APP a Marine Ecology Study.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

APP a Marine Ecology Study.Pdf Proposed Construction, Operation and Decommissioning of the Marine Outfall Pipeline and Associated Infrastructure for Frontier Saldanha Utilities (Pty) Ltd in the Saldanha Bay Region, Western Cape Marine Ecology Specialist Study Prepared for: Prepared by: PISCES Environmental Services (Pty) Ltd September 2014 PISCES Envir onmental Services (Pt y) Lt d Contact Details: Andrea Pulfrich, Pisces Environmental Services PO Box 31228, Tokai 7966, South Africa, E-mail: [email protected] Environmental Impact Assessment (EIA) for the proposed construction, operation and decommissioning of the Saldanha Regional Marine Outfall project of Frontier Saldanha Utilities (Pty) Ltd. at Danger Bay in the Saldanha Bay region EXPERTISE AND DECLARATION OF INDEPENDENCE This report was prepared by Dr Andrea Pulfrich of Pisces Environmental Services (Pty) Ltd. Established in 1998, Pisces has aquired considerable experience in undertaking specialist environmental impact assessments, baseline and monitoring studies, and Environmental Management Programmes relating to marine diamond mining and dredging, hydrocarbon exploration, harbour expansions and thermal/hypersaline effluents. Andrea has a BSc (Hons) and MSc degree in Zoology from the University of Cape Town and a PhD in Fisheries Biology from the Institute for Marine Science at the Christian-Albrechts University, Kiel, Germany. She is a registered Environmental Assessment Practitioner and member of the South African Council for Natural Scientific Professions, South African Institute of Ecologists and Environmental Scientists, and International Association of Impact Assessment (South Africa). This specialist report was compiled as a desktop study on behalf of the CSIR, Stellenbosch for their use in preparing an Environmental Impact Assessment Report and developing an Environmental Management Plan for the proposed construction, operation and decommissioning of the marine outfall pipeline and associated infrastructure for Frontier Saldanha Utilities (Pty) Ltd in the Saldanha Bay Region, Western Cape. The compilation followed a review process of published (peer reviewed) and unpublished literature and the assessment of potential impacts based on proposed activities and identification of impacts (and their mitigation) within the available literature. I do hereby declare that Pisces Environmental Services (Pty) Ltd is financially and otherwise independent of the Applicants and CSIR. Dr Andrea Pulfrich VOLUME II, Appendix A – Marine Ecology Study i Environmental Impact Assessment (EIA) for the proposed construction, operation and decommissioning of the Saldanha Regional Marine Outfall project of Frontier Saldanha Utilities (Pty) Ltd. at Danger Bay in the Saldanha Bay region TABLE OF CONTENTS ABBREVIATIONS, UNITS AND GLOSSARY ....................................................................................... IV EXECUTIVE SUMMARY ........................................................................................................................ XI 1 INTRODUCTION .............................................................................................................................. 1 1.1 Scope of Work ......................................................................................................................... 2 1.2 Approach to the Study ............................................................................................................. 2 1.3 Limitations and Assumptions ................................................................................................... 3 1.4 Structure of the Report ............................................................................................................ 4 1.5 Legal and Permitting Requirements ........................................................................................ 4 2 PROJECT DESCRIPTION ............................................................................................................. 12 2.1 The REE Separation Plant .................................................................................................... 12 2.2 The Chlorine, Caustic Soda and Hydrochloric Acid Facility .................................................. 13 2.3 The Waste Water Treatment Facility ..................................................................................... 14 2.4 The Desalination Plant .......................................................................................................... 15 2.5 Saldanha Regional Marine Outfall ......................................................................................... 16 3 IDENTIFICATION OF KEY ISSUES AND SOURCES OF POTENTIAL ENVIRONMENTAL IMPACT .......................................................................................................................................... 20 3.2 Identification of Key Issues .................................................................................................... 20 3.2.1 Construction Phase .............................................................................................. 