24 y ref position 50 828 320 mA top−up a) 826 x−y scatterplot

m] 824 df µ dP/P ~ 2e−5 822 y position [ 820

818

1 Sample816 / s µ m -10 -5 0 5 10 x position [µm]

5000 x RMS orbit ARIDI-BPM-05SB -> U24 fit (√=0.52 µm) 10 hours x=[−21:29]µm 4500 4000 b) Top−Up 3500 ~0.5 mu m y RMS orbit 3000

y=[0:50] µm 2500

2000

0 number of seconds ~0.2 mu rad 1500

1000 @U24

500

0 -10 -5 0 5 10 x position [µm]

5000 Slow Global Orbit Feedback (SOFB) ARIDI-BPM-05SB -> U24 √ 2 µ 4500 fit ( =0.69 m) c) (−> THXGB001,THPRI030) 4000 dE/E~1e−5 3500 − 2 Hz Orbit Sampling Rate 3000 2500 ~0.7 mu m − 1/3 Hz Correction Rate (1 x/y Cycle) 2000 number of seconds 1500 − Path Length Correction with RF 1000 ~0.25 mu rad 500

0 −> Closed Orbit: xrms = yrms ~1 mu m 816 818 820 822 824 826 828 830 y position [µm] EPAC’02 Michael Boge¨ 32 & % First Operation of the Swiss Light Source

' SR - Innovative Subsystems - Digital BPM System $

Only One BPM System PSI + in Different Operation Mode for All Machines

Turn−by−Turn: 1 MSample/s, <20 mu m Closed Orbit: 4 KSample/s, <1.2 mu m

Turn−by−Turn: Vital for Commissioning

Closed Orbit Mode −> Fast GlobalOrbit Feedback (−> THXGB001,THPRI030) EPAC’02 Michael Boge¨ 33 & % First Operation of the Swiss Light Source

' SR - Innovative Subsystems - Digital Power Supplies $

One Digital Control Unit for ~600 power supplies of the SLS

Short/Long Term: 1/30 ppm

EPAC’02 Michael Boge¨ 34 & % First Operation of the Swiss Light Source

' SR - Innovative Subsystems - Magnet Girders $

Girder Rail Precision: 15 mu m Magnet Axis Calibration: 30 mu m Remotely Controlled Girder Movers −> "Beam−Based Girder Alignment" Null Orbit: xrms~2 mm, yrms~1 mm −> Magnet Misalignments < 50 mu m rms

EPAC’02 Michael Boge¨ 35 & % First Operation of the Swiss Light Source

' SLS Operation Experience $

ARIDI-PCT:CUR-HOUR [Ah] from 11. Jan 2001 to 25. Apr 2002 500 May 2002: 500 Ah accumulated 450 in 2002: 250 Ah 400

350

300

250 70% for Users

200

150

100 Jan−Apr 2002: 1300 h Operation for Users 50 with 90% Availability 0 05.Jul.01 12.Apr.01 25.Oct.01 11.Apr.02 07.Jun.01 17.Jan.02 15.Mar.01 14.Mar.02 14.Feb.02 22.Nov.01 20.Dec.01 02.Aug.01 30.Aug.01 27.Sep.01 10.May.01 09.May.02 Industrial Users @ PX Beamline in 2002: First Exciting Results from PX: 68 Shifts Sold

EPAC’02 Michael Boge¨ 36 & %