20 3.2.2 Operational Phase ................................................................................................ 20 3.2.4 Decommissioning Phase ...................................................................................... 21 3.3 Assessment Methodology ..................................................................................................... 22 4 DESCRIPTION OF THE AFFECTED ENVIRONMENT ................................................................. 25 4.1 Geographical Setting ............................................................................................................. 25 4.2 Physical Environment ............................................................................................................ 26 4.2.1 Winds, Currents and Circulation Patterns ............................................................ 26 4.2.2 Waves and Tides .................................................................................................. 27 4.2.3 Upwelling and Plankton Production ..................................................................... 28 4.2.4 Organic Inputs ...................................................................................................... 29 4.2.5 Low Oxygen Events ............................................................................................. 30 4.2.6 Turbidity ................................................................................................................ 31 4.3 Biological Environment .......................................................................................................... 32 4.3.1 Sandy Substrate Habitats and Biota .................................................................... 32 4.3.2 Rocky Substrate Habitats and Biota .................................................................... 34 4.3.3 The Water Body ................................................................................................... 40 4.3.4 Beneficial Uses ..................................................................................................... 44 5 MODELLED CHANGES IN THE MARINE ENVIRONMENT DUE TO DISCHARGES OF EFFLUENTS TO THE MARINE ENVIRONMENT ......................................................................... 49 5.1 Scenarios Modelled ............................................................................................................... 49 5.2 Model Results ........................................................................................................................ 50 6 ASSESSMENT OF ENVIRONMENTAL IMPACTS ....................................................................... 57 6.1 Assessment of Potential Environmental Impacts .................................................................. 57 6.1.1 Construction of Discharge Pipeline ...................................................................... 57 6.1.2 Operational Phase ................................................................................................ 68 6.1.3 Decommisioning Phase ...................................................................................... 121 6.2 Project Impacts and Environment Interaction Points .......................................................... 121 6.3 Cumulative Impacts ............................................................................................................. 121 VOLUME II, Appendix A – Marine Ecology Study ii Environmental Impact Assessment (EIA) for the proposed construction, operation and decommissioning of the Saldanha Regional Marine Outfall project of Frontier Saldanha Utilities (Pty) Ltd. at Danger Bay in the Saldanha Bay region 7 RECOMMENDATIONS AND CONCLUSIONS ............................................................................ 122 7.1 Environmental Acceptability and Comparison of Alternatives ............................................. 122 7.2 Mitigation Measures ............................................................................................................ 123 7.3 Monitoring Recommendations ............................................................................................. 125 7.4 Conclusions ......................................................................................................................... 127 8 REFERENCES ............................................................................................................................. 131 A.1 Potential Effects
Recommended publications
  • An Eclectic Overview of the SA Marine Science Community
    A biologists’ personal overview of the SA Marine Science community and its outputs (2001-2006)*1 Mark J Gibbons, Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. Email: [email protected] ABSTRACT I have analysed 1 295 of the outputs published by the South African Marine Science Community (SAMSC) in either peer-reviewed journals or as books/book chapters for the period 2001-2006, with a view to identifying trends in the field, summarizing institutional overlaps and assessing the demographic state-of-play. Although almost 70% of our outputs were published internationally, we published the bulk of our research in strictly marine science journals which suggests, perhaps, that we need to be thinking bigger. More than 22% of all outputs were led by International colleagues, and these were published in journals with a significantly higher Impact Factor than those led by local authors. Women led less than 25%, and persons from previously disadvantaged backgrounds led less than 10%, of all outputs: this needs monitoring, discussion and pro-active response by employers. Thirty-six authors (~95% male, ~97% white) were responsible for more than 50% of all outputs, which suggests that the field is not totally dominated by an ageing cohort. Despite the fact that the bulk of the SAMSC is centred in the SW Cape, our study areas are approximately equally spread around the coastline, though there is an obvious institutional bias to the geographical location of study sites. Globally-orientated studies were generally published in “better” outlets than locally-orientated work, and were more likely to be led by international colleagues.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Appendix2 2 Marine and Coa
    Amendment of Environmental Management Programmes for Mining Rights 554MRC, 10025MRC, 512MRC and 513MRC Marine and Coastal Ecology Assessment Prepared for: SLR Environmental Consulting (Pty) Ltd On behalf of: Alexkor RMC Pooling and Sharing JV October 2017 Amendment of Environmental Management Programmes for Mining Rights 554MRC, 10025MRC, 512MRC and 513MRC MARINE AND COASTAL ECOLOGY ASSESSMENT Prepared for SLR Environmental Consulting (Pty) Ltd On behalf of: Alexkor RMC Pooling and Sharing JV Prepared by Andrea Pulfrich Pisces Environmental Services (Pty) Ltd September 2017 Contact Details: Andrea Pulfrich Pisces Environmental Services PO Box 31228, Tokai 7966, South Africa, Tel: +27 21 782 9553 E-mail: [email protected] Website: www.pisces.co.za MARINE and COASTAL ECOLOGY – EMPR Amendment for Mining Rights 554MRC, 10025MRC, 512MRC and 513MRC TABLE OF CONTENTS 1. GENERAL INTRODUCTION .............................................................................................. 1 1.1. Scope of Work ................................................................................................ 1 1.2. Approach to the Study ...................................................................................... 2 1.2.1 Assumptions, Limitations and Information Gaps ................................................ 2 1.2.2 Impact Assessment Methodology .................................................................. 3 2. DESCRIPTION OF THE PROPOSED PROJECT ......................................................................... 6 2.1.
    [Show full text]
  • Joseph Heller a Natural History Illustrator: Tuvia Kurz
    Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Sea Snails Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Joseph Heller Evolution, Systematics and Ecology The Hebrew University of Jerusalem Jerusalem , Israel ISBN 978-3-319-15451-0 ISBN 978-3-319-15452-7 (eBook) DOI 10.1007/978-3-319-15452-7 Library of Congress Control Number: 2015941284 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Contents Part I A Background 1 What Is a Mollusc? ................................................................................
    [Show full text]
  • Turbo Sarmaticus Linnaeus 1758 CONTENTS
    GROWTH, REPRODUCTION AND FEEDING BIOLOGY OF TURBO SARMA TICUS (MOLLUSCA: VETIGASTROPODA) ALONG THE COAST OF THE EASTERN CAPE PROVINCE OF SOUTH AFRICA THESIS Submitted in Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by GREGORY GEORGE FOSTER November 1997 Turbo sarmaticus Linnaeus 1758 CONTENTS Acknowledgements Abstract ii CHAPTER 1 : General introduction 1 CHAPTER 2 : Population structure and standing stock of Turbo sarmaticus at four sites along the coast of the Eastern Cape Province Introduction 12 Materials and Methods 14 Results 20 Discussion 36 References 42 CHAPTER 3 : Growth rate of Turbo sarmaticus from a wave-cut platform Introduction 52 Materials and Methods 53 Results 59 Discussion 62 References 69 CHAPTER 4 : The annual reproductive cycle of Turbo sarmaticus Introduction 80 Materials and Methods 81 Results 84 Discussion 100 References 107 CHAPTER 5 : Consumption rates and digestibility of six intertidal macroalgae by Turbo sarmaticus Introduction 118 Materials and Methods 121 Results 126 Discussion 140 References 149 CHAPTER 6 : The influence of diet on the growth rate, reproductive fitness and other aspects of the biology of Turbo sarmaticus Introduction 163 Materials and Methods 165 Results 174 Discussion 189 References 195 CHAPTER 7 : Polysaccharolytic activity of the digestive enzymes of Turbo sarmaticus Introduction 207 Materials and Methods 210 Results 215 Discussion 219 References 227 CHAPTER 8 : General discussion 236 ACKNOWLEDGEMENTS I am extremely indebted to my supervisor and mentor, Prof. Alan Hodgson, with whom I am honoured to have had such a successful association. His continued confidence, guidance, integrity and friendship throughout this study were a source of reassurance and inspiration.
    [Show full text]
  • GMB.CV-'07 Full General
    CURRICULUM VITAE: GEORGE MEREDITH BRANCH 2.1. Biographic sketch: BORN : Salisbury, Zimbabwe, 25 September 1942. Married, two children. UNIVERSITY EDUCATION: University of Cape Town. B.Sc. 1963 Majors in Zoology and Botany, distinction in the former. Class medals for best student in second and third year Zoology. B.Sc. Hons. 1964. First class honours in Zoology PhD 1973. EMPLOYMENT: Zoology department, University of Cape Town Junior Lecturer, 1965-1966 Lecturer, 1967-1974 Ad hoc promotion to Senior Lecturer 1975 Ad hoc promotion to Associate Professor, 1979 Ad hom . promotion to Professorship 1985. Student adviser, Life Sciences, 1975-1987 Postgraduate Summer Course, Friday Harbor Marine Laboratories, 1985. Head of Department of Zoology, UCT, 1988-1990, 1994-1996 Chairman, School of Life Sciences, 1991 Chairman, Undergraduate Affairs, Zoology Department 1993 AWARDS: Purcell Prize for best postgraduate biological thesis - 1965. Fellowship of the University of Cape Town - 1983 Distinguished Teachers Award - 1984 UCT Book Award - 1986 - for "The Living Shores of Southern Africa". Fellowship of the Royal Society of South Africa - 1990. Appointed Director of FRD Coastal Ecology Unit -1991. Awarded Gold Medal by Zoological Society of Southern Africa - 1992. Awarded Gilchrist Gold Medal for contributions to marine science - 1994. UCT Book Award - 1995 - for "Two Oceans - a Field Guide to the Marine Life of southern Africa" (Jointly awarded to CL Griffiths, ML Branch, LE Beckley.) International Temperate Reefs Award for Lifetime Contributions to Marine Science – 2006. FRD RATING AND FUNDING: Rated in 1985 as qualifying for comprehensive support for funding from the Foundation for Research Development. Re-rated in 1990, 1994 and 1998 as category 'A' (scientists recognised as international leaders – approximately the top 4% of scientists in South Africa).
    [Show full text]
  • The Diet of the Freshwater Clingfish, Gobiesox Cephalus (Teleostei: Gobiesocidae)
    The Diet of the freshwater clingfish, Gobiesox cephalus (Teleostei: Gobiesocidae) Kaitlyn Forks Melissa Hopkins Sarah Veillon Whitney Ward Dominica Study Abroad 2014 Texas A&M University Dr. Thomas Lacher, Jr. and Dr. Jim Woolley Abstract The purpose of this study is to describe the diet of the freshwater clingfish, Gobiesox cephalus (Lacepède 1800), based on specimens collected from the Belfast River in Dominica, West Indies. 29 specimens were collected in total from an 88 foot stretch of river, with an average depth of 8.16 inches and average velocity of 0.7 m/s. Stomach content analysis revealed the diet of the freshwater clingfish to be comprised almost exclusively of aquatic insect larvae, specifically Trichoptera, Chironomidae, Ephemeroptera, Zygoptera, Diptera, and unidentifiable insect parts. Cycloid scales and small stones were also found in the stomachs of a small number of individuals. The diet of the freshwater clingfish differs from that of other clingfishes that have been investigated to date, which feed predominantly on crustaceans and other hard-bodied invertebrates. Introduction Members of the family Gobiesocidae are small marine fishes found predominantly in the intertidal zones of the Atlantic (including the Mediterranean Sea) and Indo-Pacific Oceans (Briggs, 1955). There are however a few members of the family that inhabit freshwater. The freshwater species are predominately found in Central and northern South America and inhabit fast moving rivers (Briggs, 1955). Commonly known as clingfish, gobiesocids possess a remarkable suction disk on their ventral surface with which they attach to the substrate (Wainwright et al., 2014). At present, there are 164 species distributed across 47 genera (Eschmeyer and Fong, 2011).
    [Show full text]
  • Apletodon Gabonensis, a New Species of Clingfish (Teleostei: Gobiesocidae) from Gabon, Eastern Atlantic Ocean
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Apletodon gabonensis, a new species of clingfish (Teleostei: Gobiesocidae) from Gabon, eastern Atlantic Ocean RONALD FRICKE AND PETER WIRTZ Fricke, R. and P. Wirtz 2018. Apletodon gabonensis, a new species of clingfish (Teleostei: Gobiesocidae) from Gabon, eastern Atlantic Ocean. Arquipelago. Life and Marine Sciences 36: 1 - 8. https://doi.org/10.25752/arq.19847 The clingfish Apletodon gabonensis sp. nov. is described on the basis of seven specimens and colour photographs from Gabon, eastern Atlantic Ocean. The species is small, apparently not exceeding 20 mm total length; it is characterized by having 5 dorsal-fin rays, 4-5 anal-fin rays, 25-27 pectoral-fin rays, head width in males 2.6-4.7 in SL, anus in males with urogenital papilla present but not pronounced; snout long, broad, anteriorly truncate in male, narrower and rather pointed in female; preorbital length 1.8-3.8 in head length; conspicuous maxillary barbel absent in both sexes; disc with 10-12 rows of papillae in region A, 5 rows of papillae in region B, and 5-7 rows of papillae in region C. The new species is compared with the other species of the genus; a key to the males of the 6 known species of the eastern Atlantic genus Apletodon is presented. Key words: clingfishes, systematics, Gabon, distribution, identification key. Ronald Fricke (e-mail: [email protected]), Im Ramstal 76, 97922 Lauda-Königshofen, Germany. PeterWirtz (e.mail: [email protected]), Centro de Ciências do Mar, Universidade do Algarve, PT-8005-139 Faro, Portugal.
    [Show full text]
  • University of Cape Town (UCT) in Terms of the Non-Exclusive License Granted to UCT by the Author
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town , THE HISTORICAL EXPLOITATION OF CHONDRICHTHYANS IN FALSE BAY, SOUTH AFRICA AND ASSESSMENT OF THEIR CONSERVATION STATUS by Lauren Nicole Best Town Supervisor: Professor Colin Attwood Cape of Percy FitzPatrick Institute of African Omithology University of Cape Town Rondebosch, Cape Town South Africa 7701 UniversityEmail: [email protected] 21 sl May 2012 Submitted in partial fulfilment of the requirements for the degree of Masters of Science in Conservation Biology TABLE OF CONTENTS PLAGIARISM DECLARATION .......................................................... .iv ABSTRACT ...................................................................................... v ACKNOWLEDGMENTS ..................................................................... vi CHAPTER 1. LITERATURE REVIEW 1.1. Global crisis ........................................................................................... 1 1.2. Why chondrichthyans? .............................................................................. 2 1.3. Direct- and indirect-fishing ......................................................................... .4 1.4. Management and protection .........................................................................Town
    [Show full text]
  • Vertical Migration During the Life History of the Intertidal Gastropod Monodonta Labio on a Boulder Shore
    MARINE ECOLOGY PROGRESS SERIES Published January 11 Mar Ecol Prog Ser Vertical migration during the life history of the intertidal gastropod Monodonta labio on a boulder shore Yoshitake Takada* Amakusa Marine Biological Laboratory, Kyushu University, Arnakusa. Kumamoto 863-25, Japan ABSTRACT: Environmental and biological conditions of the intertidal zone vary according to tidal level. Monodonta labjo (Gastropods; trochidae) occurs over the whole range of the intertidal zone, but juveniles occur only in the mid intertidal zone. In this study, vertical migration of this snail was investi- gated by mark-recapture techniques for 1 yr at Amakusa, Japan. Snails migrated vertically throughout the year, but varied with season and size. Generally, juvenile snails (<? mm in shell width) did not actively migrate. Upward migration was conspicuous only in small snails (7 to 10 mm) in summer. Downward migration was greatest in the larger size classes Thus, large snails (>l3 mm) gradually migrated downward to the lower zone. Seasonal fluctuations In the vertical distribution pattern of M. labio could be explained by this vertical migration. Possible factors affecting this vertical migration and the adaptive significance of migration in the life history of M. labio are discussed. KEY WORDS: Seasonal migration . Size . Herbivorous snail . Life history . lntertidal zone INTRODUCTION (McQuaid 1982), escape from strong wave action (McQuaid 1981), and maximization of reproductive Vertical migration of intertidal gastropods is one of output (Paine 1969).As growth rate, survival rate, and the main factors determining vertical distribution fecundity vary with tidal level, the life history of indi- (Smith & Newel1 1955, Frank 1965, Breen 1972, Gal- vidual snails can be considered to be determined by lagher & Reid 1979, review in Underwood 1979), and is their migration history.
    [Show full text]
  • Phylogeography of Selected Southern African Marine Gastropod Molluscs
    EFFECT OF PLEISTOCENE CLIMATIC CHANGES ON THE EVOLUTIONARY HISTORY OF SOUTH AFRICAN INTERTIDAL GASTROPODS BY TINASHE MUTEVERI SUPERVISORS: PROF. CONRAD A. MATTHEE DR SOPHIE VON DER HEYDEN PROF. RAURI C.K. BOWIE Dissertation submitted for the Degree of Doctor of Philosophy in the Faculty of Science at the University of Stellenbosch March 2013 i Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2013 Copyright © 2013 Stellenbosch University All rights resrved ii Stellenbosch University http://scholar.sun.ac.za ABSTRACT Historical vicariant processes due to glaciations, resulting from the large-scale environmental changes during the Pleistocene (0.012-2.6 million years ago, Mya), have had significant impacts on the geographic distribution of species, especially also in marine systems. The motivation for this study was to provide novel information that would enhance ongoing efforts to understand the patterns of biodiversity on the South African coast and to infer the abiotic processes that played a role in shaping the evolution of taxa confined to this region. The principal objective of this study was to explore the effect of Pleistocene climate changes on South Africa′s marine biodiversity using five intertidal gastropods (comprising four rocky shore species Turbo sarmaticus, Oxystele sinensis, Oxystele tigrina, Oxystele variegata, and one sandy shore species Bullia rhodostoma) as indicator species.
    [Show full text]
  • Documenting the Association Between a Non-Geniculate Coralline Red Alga and Its Molluscan Host
    Documenting the association between a non-geniculate coralline red alga and its molluscan host Rosemary Eager Department of Biodiversity & Conservation Biology University of the Western Cape P. Bag X17, Bellville 7535 South Africa A thesis submitted in fulfillment of the requirements for the degree of MSc in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisor: Gavin W. Maneveldt March 2010 I declare that “Documenting the association between a non-geniculate coralline red alga and its molluscan host” is my own work, that it has not been submi tted for any degree or examination at any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. 3 March 2010 ii I would like to dedicate this thesis to my husband, John Eager and my children Gabrian and Savannah for their patience and support. Last, but never least, I would like to thank GOD for sustaining me during this project. iii TABLE OF CONTENTS Abstract .........................................................................................................................................1 Chapter 1: Literature Review 1.1 Zonation on rocky shores....................................................................................................5 1.1.1 Factors causing zonation ...........................................................................................6 1.2 Plant-animal interactions on rocky shores .........................................................................7
    [Show full text]